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Abstract 

This thesis, "Biometric Security System: Unimodal Identification Using Finger Veins," explores the development and application 

of finger vein identification as a secure and efficient unimodal biometric recognition method. Leveraging advanced deep learning 

models, including InceptionResnet-V2 and a hybrid Convolutional Transformer-based approach (FVCT), the research establishes 

the potential for enhanced security and accuracy in biometric systems. Methodology involved the customization of deep learning 

architectures for finger vein identification, utilizing transfer learning and fusion of convolutional and transformer paradigms. Key 

findings demonstrate the superiority of these models, showcasing lower error rates and exceptional performance in comparison 

to existing state-of-the-art methods. Finger vein identification emerges as a reliable solution for diverse applications, from 

security to access control. Implications of these findings signify a path toward more secure and efficient biometric security 

systems. The fusion of deep learning paradigms and advancements in local feature extraction hold the promise of further 

innovation in the field. This research contributes to the ongoing development of robust and reliable personal identification 

solutions, ensuring enhanced security in critical domains. 

Keywords: Biometrics, Finger Vein, Deep Learning, convolutional neural network (CNN), vision transformer. 

Résumé 

Cette thèse, intitulée "Système de sécurité biométrique : Identification unimodale par les veines des doigts", explore le 

développement et l'application de l'identification par les veines des doigts en tant que méthode de reconnaissance biométrique 

unimodale sécurisée et efficace. En exploitant des modèles avancés d'apprentissage en profondeur, notamment InceptionResnet-

V2 et une approche hybride basée sur la convolution et le transformateur (FVCT), la recherche établit le potentiel d'une sécurité 

améliorée et d'une précision accrue dans les systèmes biométriques. La méthodologie a impliqué la personnalisation des 

architectures d'apprentissage en profondeur pour l'identification par les veines des doigts, en utilisant l'apprentissage par 

transfert et la fusion des paradigmes de convolution et de transformateur. Les principales conclusions démontrent la supériorité 

de ces modèles, avec des taux d'erreur plus faibles et des performances exceptionnelles par rapport aux méthodes de pointe 

existantes. L'identification par les veines des doigts émerge comme une solution fiable pour diverses applications, de la sécurité 

au contrôle d'accès. Les implications de ces conclusions signifient une voie vers des systèmes de sécurité biométrique plus 

sécurisés et efficaces. La fusion des paradigmes d'apprentissage en profondeur et les avancées dans l'extraction des 

caractéristiques locales laissent entrevoir la possibilité d'une plus grande innovation dans ce domaine. Cette recherche contribue 

au développement continu de solutions d'identification personnelle robustes et fiables, garantissant une sécurité renforcée dans 

des domaines critiques. 

Mots Clé: biométrie, veine du doigt, apprentissage profond, réseau neuronal à convolution (CNN), transformateur de vision. 

 ملخص

"، تطوير وتطبيق تقنية التعرف باستخدام الأوعية في الأصابع البيومتري: التعرف الأحادي باستخدام الأوعية في الأصابعنظام الأمان تستكشف هذه الرسالة، بعنوان "

لسلة ونموذج مبني على التكامل بين الشبكات العصبية المتس  InceptionResnet-V2 كطريقة أمان فعاّلة وآمنة. من خلال استغلال نماذج تعلم عميق متقدمة، بما في ذلك

المنهجية تتضمن تخصيص الهياكل العميقة للتعلم لتعرف الأوعية في  .وضح البحث إمكانية تعزيز الأمان والدقة في أنظمة التعرف البيومتريي، (FVCT) والمداخل

تفوق هذه النماذج، مع معدلات خطأ أقل وأداء استثنائي مقارنة  تشير النتائج الرئيسية إلى .الأصابع، مستفيدة من التعلم بالنقل ودمج بين الطرز العصبية المتسلسلة والمداخل

تدل الآثار المترتبة على  .صولبالأساليب الحالية المتقدمة. يظهر التعرف بواسطة الأوعية في الأصابع كخيار موثوق لتطبيقات متعددة، بدءًا من الأمان حتى مراقبة الو

ة أكثر أماناً وفعالية. يمكن أن يكون دمج النماذج المبنية على التكامل بين الشبكات العصبية المتسلسلة والمداخل والتقدم في هذه النتائج على طريق نحو أنظمة أمان بيومتري

في المجالات  تعزيز الأمان استخراج المعلومات المحلية مفيدًا لتحسين الأداء. تسهم هذه البحث في تطوير مستمر لحلول التعرف الشخصي الموثوقة والمتينة، مما يضمن

 .الحيوية

 ، محول الرؤية. (CNN) القياسات الحيوية، وريد الإصبع، التعلم العميق، الشبكة العصبية التلافيفية ة:الكلمات المفتاحي
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CHAPTER 1

Introduction

In an era characterized by unprecedented digital connectivity, the protection of sensitive

information and personal identities has never been more crucial. With the rapid expan-

sion of online transactions, the proliferation of digital records, and the persistent threats

of identity theft and cybercrime, the imperative for robust and secure authentication

and identification methods is undeniable. Traditional means of identity verification, in-

cluding passwords, personal identification numbers (PINs), and physical identification

cards, have long been fraught with vulnerabilities that malicious actors can exploit. In

response to these weaknesses, the field of biometric recognition has emerged as a pi-

oneering solution, offering an unparalleled level of security through the analysis of an

individual’s unique physiological or behavioral traits[1, 2].

1.1 The Overarching Topic and Aims of the Thesis

The central focus of this Ph.D. thesis is the development and exploration of a biometric

security system centered on the unimodal identification of individuals using the intricate

patterns of finger veins. This innovative approach, termed "Finger Vein Identification,"

1



CHAPTER 1. INTRODUCTION 2

leverages the distinct patterns of blood vessels beneath the skin’s surface in the human

finger, making it a compelling and secure biometric modality. Our overarching aim is

to advance the understanding and application of finger vein identification as a secure

and efficient means of person recognition, addressing critical challenges and pushing

the boundaries of its utility.

To ensure clarity and precision, let us define key terms and the scope of this thesis:

• Biometric Security System: A security system that relies on an individual’s unique

physiological or behavioral traits for the purpose of authentication and identifi-

cation. In this thesis, we focus on the unimodal identification using finger vein

patterns.

• Unimodal Identification: The process of identifying individuals using a single

biometric modality, specifically the patterns of finger veins.

• Finger Veins: The intricate patterns of blood vessels beneath the skin’s surface in

the human finger, which are used as a biometric feature for identification.

The use of biometric recognition methods has proliferated in various authentication

scenarios, including mobile devices, online payments, criminal investigations, and se-

cure financial services. While fingerprint, iris, and facial recognition have been at the

forefront of this technological transformation, finger vein identification has gained in-

creasing prominence [3]. The following critical evaluation of the current state of the

literature elucidates the unique attributes of finger vein identification and underscores

the need for its further exploration.

Biometric recognition technology has evolved into an indispensable component of

modern security and authentication systems. It offers enhanced efficiency compared to

traditional identification methods, owing to its convenience and steadfast security. Un-

like traditional methods that often rely on easily compromised means such as passwords

or physical tokens, biometric systems authenticate individuals based on their distinctive

physiological or behavioral traits. These traits can include, but are not limited to, finger-

prints, iris patterns, facial features, voice characteristics, and finger vein patterns. The
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focus of this thesis is unimodal identification using finger vein patterns, a biometric

modality that holds particular promise.

The technology of finger vein identification operates by analyzing the unique pat-

terns of blood vessels located beneath the surface of an individual’s finger, using near-

infrared light for imaging. First pioneered by Hitachi’s R&D department [4], finger vein

identification has found diverse applications in healthcare, finance, automobile security,

and confidential systems such as automated teller machines (ATMs). It is distinguished

by several inherent advantages [5]:

• Enhanced Stability: The dispersed nature of finger veins under the skin’s surface

results in less variation depending on factors like an individual’s age or weight.

Additionally, the finger vein is shielded directly by the skin, preventing contami-

nation by external factors and reducing susceptibility to damage.

• Inherent Difficulty of Usurpation: Due to the specific distribution and imaging

circumstances of finger veins, obtaining finger vein images without the owner’s

consent is significantly challenging, making it resistant to spoofing.

• User-Friendly Operation: Finger vein authentication entails a straightforward

process where users need only place one of their fingers on a finger vein device

to perform fast and effortless identification.

• Liveliness Detection Capability: Finger vein imaging exhibits a distinct distri-

bution of gray levels due to the veins’ ability to absorb near-infrared light at a

different rate than other finger tissues. This unique feature enables the detection

of liveliness during the authentication process.

• Portability: Finger vein identification devices are designed to be compact, slightly

larger than the size of a finger, making them easily portable and convenient.

While traditional biometric identification methods like fingerprint and iris recognition

have seen substantial development, finger vein identification offers additional security

features and advantages. These advantages include an enhanced level of stability, as
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finger veins are not prone to significant changes over time and resist spoofing attempts.

Furthermore, finger vein identification does not require direct contact with the sensor,

making it more hygienic in applications such as healthcare.

This chapter critically evaluates the existing body of research related to biometric

recognition, emphasizing the unique attributes and advantages of finger vein identifica-

tion. While traditional biometric modalities have seen widespread adoption and exten-

sive research, finger vein identification holds particular promise for unimodal identifica-

tion systems. By critically assessing the current state of the literature, we identify a gap

in the research landscape related to unimodal identification using finger vein patterns.

The importance of this research lies in its contribution to the advancement of biometric

security systems, with a specific focus on unimodal identification using finger veins. As

biometric recognition systems continue to play pivotal roles in security contexts, finan-

cial services, and various authentication scenarios, our research addresses the pressing

need for robust, convenient, and secure identification methods. The key contributions

and significance of this thesis are as follows:

• Advancing the Understanding of Finger Vein Identification: This research aims

to enhance the understanding and application of finger vein identification as a

secure and efficient biometric recognition modality. By delving into the historical

development, techniques for feature extraction, and matching, we aim to bolster

the security and accuracy of unimodal identification using finger veins.

• Evaluation of Deep Learning Models: This thesis involves the investigation of

deep learning models, including the InceptionResnet-V2 model and hybrid Con-

volutional Transformer-based networks. Through comprehensive experiments,

we aim to assess the performance of these models in finger vein identification,

paving the way for improved unimodal identification.

• Identification of Research Gap: By critically evaluating the current state of the

literature, we identify a research gap related to unimodal identification using fin-

ger vein patterns. This thesis seeks to fill this gap by conducting in-depth research
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and experimentation.

The contribution of this research extends to the enhancement of security, efficiency, and

convenience in biometric recognition systems. By focusing on finger vein identifica-

tion, we aim to improve the understanding and application of this technology, further

enhancing its security and accuracy. Our work addresses the need for unimodal identi-

fication methods that are robust and secure, making it a valuable addition to the field of

biometric security systems.

1.2 Describe The Methodology and Main Findings

In this thesis, our methodology involves a multifaceted exploration of finger vein iden-

tification, encompassing historical development, feature extraction techniques, and the

application of deep learning models. We critically evaluate the current state of the lit-

erature, identify a research gap, and embark on a comprehensive journey to fill this

gap.

Specifically, we investigate the performance of deep learning models in finger vein

identification. Chapter 3 focuses on the InceptionResnet-V2 model, providing an in-

depth exploration of its architecture and performance. Chapter 4 delves into the devel-

opment and evaluation of a hybrid Convolutional Transformer-based model tailored for

finger vein identification. Our experiments and findings aim to assess the capabilities

of these models and their potential to enhance the accuracy of finger vein identification.

1.3 Thesis organisation

This thesis is structured as follows:

• Chapter 1 -Introduction: Provides an overview of the field of biometric recogni-

tion, the significance of finger vein identification, and the aims of the thesis.

• Chapter 2 -Biometric Systems: provides a comprehensive overview of biometric

systems and their performance evaluation.



CHAPTER 1. INTRODUCTION 6

• Chapter 3 - Finger Vein Identification: Explores the intricacies of finger vein iden-

tification, including its historical development, techniques for feature extraction

and matching, and the role of databases.

• Chapter 4 - InceptionResnet-V2 Model: Discusses a deep learning model for

finger vein recognition based on InceptionResnet-V2 and its performance.

• Chapter 5 - Hybrid Convolutional Transformer Model: Explores a hybrid Convo-

lutional Transformer-based model for finger vein identification and its results.

• Chapter 6 - Conclusion and Future Directions: Summarizes the key findings and

contributions of the thesis and outlines potential avenues for future research in

the field of finger vein identification.

In this thesis, we aim to advance the understanding and application of finger vein iden-

tification as a secure and efficient unimodal biometric recognition modality. Through

comprehensive exploration and experimentation, we seek to enhance the security, accu-

racy, and convenience of unimodal identification using finger veins. Our research fills

a critical gap in the current state of the literature and contributes to the broader field of

biometric security systems.



CHAPTER 2

Overview of Biometric Systems

2.1 Introduction

Biometrics, derived from the Greek words "Bio" (meaning life) and "Metric" (to mea-

sure), represents a pioneering field offering a compelling solution for person recogni-

tion. Biometric systems stand as robust, highly secure, and inherently natural alterna-

tives for verifying one’s identity. The central objective of these systems revolves around

the automation of human identification processes. Unlike traditional methods reliant

on easily manipulated or compromised means such as badges, personal identification

numbers (PINs), passwords (which can be words or phrases), and ID cards, biomet-

ric systems rely on an individual’s distinctive physiological traits (e.g., fingerprint, iris,

vein patterns, hand geometry, and ear shape) or behavioral characteristics (e.g., gait,

signature, and keystroke dynamics)[1, 2, 6, 7, 8, 9, 10].

Identity verification systems have become indispensable in various domains, en-

compassing account logins, online payments, and automated teller machines (ATMs).

These technologies are designed to safeguard user privacy and information security.

The classical password, though widely used, suffers from drawbacks such as protracted

7
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Figure 2.1: Biometric Types (a) face (b) iris (c) finger print (d) ear (e) nail bit (f) DNA
(g) hand (h) finger vein (i) Palm vein (j) sweat pores (k) foot print (l) gait (m) signature
[13]

input processes, vulnerability to leakage, and limited resistance to attacks. In the face

of rapid advancements in information technology, biometric recognition systems have

emerged as ubiquitous solutions across diverse authentication scenarios [11]. Biomet-

ric recognition revolves around the identification of individuals based on their unique

physical and behavioral attributes, including facial features [1], vocal characteristics

[2], and fingerprint patterns [6].

Biometric recognition technology offers enhanced efficiency compared to tradi-

tional identification methods, owing to its convenience and steadfast security. As the

demand for digital security systems continues to surge, biometric recognition systems

offer several compelling advantages. For instance, fingerprint-based biometric systems

have found widespread adoption in home security, liberating individuals from the need

to remember passwords or carry physical keys [8]. Furthermore, biometric recognition

technologies, such as facial recognition, handwriting analysis, and voice recognition,

play pivotal roles in criminal investigations [9]. Additionally, in the realm of financial

services, biometric features, including finger vein patterns, facial recognition, and fin-

gerprint scans, ensure that only authorized users gain access to sensitive financial data

[10]. Beyond the aforementioned biometric modalities, iris scans, retinal scans, and

gait analysis [12] also find extensive applications in various security contexts.
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2.2 Operation of a Biometric System

A biometric system is fundamentally a pattern-recognition (pattern-matching) system.

The process of identifying a user within a biometric system comprises two primary

stages: enrollment and recognition. In the initial stage, enrollment involves collecting

biometric data from an individual and storing it in a database alongside their iden-

tity. Typically, only the extracted feature set from the biometric data is retained in the

database, while the raw biometric data is discarded. The second stage, recognition,

entails re-collecting biometric data from the individual and comparing it against the

feature set(s) stored in the database during enrollment to ascertain the user’s identity.

Consequently, a biometric system can be deconstructed into five fundamental modules:

(a) sensor module, (b) quality assessment and feature extraction module, (c) database

module, (d) matching module, and (e) decision module. Each of these key modules is

elaborated upon below [2].

2.2.1 Sensor Module

To capture or measure the raw biometric data of an individual, a suitable biometric sen-

sor is essential. For example, an optical sensor may be employed to acquire fingerprint

images. In order to attain high-quality raw biometric data, the interface between the

sensor and the user (human-machine interface) should be user-friendly and ergonomic.

Furthermore, the choice of sensor characteristics plays a pivotal role in ensuring the

acquisition of high-quality biometric samples.

2.2.2 Feature Extractor and Quality Assessment Module

The acquired biometric data typically undergoes further pre-processing before feature

extraction. The feature extraction process aims to generate an informative digital rep-

resentation, referred to as a template, from the input biometric sample. This template

is expected to contain salient discriminatory information crucial for identifying or ver-

ifying the individual. During the enrollment stage, the template is registered either in
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the central database of the system or stored on a token, such as a smart card, issued

to the individual. Given that the quality of the query biometric data (input data) is not

always sufficient, a quality assessment algorithm is integrated into the biometric system

to evaluate the suitability of the query data for subsequent processing. If the quality as-

sessment deems the acquired biometric data unsuitable, the raw data is rejected, and re-

acquisition from the user is initiated. In the absence of a quality assessment algorithm,

the quality of the input data can be improved by subjecting it to signal enhancement

techniques.

2.2.3 Database Module

The extracted features derived from the raw biometric data are stored in the system

database (i.e., the template), along with some biographical information about the user

(e.g., Personal Identification Number [PIN], name, address, etc.) that serves to distin-

guish them. To ensure secure storage of biometric templates, these templates should

be housed in a centralized database, safeguarded through physical isolation and robust

access control measures. This level of protection is essential to preserve the privacy

of innocent users and guard against malicious individuals who may seek to exploit the

biometric information stored in the database.

2.2.4 Matcher Module

The primary function of the biometric matcher module is to generate match scores by

comparing the information extracted from the collected traits (query features) with their

corresponding templates created during enrollment. The match score quantifies the de-

gree of similarity between the two sets of features and can take the form of either a sim-

ilarity or a distance metric. In cases where the matching module produces a similarity

score, a higher matching score indicates greater similarity between the stored template

and the input biometric sample. Conversely, a smaller distance matching score signifies

a greater dissimilarity between the two feature sets. The matching module can perform

two types of comparisons: one-to-one for verification purposes and one-to-many for
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Figure 2.2: Biometric enrollment stage

identification.

2.2.5 Decision Module

In the decision module, the match scores generated by the matcher module are utilized

to either validate the claimed individual’s identity in the verification task or to rank

the enrolled identities in order to identify a user in the identification task. Typically,

the match score is compared with a predefined threshold, denoted as τ . If the match

score falls within the threshold (S < τ in the case of similarity scores), the user is

authenticated as genuine; otherwise, they are deemed an imposter. This threshold-based

approach serves to distinguish between legitimate users and impostors based on the

level of similarity or dissimilarity between their biometric data and the stored templates.

2.3 Functionalities of a Biometric System

A biometric system offers two primary modes of recognition: identification and verifi-

cation (authentication is used synonymously with verification). Figure 2.2 illustrates the

enrollment stage, where an individual presents their biometric traits (e.g., fingerprint,

face, and iris) to the sensor for conversion into a reference template stored in the system

database. The biometric system provides the following two modes, each of which is

discussed below [1].
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Figure 2.3: Biometric identifcation mode

2.3.1 Identification

In the identification mode, the biometric system conducts a comparison between the

individual’s biometric inputs and the templates of all users enrolled in the database

(i.e., a one-to-many match) to determine the user’s identity (refer to Figure 2.3). The

system’s output in this mode can either be the identity of the individual whose template

exhibits the highest degree of similarity with the input sample provided by the user, or it

may indicate that the person is not enrolled in the database. Several biometric systems

operate in identification mode, such as the US-VISIT IDENT program and the FBI-

IAFIS. Due to the substantial number of enrolled users, identification is notably more

challenging than verification. Identification mode can be further categorized into two

classes:

Positive Identification: In this class, the system determines the identity of the indi-

vidual from a known set of identities. Essentially, the system answers the question, "Is

this person someone who is known to the system?"

Negative Identification: In this class, the user is suspected of concealing their true

identity, either explicitly or implicitly, from the system. This type of identification

system is also known as screening, and its objective is to ascertain, "Is this person who

they claim not to be?"



CHAPTER 2. OVERVIEW OF BIOMETRIC SYSTEMS 13

Figure 2.4: Biometric verification mode

2.3.2 Verification

In the verification mode, the biometric system performs a comparison solely between

the individual’s query input and their own biometric template stored in the database

(i.e., a one-to-one match) to authenticate the user’s claimed identity (see Figure 2.4).

Typically, the identity claim is made using a username, a token (e.g., smart card), or

a Personal Identification Number (PIN). The user is accepted as genuine if the query

input matches their template with a high degree of similarity, and the degree of similar-

ity exceeds a predefined threshold. This mode ensures that the user’s claimed identity

aligns with their biometric data on file, offering a heightened level of security for iden-

tity verification.

2.4 Selection of Biometric Modality

While biometrics finds applications in various daily scenarios, such as border crossing,

mobile user authentication, and forensics, it’s important to note that no single biometric

trait satisfies all the requirements for these applications. However, several biometric

traits are considered suitable. Table 2.1 provides a description of various biometric traits

in terms of attributes like collectability, performance, distinctiveness, universality, and

permanence. For instance, the fingerprint trait is characterized by medium universality,

high distinctiveness, high permanence, medium collectability, high performance, and
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Biometric
Trait Universal Uniqueness Permanence Collectability Performance Acceptability

Face H L M H L H
Fingerprint M H H M H M
Ear H L M H L H
Iris H H H M M L
Gait M L L H L H
Hand vein M M M M M H
Hand Ge-
ometry

M M M H M M

Retina H H M L H L
Signature L L L H L H
Voice M L L M L H
DNA H H H L L L

Table 2.1: Comparison of Biometric Traits [2]
Keys:
H: high, M: medium, L: low.

medium acceptability.

Multiple biometric traits have been employed for human identity verification, in-

cluding fingerprint, face, voice, and palmprint, among others. Each biometric trait

comes with its own strengths and weaknesses, and the choice of a biometric modality

depends on various factors beyond accuracy performance [2]. The factors influencing

the suitability of a biometric trait for a particular application can be summarized as

follows [1, 8, 9]:

2.4.1 Universality

Universality implies that each user must possess the required biometric trait for suc-

cessful enrollment. It’s important to note that the universality factor directly impacts

the failure to enroll rate.

2.4.2 Uniqueness

To minimize the false match rate (FAR) of a biometric system, the chosen biometric

trait should effectively distinguish between different users.
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2.4.3 Permanence

In order to achieve a high recognition rate in a biometric system, the user’s biometric

trait should remain sufficiently invariant over time. Failure to meet this criterion can

result in a high false non-match rate (FRR).

2.4.4 Collectability

Collectability or measurability refers to the biometric modality’s suitability for capture

and its comfort for the individual to present to the biometric sensor.

2.4.5 Performance

This factor encompasses the accuracy, speed, and robustness of the system. The ac-

curacy of biometric systems is typically defined by their false acceptance and false

rejection rates. Accuracy can be influenced during the data collection process by envi-

ronmental factors such as lighting, shadows, and background noise.

2.4.6 Resistance to Circumvention

This factor assesses the degree of resistance a biometric modality offers against spoofing

attacks [12, 14]. Spoofing is the fraudulent process by which a user attempts to subvert

or attack a biometric system by impersonating a registered user, gaining illegitimate

access, and reaping advantages.

2.4.7 Acceptability

Acceptability gauges the level of public acceptance and approval for a given biometric

trait. It is crucial that individuals are willing to present their biometric trait to the

system, as user acceptance is a vital factor determining the success of any biometric

implementation.
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2.5 Comparison of Biometric Traits and Their Applica-

tions

Biometrics has established itself as a vital security tool in numerous applications within

our interconnected society, as depicted in Table 2.2. Questions such as "Is she really

who she claims to be?", "Is this person authorized to use this facility?", or "Is he on the

government’s watch list?" are routinely posed in a wide array of scenarios, spanning

from issuing driver’s licenses to controlling entry into a country (refer to Figure 2.5).

The applications of biometrics can be broadly categorized into three main sectors: the

Government sector, the Commercial sector, and the Forensic sector [1, 9, 10].

For a comprehensive understanding, the behavioral and psychological biometric

traits, along with their characteristics, are detailed in Appendix A.1. Additionally, Ta-

ble 2.2 provides an overview of the various applications associated with each biometric

trait. These tables serve as valuable references for assessing the suitability of specific

biometric modalities in different scenarios.

2.6 Unimodal And Multimodal Biometric Systems

In recent decades, biometric systems have seen significant advancements and have be-

come increasingly vital in addressing security concerns across various domains, includ-

ing access control, identity verification, and financial transactions. Among the note-

worthy developments in biometrics, the debate surrounding unimodal and multimodal

biometric systems has garnered substantial attention. This chapter provides an exten-

sive comparative analysis of unimodal and multimodal biometric systems, delving into

their respective strengths, weaknesses, and practical applications.

2.6.1 Unimodal Biometric Systems

Unimodal biometric systems rely on a single physiological or behavioral trait for iden-

tity verification. Common unimodal biometric modalities include fingerprint recogni-
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Figure 2.5: Government and commercial applications that employ biometrics to recog-
nize person (a) The US-VISIT program (b) the Schiphol Privium program, (c) Unique
Identity (UID) Card project , and (d) a product by Fujitsu captures the palm vein pattern
[1].
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Biometric Trait Applications
Face

• Criminal Identification
• Access Control Verification
• Human-Computer Interaction
• Surveillance

Fingerprint
• License and Visa Authentication
• Access Control Verification
• Human Computer Interaction
• Law Enforcement Forensics

Retina
• Security agencies such as FBI, CIA, and NASA

Ear
• Law Enforcement
• Forensics Surveillance

Iris
• Identification as Aadhaar card in India
• Access Control

Voice
• Web-based transactions
• Voice Response-based health and banking systems

Gait
• Chiropractic
• Medical diagnosis

Vein Pattern
• Financial systems and banks
• Door security systems
• Travel and transportation

Palmprint
• Personal Identification
• Blood relation Identification
• Medical Diagnosis
• Selection of athletes

Signature
• Banking system

Table 2.2: Applications of Biometric Traits [1, 9]
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tion, iris scanning, facial recognition, voice recognition, and hand geometry. These

systems capture, process, and compare the unique features of the chosen modality to

verify an individual’s identity. The biometric sample is acquired through a sensor, dig-

itized into a biometric template, and compared against an enrolled template for match-

ing. Unimodal systems employ pattern recognition and machine learning algorithms to

extract distinctive features and accurately match templates.

2.6.1.1 Sensor Technologies in Unimodal Systems

Various sensor technologies are employed in unimodal biometric systems to acquire

raw biometric data. For instance, fingerprint recognition utilizes optical, capacitive,

ultrasonic, and thermal sensors to capture ridge patterns. Iris scanning relies on high-

resolution near-infrared cameras to photograph intricate iris textures. Facial recognition

systems use standard digital cameras and sophisticated 3D sensors to capture facial

images. Voice recognition records and digitizes vocal characteristics. Advances in

sensor technologies have enabled more reliable and convenient biometric trait capture.

2.6.1.2 Strengths of Unimodal Biometric Systems

Simplicity and Ease of Deployment: Unimodal biometric systems offer the primary

advantage of simplicity and ease of deployment. They typically require minimal hard-

ware and software resources, making them cost-effective for a wide range of appli-

cations. Moreover, unimodal systems are often more user-friendly since they involve

capturing a single biometric trait, reducing the complexity of the authentication process.

Unimodal systems are, therefore, well-suited for integration into existing infrastructure

and for consumer applications where usability is critical.

High Recognition Accuracy: Unimodal biometric systems can achieve high recog-

nition accuracy when the selected modality is well-suited to the application, and the en-

rollment process is carefully controlled. For example, fingerprint recognition is known

for its exceptional accuracy due to the uniqueness and permanence of friction ridge pat-

terns. With high-resolution sensors, advanced image processing, and machine learning
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algorithms, fingerprint verification systems can operate with false match rates as low

as 0.00008%. Such exceptional accuracy makes unimodal fingerprint systems ideal for

stringent security applications.

2.6.1.3 Limitations of Unimodal Biometric Systems

Vulnerability to Spoofing: Unimodal biometric systems are susceptible to spoofing

attacks, where malicious actors attempt to deceive the system by presenting counterfeit

biometric traits. For instance, fingerprint sensors can be tricked with artificially fabri-

cated fingerprints made using materials like gelatin and silicone. Iris spoofing can be

done using high-quality printed images or prosthetic contact lenses. Without liveness

detection capabilities, unimodal systems remain vulnerable to such spoofing threats.

Limited Robustness: Unimodal biometric systems may struggle in scenarios where

the selected modality is affected by environmental factors or changes in the user’s con-

dition. For example, facial recognition systems can be less accurate in low-light con-

ditions or when users wear masks, heavy makeup, or eyeglasses. Fingerprint systems

perform poorly if the users’ fingers are wet, dirty, or injured. Such variability can de-

grade the performance of unimodal systems.

Lack of Population Coverage: Certain unimodal biometric traits may not be viable

for all individuals in the target population. For instance, fingerprint and iris recognition

exclude individuals with damaged friction ridges or iris occlusion. Unimodal voice

recognition is affected by voice disorders. By relying on a single modality, these sys-

tems fail to provide universal coverage.

2.6.2 Multimodal Biometric Systems

2.6.2.1 Definition and Characteristics

Multimodal biometric systems integrate two or more biometric modalities to enhance

security and accuracy. These modalities can be either physiological (e.g., fingerprint,

face, iris) or behavioral (e.g., voice, gait, signature). Multimodal systems combine

information from multiple sources to create a more comprehensive identity assertion.



CHAPTER 2. OVERVIEW OF BIOMETRIC SYSTEMS 21

Figure 2.6: Block diagram of sensor level fusion in Multimodal Systems

The fusion of modalities can occur at the sensor, feature, matching score, or decision

level.

2.6.2.2 Sensor Fusion in Multimodal Systems

Sensor fusion in multimodal systems involves using multiple biometric sensors to cap-

ture different modalities simultaneously (refer to Figure 2.6). For example, mobile de-

vices can integrate fingerprint, face, and iris recognition sensors to create a multimodal

system. Sensor fusion provides convenience to the user while also enabling liveness

detection. However, employing multiple sensors increases the cost and form factor of

devices.

2.6.2.3 Feature Fusion in Multimodal Systems

Feature fusion consolidates the feature sets extracted from multiple modalities into a

single feature vector (refer to Figure 2.7). This enables complementary feature infor-

mation to be combined for better discrimination between individuals. For instance,

local binary patterns from face images can be combined with minutiae points from fin-

gerprints. Efficient feature selection and weighting schemes are required to optimize

the fused feature set.
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Figure 2.7: Block diagram of Feature level fusion in Multimodal Systems

Figure 2.8: Block diagram of Matching Score Fusion in Multimodal Systems

2.6.2.4 Matching Score Fusion in Multimodal Systems

Matching score fusion aggregates the similarity scores obtained by comparing templates

from each modality to the corresponding enrolled template (refer to Figure 2.8). The in-

dividual scores are normalized and combined using methods like the sum rule, weighted

sum rule, or SVM classification. Matching score fusion provides the flexibility to adjust

fusion rules for optimal performance.

2.6.2.5 Decision Fusion in Multimodal Systems

In decision fusion, each modality makes an independent authentication decision, which

is then consolidated using techniques like majority voting, AND/OR rules, or meta-

classification. By fusing final decisions, this method allows deploying matchers with

their own optimized thresholds and parameters (refer to Figure 2.9). However, useful

matching score information is lost prior to fusion.
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Figure 2.9: Block diagram of Decision Fusion in Multimodal Systems

2.6.2.6 Strengths of Multimodal Biometric Systems

Enhanced Security: Multimodal biometric systems offer significantly enhanced secu-

rity against spoofing compared to unimodal systems. Performing a successful spoof at-

tack requires compromising multiple modalities simultaneously, exponentially increas-

ing the difficulty for imposters. Liveness detection capabilities can also be readily in-

corporated.

Increased Accuracy: By utilizing complementary biometric traits, multimodal sys-

tems can achieve higher accuracy. For instance, fusing fingerprints and iris can reduce

false accept rates to extremely low levels. Multimodal systems also experience lower

failure to enroll rates as multiple modalities provide redundancy.

Improved User Convenience: Multimodal systems can use non-intrusive modali-

ties like face and voice along with highly accurate modalities like fingerprints for user

convenience as well as accuracy. The ability to authenticate passively and continuously

provides a seamless user experience.

2.6.2.7 Limitations of Multimodal Biometric Systems

Increased Cost and Complexity: The need for multiple sensors and computational

mechanisms for fusion increases hardware and software costs. Enrollment and authen-

tication processes require additional time to capture and process multiple modalities.

System integration and maintenance complexity also increase.

User Acceptance: Collecting and integrating biometric data from multiple sources
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raises user concerns regarding privacy invasion. Seamless unobtrusive authentication

can alleviate such concerns. Gradual introduction and education about benefits over

unimodal systems can also foster user acceptance.

Optimization Difficulties: Determining optimal fusion rules, feature selection,

matching algorithms, and their parameters for different modalities poses design chal-

lenges. Suboptimal fusion can potentially degrade overall accuracy. Adaptive optimiza-

tion techniques are required for robust fusion.

2.7 Biometric Systems Performance Evaluation

The evaluation of biometric systems’ performance represents a pivotal and indispens-

able facet in the design and architecture of biometric recognition systems. This section

delves into the techniques for analyzing biometric systems and elucidates various met-

rics and graphical representations that shed light on the intricacies of biometric system

operations. As previously alluded to, biometric systems can be categorized into two

primary modes: verification and identification. It is imperative to differentiate between

these two modes, as they exert substantial influence on the evaluation of performance.

The field of biometrics offers an array of solutions for addressing image classifica-

tion problems [15]. These methods are adaptable to classification problems involving

two or more classes, and the performance of classifiers is contingent upon the number of

samples per class and their composition. Consequently, the choice of the most suitable

method hinges on the specific requirements of the targeted application. A pragmatic ap-

proach involves initial method selection, followed by rigorous testing and subsequent

evaluations.

In data analysis, the initial step typically involves the construction of an array repre-

sentation known as a "confusion matrix." This table (Table 2.3) quantifies the number of

predictions, denoted as Xi, j (or Xclass,prediction), representing samples of class i assigned

to class j among a set of C classes. The number of samples constituting class i is de-

noted as Ki, and the total number of predictions attributed to this class is referred to as
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Prediction
Total /Classes

Class1 Classi Classc

Real Class
Class1 X1,1 X1,i X1,c K1
Class2 Xi,1 Xi,i Xi,c Ki
Classc Xc,1 Xc,i Xc,c Kc

Total Predictions M1 Mi Mc ∑

Table 2.3: Prediction Confusion Matrix of a C-Class Classifier

Prediction
Total /Classes

Positive Class Negative Class

Real Class
Positive Class Tp Fn P
Negative Class Fp Tn N

Total Predictions Ppos Pneg ∑

Table 2.4: Prediction Confusion Matrix of a C-Class Classifier

Mi. The sums of Ki and Mi collectively amount to the total number of samples (∑).

With this context, for each class i, treated as a binary problem (Class i as positive,

all other classes i ̸= j as negative), or directly for a two-class problem, the predictions

can be classified into four principal categories:

1. True Positive (Tp): Samples of the positive class (i) correctly classified (Xi,i).

2. False Negative (Fn): Samples of the positive class (i) incorrectly classified ((Xi, j

,∀ i ̸= j ).

3. True Negative (Tn):Samples of the negative class ( j) correctly classified (Xi,t ,∀

t ∈ [1,C]̸= i ).

4. False Positive (Fp): Samples of the negative class ( j) incorrectly classified (X j,i

,∀ j ̸= i).

In the case of a problem with N classes, treated individually as binary problems,

confusion matrices are constructed for each class i. The confusion matrix for a two-

class problem establishes a connection between the total number of samples (P) from

the positive class, the total number of samples (N) from the negative class, and the

four aforementioned categories, which in turn determine the total number of samples

classified as positive (Ppos) and negative (Pneg).
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Various measures can be derived from a confusion matrix, from the problem with

Two-classes we can describe the following metrics:

– False Acceptance Rate (FAR): Defined as the probability that the biometric se-

curity system mistakenly accepts an access attempt by an unauthorized user.

FAR =
F p

T n+F p
=

Fn
N

(2.1)

– False Rejection Rate (FRR): Defined as the probability that the biometric security

system mistakenly reject an access attempt by an authorized user name.

FRR =
Fn

T p+Fn
=

Fn
P

(2.2)

– Sensitivity: is calculated as the number of correct positive predictions divided by

the total number of positives. It is also called recall or True Positive Rate or Genuine

Acceptance Rate (GAR) witch is given by GAR = 1−FRR.

Sensitivity =
T p

T p+Fn
=

T p
P

(2.3)

– Specificity: is calculated as the number of correct negative predictions divided by the

total number of negatives. It is also called true negative rate. It can also be calculated

by (1− speci f icity = FAR).

Speci f icity =
T n

T n+F p
=

T n
N

(2.4)

– Precision: is calculated as the number of correct positive predictions divided by the

total number of positive predictions. It is also called positive predictive value.

Precision =
T p

T p+F p
=

T p
Ppos

(2.5)

– Equal Error Rate (EER): is calculated as the number of all incorrect predictions

divided by the total number of the classes. EER defined also as the best compromise
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between FAR and FRR . The best error rate is 0.0, whereas the worst is 1.0.

EER =
F p+Fn

T p+T n+F p+Fn
=

F p+Fn
P+N

(2.6)

– Accuracy (ACC): is calculated as the number of all correct predictions divided

by the total number of the dataset. The best accuracy is 100%, whereas the worst is 0.0.

ACC =
T p+T n

T p+T n+F p+Fn
(2.7)

Each of this metrics has a percentage describing a certain capability of the model.

The higher the percentage value, the better the model. Sensitivity and specificity only

take into account samples from the same test class (positive class for sensitivity and

negative class for specificity). Thus, variations in the number of test images per class

have no influence on this metrics. However, this is not the case for precision and accu-

racy. Indeed, the precision takes into account the test samples determined as positive

for both classes and the accuracy is a "global" evaluation of the model, considering all

the prediction results (the whole confusion matrix). The exploitation of previously de-

scribed metrics are basic biometric performance measures such as the FRR/FAR, sensi-

tivity/specificity and precision/sensitivity (or recall) pairs. Figure 2.10.a illustrate match

score distributions for FRR/FAR by the use of different thresholds. These thresholds,

applied to the prediction scores, make it possible to adjust these metrics by considering

a prediction as just if its associated score is higher than this threshold.

Figure 2.10.b illustrates the Detection error tradeoff (DET) curve witch present the

relationship between the FRR and the FAR. It is obtained by varying the decision thresh-

old and each time calculating the two FRR and the FAR values [16].

Figure 2.11 represent the utilization of the sensitivity/specificity and precision/sensitivity

pairs. Figure 2.11.a shown the Receiver Operating Characteristic (ROC) curve, which

is a popular measure for evaluating classifier performance [16]. The ROC curve is a

model-wide evaluation measure that is based on two basic evaluation measures sensi-

tivity/specificity. Similarly, Precision-Recall (PR) curve [16] shows what happens to
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(a) (b)

Figure 2.10: Example of FRR/FAR Illustration; (a) Match Score Distributions,(b) Ex-
ample of DET Curve.

(a) (b)

Figure 2.11: Example of ROC and PR curves illustration; (a) ROC curve, (b) PR curve.

precision and recall as we vary the decision threshold (see Figure 2.11.b).

A metric known as the Area Under the Curve (AUC) score is obtained from the

ROC or PR curves. As the name suggests, it quantifies the area under the curve in the

ROC or PR space. The AUC score can be calculated using the trapezoidal rule, which

involves summing the areas of the trapezoids under the curve.

2.8 Conclusion

In conclusion, this chapter provides a comprehensive overview of biometric systems

and their performance evaluation. Biometric systems offer automated person recogni-
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tion through physiological and behavioral traits. Their accuracy is quantified through

metrics like false acceptance rate, false rejection rate, and equal error rate.

Key points covered in this chapter include:

• The fundamentals of biometric system operation including enrollment, matching,

and decision modules.

• The two primary functionalities of biometric systems - identification and verifi-

cation - along with their objectives and differences.

• An elaboration of various biometric traits, their characteristics, strengths, limita-

tions and suitable applications. Factors like uniqueness, collectability and spoof

resistance guide trait selection.

• A comparison between unimodal systems relying on a single biometric modality

versus multimodal systems fusing multiple traits.

• Techniques for biometric performance evaluation using confusion matrices, FAR,

FRR, ROC, DET and other metrics. These quantify accuracy, error rates and

tradeoffs.

• The diverse applications of biometrics in government, commercial and forensic

domains for surveillance, access control and investigations.

In summary, this chapter provides a foundation for understanding biometric sys-

tems, their operation, performance evaluation and applications. With ongoing advances

in sensing, algorithms and security, biometrics continue to gain prominence as ubiqui-

tous and reliable solutions for person recognition across critical domains.

In the forthcoming chapter, we will delve into the intricacies of finger vein iden-

tification, tracing its historical development, exploring various techniques for feature

extraction, and emphasizing the significance of databases. This chapter will lay the

groundwork for comprehending the anatomical and operational aspects of finger vein

identification, thereby setting the stage for further exploration.



CHAPTER 3

Finger Vein-Based Biometrics

3.1 Introduction

In the pursuit of achieving heightened levels of security, biometric identification meth-

ods have emerged as a fundamental component of authentication and verification sys-

tems. Among these methods, finger vein identification stands out as a promising and so-

phisticated technology that capitalizes on the intricate and unique patterns of blood ves-

sels beneath the skin’s surface in the human finger. This chapter delves into the realm of

finger vein identification, a subject matter that has garnered substantial attention in the

field of biometric recognition. We embark on a comprehensive journey to explore the

intricacies of finger vein identification, its historical development, various techniques

employed in feature extraction, matching, and the pivotal role of databases in the real-

ization of this cutting-edge technology. The chapter begins with a chronological review

of related studies in finger vein identification, presenting a timeline of its evolution and

the methodologies adopted over time. We explore the properties and advantages that

render finger vein identification an intriguing research area, emphasizing its resistance

to spoofing, superior accuracy, and non-invasiveness. Through a visual exploration, we

30
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provide insights into the underlying anatomy and structure of finger veins, highlighting

the significance of Near Infra-Red (NIR) light in the imaging process. Subsequently,

we unravel the general model of finger vein identification, delineating the two primary

phases: registration and identification. In the registration phase, individual finger vein

images undergo preprocessing and feature extraction to create templates stored in the

database. In the identification phase, a user’s input image is preprocessed and compared

against the stored templates to confirm or verify their identity. The chapter delves into

the crucial aspect of finger vein image acquisition, discussing various methods, includ-

ing light reflection, light transmission, side lighting, and bottom light transmission. The

advantages and disadvantages of these methods are meticulously examined, with a fo-

cus on factors that impact image quality. Image preprocessing, a critical stage in finger

vein identification, is explored in detail. Preprocessing involves techniques such as im-

age restoration, segmentation of the region of interest (ROI), and image enhancement.

We evaluate the significance of image quality and its role in successful vein feature

extraction. Feature extraction, the process of transforming raw images into distinctive

feature sets, is a pivotal element of finger vein identification. This chapter elucidates

the various feature extraction methods, categorizing them into vein pattern-based, di-

mensionality reduction-based, local binary pattern-based, and texture-based methods.

Each approach is scrutinized for its suitability in capturing the rich details of finger vein

patterns. Matching, the decision-making phase, is the focal point of the chapter, as it de-

termines the authenticity of the input image. We differentiate between classifier-based

and distance-based matching methods, showcasing their applications and considera-

tions. The chapter elaborates on classifiers, distance metrics, and their suitability in the

context of finger vein identification. Lastly, we explore the significance of databases in

the realm of finger vein identification. The chapter provides an overview of publicly

available databases, discussing their size, diversity, and creation methods. We highlight

the importance of constructing representative databases to facilitate robust and reliable

identification systems. As we embark on this journey through the intricacies of finger

vein identification and databases, we aim to provide a comprehensive understanding
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of this innovative biometric technology and its critical role in enhancing security and

authentication systems.

3.2 Finger Vein Identification

Finger vein identification possesses distinctive attributes, rendering it an intriguing re-

search domain in the biometrics recognition field, employing pattern identification tech-

niques for individual identification and identity verification. In their study [17], the au-

thors harnessed Manifold Learning for finger vein identification. This approach boasts

a commendable recognition rate, primarily attributed to the reduced feature dimensions,

which transform the images from higher to smaller dimensions. However, this method

does exhibit some limitations, as global features are notably sensitive to factors such

as location, occlusion, distortion, and lighting, making it unsuitable for extracting vein-

based finger features.

Notably, neural networks and Support Vector Machines (SVM) have been employed

for finger vein identification in studies [18, 19]. In the work by [18], the authors utilized

an Adaptive Neuro-Fuzzy Inference System (ANFIS), while [19] leveraged Principal

Component Analysis (PCA), Linear Discriminant Analysis (LDA), and SVM, along

with an Adaptive Neuro Fuzzy Inference System (ANFIS). It is imperative to mention

that these methods function effectively in environments with controlled background

noise, but they may encounter challenges with images affected by poor lighting, varying

observation angles, and other parameters. In [20], conventional recognition techniques,

including multi-instance and Local Binary Pattern (LBP), were applied to finger vein

identification. It is worth noting that in 2012, Harsha and Subashini [21] presented a

novel finger-vein recognition system for authentication in automated teller machines.

Khellat-Kihel & al. [22] adopted a comprehensive approach, utilizing information

capacity, spatial gradient, image entropy, contrast, and Gabor features, coupled with

Support Vector Regression (SVR) for finger vein recognition, a machine learning tech-

nique. However, this approach focuses on integrating and creating Regions of Interest
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(ROI) within the venous system, showcasing a multimodal nature common to many

biometric systems.

In [23], a Convolutional Neural Network (CNN) was presented for finger-vein-based

biometric identification. This model incorporates five convolutional layers, three max-

pooling layers, one SoftMax layer, and one ReLu layer, along with contrast-limited

adaptive histogram equalization, forming the Convolutional Neural Network (CNN)

Model (CLAH). Nevertheless, this approach is limited to photos of trained classes’

finger veins. Zhao & al. [24] implemented a CNN model (FCL) for finger vein recog-

nition, consisting of three convolutional layers, three max-pooling layers, and two fully

connected layers. It’s crucial to note that the suggested system requires further robust-

ness enhancement to improve performance accuracy. Moreover, providing more de-

tailed information about the model and the loss functions employed in trials would en-

able a more comprehensive comparison of their performance and the assessment of the

advantages and disadvantages of each loss function. Lastly, Rosdi & al. [25] conducted

an analysis of principal components and introduced an Adaptive K-Nearest Centroid

Neighbor Classifier for finger vein recognition. As an improvement, they introduced

an Adaptive Centroid Closer Neighbor (akNCN). In two experiments, akNCN.v1 and

akNCN.v2, the accuracy was 85.64, with no improvement in accuracy, but a substan-

tial time difference of 5153 seconds for v2 compared to 6321 for v1. This proposed

classifier demonstrates slightly lower classification accuracy compared to the original

kNCN, and it appears to discard a significant amount of information. Consequently,

this method reduces the size of the training data and eliminates templates.

3.2.1 Finger Vein Features

The term "finger vein" refers to the intricate patterns of blood vessels and capillaries

located beneath the skin of the finger. Research has unveiled that these vein patterns are

remarkably unique, even among identical twins. In every finger, there exist tissues and

organs capable of absorbing Near Infra-Red light (NIR) at various absorptivity levels.

Veins carrying deoxygenated blood possess the ability to absorb NIR light, resulting
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Figure 3.1: Cross-section anatomy of finger vein under near Infra-red light [26]; (a)
Human finger (b) Finger cross-section under human skin

in their darker appearance when compared to the surrounding tissue in vein maps [26].

Consequently, finger vein images are captured under NIR light to highlight these pat-

terns. Finger vein patterns offer distinct advantages over other biometric traits. Figure

3.1 illustrates the finger vein when exposed to Near Infra-Red light, showcasing its

various components.

One of the standout features of finger vein biometrics is its resistance to spoofing

[27]. For instance, fingerprint systems can be relatively easily spoofed when a user

molds a fake finger image using easily moldable materials, such as wax or dental im-

pression material, to create a replica of a fingerprint impression. In the case of face

recognition, there is the possibility of "copy attacks," where a face recognition system

can be deceived through the acquisition and use of social media images or photos stolen

from social networking websites by an attacker [28]. Iris spoofing attacks, on the other

hand, can involve photo attacks, contact-lens attacks, or artificial-eye attacks.

In addition to its resistance to spoofing, finger vein-based identification offers sev-

eral key advantages compared to other biometric recognition technologies. It is known

for its accuracy, characterized by a low False Rejection Rate (FRR) and a low False Ac-

ceptance Rate (FAR). Furthermore, it is less invasive as it does not require the subject to

make direct contact with the scanning surface of the machine. This absence of physical

contact eliminates any hygiene-related concerns associated with finger vein scanning.

Another noteworthy advantage is that it doesn’t involve the subject leaving latent prints

behind on the scanning device. Moreover, finger vein identification is not affected by

weather conditions, be it wet or dry, since it operates at a sub-dermal level. Additionally,
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Figure 3.2: Structure of finger vein pattern

Figure 3.3: The model of finger vein identification

it remains consistent with age, allowing for the use of the enrolled data throughout the

subject’s lifetime [29]. Figure 3.2 illustrates the vein pattern of the finger, showcasing

the distinct features of this biometric trait.

3.2.2 General Model of Finger Vein Identification

A comprehensive finger vein identification system comprises two primary phases, as

illustrated in Figure 3.3. The initial phase is registration, also commonly referred to as

enrollment, while the subsequent phase is identification, often termed as matching.

During the registration phase, individual finger vein images are captured, and they

subsequently undergo preprocessing and feature extraction stages. These processed im-
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ages are then saved as templates within a database. The registration phase serves the

purpose of creating a reference database of the user’s unique finger vein patterns. In the

identification phase, a user’s finger vein image is captured and subjected to preprocess-

ing procedures. This preprocessing step plays a pivotal role in identifying the region of

interest within the image that will be used in subsequent procedures. It encompasses

tasks such as image alignment and enhancement. Following preprocessing, the distin-

guishing features extracted from the image are compared against the templates stored in

the database. This comparison process can serve to identify the user in an identification

mode or to verify the user’s identity in the verification mode [30]. It is important to note

that the acquisition of finger vein images typically employs a Charged Coupled Device

(CCD) camera as the imaging device.

Subsequent sections will delve into the specific procedures and methods employed

in each of these phases, highlighting the advantages and disadvantages associated with

each method. We will commence with an exploration of the operation of finger vein

image acquisition.

3.3 Finger Vein Image Acquisition

Initially, Hashimoto [31] introduced three distinct approaches to acquire finger vein pat-

tern images: light reflection, light transmission, and side lighting. All of these methods

utilize infrared (IR) light, but they differ in terms of how the finger and IR light interact.

In 2012, an additional approach, bottom light transmission, was introduced to com-

plement the existing methods for finger vein acquisition. Below, we provide detailed

descriptions of each of these methods:

3.3.1 Light Reflection Method

The light reflection method captures vein patterns using infrared (IR) light. In this

approach, the IR source is placed sideways to the CCD image sensor, and the finger is

positioned in front of the sensor, as depicted in Figure 3.4. Typically, this method is not
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Figure 3.4: Light reflection method

employed for capturing vein patterns in areas such as the palm, palm-dorsa, or wrist,

where the tissue thickness is greater, and IR penetration is limited. Light reflection is

particularly advantageous in terms of its compact form factor, making it suitable for use

in small devices, which is essential for the final product. However, it does suffer from

low contrast as the IR light can only penetrate up to a depth of approximately 1 mm in

the skin. Therefore, advanced image processing methods are required to enhance image

quality, especially for the fine, smaller veins [31].

3.3.2 Light Transmission Method

In the light transmission method, the IR light source is positioned opposite to the CCD

sensor, with the finger placed in between, as illustrated in Figure 3.5. This method

relies on capturing the IR light transmitted through the finger. While it may seem more

reliable for capturing vein patterns, not all parts of the finger can be used, as only areas

with the appropriate thickness allow for effective IR light transmission [31].
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Figure 3.5: Light transmission method

Figure 3.6: Side lighting method

3.3.3 Side Lighting

The side lighting method was introduced by Hashimoto [31]. In this approach, IR light

sources are positioned on both sides of the finger, as shown in Figure 3.6. The idea is

that the IR light will penetrate through the finger, scatter, and be detected by the sensor

to capture the vein image. This method has been proven to provide better and sharper

image contrast compared to other methods. The resulting end devices may be larger

than those based on light reflection but smaller than those using light transmission.



CHAPTER 3. FINGER VEIN-BASED BIOMETRICS 39

Figure 3.7: Bottom light transmission

3.3.4 Bottom Light Transmission

The fourth approach, bottom light transmission, was reviewed by Vallah [32]. This

method seeks to address mobility limitations by positioning the camera and the sensor

(IR-LED light) at the base of the device. The approach is similar to the light reflection

method, but it necessitates the finger to make contact with the LED screen. Once the

sensor detects the finger, the IR light is projected and propagates within the finger, re-

sulting in vein pattern capture similar to that of the side lighting approach, as illustrated

in Figure 3.7. A comparative analysis of the advantages and disadvantages of each of

these acquisition methods is presented in Table 3.1 for reference.

The quality of captured finger vein images can be affected by various factors, in-

cluding the thickness of subcutaneous fat, skin color, finger positioning, image back-

ground, and the efficiency of the image capture device [33]. However, there is currently

no standardized measure for image quality control, resulting in the presence of low-

quality images. These low-quality images can be categorized into four distinct forms,

as outlined in Table 3.2.

Low-quality finger vein images can lead to challenges in identification, potentially

causing delays in pre-processing and feature extraction stages. The FV reader, designed

for capturing finger vein patterns as biometric features, utilizes at least one optical imag-

ing unit and a digital signal processor. This scanner is displayed in Figure3.8.
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Methods Advantages Disadvantages
Light Reflection

• Sharp contrast after op-
timizing

• Low cost

• Low power

High quality requirement for
NIR sources and components

Light Transmission Sharp contrast Inhomogeneity in images
with contrast differences
between regions

Side Lighting (Hybrid) Higher definition and contrast
than images obtained by re-
flection

Complicated and High cost

Bottom Light Transmission Higher definition like side
lighting Can be made to mo-
bile Low cost

Table 3.1: Comparison of finger vein capturing methods for image acquisition

Problem Category Description
Blurry image The vein patterns that contain little con-

trast
Askew image The vein images with a definite grade of

deformation
Dim image The captured images with a dim or black

portion
Bright image The existence of a sunny portion in the

images

Table 3.2: Categories of low-quality finger vein images

Figure 3.8: Typical finger vein readers
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3.4 Image Preprocessing

Preprocessing in image processing involves necessary actions or preparations performed

before the main data analysis and information extraction. It aims to rectify deficiencies

such as low contrast and noise in the image, and in the case of finger vein image pro-

cessing, includes image enhancement steps. The preprocessing steps consist of image

restoration, region of interest (ROI) cropping, and image enhancement. Various al-

gorithms are employed for producing and aligning the ROI, with one commonly used

method being the Lee-Region detection [34]. The quality of an image is a critical aspect

in image processing, viewed from three perspectives: quality control systems, bench-

marking image processing systems and algorithms, and optimization of algorithms and

parameter settings within image processing systems [35]. The importance of maintain-

ing high-quality finger vein images becomes evident, as the performance of a finger

vein image largely depends on its quality [36].

3.4.1 Image Restoration

Image restoration aims to eliminate or reduce known degradations within an image.

This includes correcting distortions due to reader machine limitations or background

noise through noise filtering and improving geometric distortions or non-linearity in-

troduced by the sensor. However, before image enhancement, it is essential to crop the

finger vein image to remove unwanted areas, as illustrated in Figure 3.9.

3.4.2 Image Segmentation of ROI

Segmenting the Region of Interest (ROI) plays a crucial role in preprocessing finger vein

identification systems. In the context of finger veins, ROI represents the area containing

the network of vein patterns within the finger. Extracting the ROI is crucial to determine

the image portion suitable for vein feature extraction while removing non-useful infor-

mation from the image. Correctly extracting the ROI can significantly reduce computa-

tional complexity, thus enhancing the efficiency of the finger vein recognition system.
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Figure 3.9: Finger Vein Image Cropping: (a). Image before Cropping (b). Image after
Cropping

Thus, ROI extraction is a critical operation in finger vein identification systems.

Few algorithms exist for the extraction of ROI vein in the finger. Rosdi and his

coresearchers [37] made use of the fixed-size window base to crop out a certain portion

of the finger in the finger vein image. The method is sensitive to displacement of the

finger and is not accessible to be used by askew finger vein images. In their own cases,

Yang and Shi [38] offered an ROI localization method that was based on the physiolog-

ical structure of human fingers. Though, the issue of displacement of the finger can be

resolved, the method is not accessible for askew finger images. Hence, before using the

available method of ROI extraction, it is very necessary that askew finger vein images

must be corrected at the first stage. ROI extracted through an edge detector was done

by Kumar and Zhou [39] after he performed the rotational alignment. However, the

method refused to harvest the ROI area from finger vein images, causing the operation

of an image to have more background than the vein portion. Figure 3.10 show The

measurement of the ROI in [40].

3.4.3 Image Enhancement

Image enhancement is a crucial aspect of image processing, as it improves the visibility

of specific parts of an image for further analysis by operators or systems [41]. Various
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Figure 3.10: The measurement of the ROI [40]; (a) ROI in actual stature. (b) Finger
image edge using internal lines. (c) ROI of a finger vein image

digital image enhancement methods are available, and the choice of method depends

on the imaging modality, task at hand, and environmental conditions. Image enhance-

ment often involves improving image contrast and reducing noise, leading to better

image quality. Proper enhancement significantly contributes to improving the value of

degraded images. Many approaches to image enhancement have been proposed. For

instance, Arun and colleagues [42] suggested that Adaptive Histogram Equalization

provides better results for image enhancement, although it may still leave some blurri-

ness in the images. Agaian & al. [43] proposed global histogram equalization, which,

while common, has limitations, as it treats the entire image globally and may result in

over-enhancement. Furthermore, the presence of noise in images is common and can

lead to degradation of image quality. Noise removal, or denoising, is a crucial part of

image enhancement. Median filters and Wiener filters are effective in removing Salt-

and-pepper and Gaussian noise, respectively. The application of Median filters followed

by Wiener filters has become a standard procedure for enhancing vein images.

Figure 3.10 shows the measurement of the ROI in a study [40]. However, many ex-

isting enhancement methods in the field of finger vein identification have made progress

but still require further improvement, as the effectiveness of vein feature extraction is

highly dependent on the quality of the enhanced vein images.
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Method Descriptions Ref
Repeated Line
Tracking

The vein in the image is traced to randomly select
seed (directions chosen from predefined probability).
The process is repeatedly done until

[44]

Maximum Curva-
ture

Image extraction by detecting its center line [45]

Gabor A linear filter used for edge detection by transforming
the image into the frequency domain

[39]

Mean Curvature Image segmentation using the mean of the surface
curvatures in all directions. It can quantify the de-
gree of likeness to a ridge or valley

[46]

Region Growth This is running the region growing operator on the
different seeds with emphasizes continuity and sym-
metry of valleys in the cross-sectional profile

[47]

Modified Re-
peated Line
Tracking

Find the image locus based on the revised parameters [48]

Table 3.3: Descriptions of some typical vein pattern-based feature extraction methods

3.5 Feature Extraction

3.5.1 Vein Pattern-Based Methods

Vein pattern-based methods focus on vein pattern segmentation and utilize geomet-

rical shape or topological structure of vein patterns for matching. Various techniques

such as Repeated Line Tracking, Maximum Curvature, Gabor, Mean Curvature, Region

Growth, and Modified Repeated Line Tracking are employed in this category. Table 3.3

provides an overview of the common methods used in vein pattern-based feature ex-

traction.

3.5.2 Dimensionality Reduction-Based Methods

Dimensionality reduction-based methods employ techniques like Principal Component

Analysis (PCA), Linear Discriminant Analysis (LDA), (2D)2PCA, and manifold learn-

ing. These methods extract either global or local features from finger vein images.

While global features are obtained through methods like PCA and LDA, local line fea-

tures are extracted using Local Projection Pattern (LPP). Balancing local and global

features is crucial for accurate recognition. However, large-scale applications might
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find dimensionality reduction methods challenging due to complexities related to trans-

formation matrix learning [47].

3.5.3 Local Binary Pattern-Based Methods

Local binary pattern-based methods focus on local areas and extract features in binary

form. Methods like Local Binary Pattern (LBP), Local Line Binary Pattern (LLBP),

Personalized Best Bit Maps (PBBM), Personalized Weight Maps (PWM), and Local

Directional Code (LDC) are part of this category. These methods derive binary codes

by comparing the gray levels of pixels and their neighbors. Hamming distance (HD) is

commonly used to measure similarity between enrolled and input binary vein features.

3.5.4 Texture-Shape Descriptor Methods

Shape descriptors are grouped into contour-based and region-based methods 3.11. This

grouping considers whether shape features are removed from the contour or from the

entire shape section. Shape descriptors are additionally grouped into structural (local)

and global descriptors. If the shape is characterized by bits or regions, it is structural and

if the shape is characterized by the whole region, it is global. Another grouping arranges

the shape description into spatial and transforms domain methods, which is dependent

on the use of coordinate estimations or applying a transformation of the shape. Figure

16 shows the shape representation and description methods.

Texture-shape descriptors include contour-based and region-based methods. Contour-

based methods extract boundary information and are sensitive to noise, while region-

based methods consider all pixels within the shape, making them more robust in gen-

eral applications. Contour-based descriptors include Fourier descriptor [50], wavelet

descriptors [49], and curvature scale space (CSS). Region-based descriptors include

moment invariants and Zernike moments [51].

The distinctive line patterns of finger veins have encouraged researchers to treat

them as texture images. Texture features are often extracted using methods like wavelet

transform and Gabor filter. Studies have combined local and global features for en-
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Figure 3.11: Shape representation and description methods [49]

hanced recognition. For example, Park combined Local Binary Pattern (LBP) and

Wavelet transform, achieving a recognition rate of 98.9% on a custom database [52].

Gayathri and Ramamoorthy fused correlation, energy, and homogeneity features, achiev-

ing a recognition rate o f 98.4% [53].

3.6 Matching

The decision-making stage in the finger vein identification process is the matching

stage. In this stage, the features extracted from a pattern are comparable to those of the

enrolment set. This decides if the entry image is original or fake for registered image to

produce a matching score (the similarity between the registered template and the entry

image). There are twofold categories of matching methods, namely; classifier-based

matching and distance-based matching [54]. The distance-based matching method is

exploited by conventional finger vein identification approach, and while classifier-based

matching method is use for machine learning finger vein identification. Thus, classifier-

based matching will try to categorise the pattern that will lead to the generation of hy-
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potheses, and not as a unique solution [55]. Generally, classification is achieved based

on features such as minutiae [56], local line binary pattern [37], SIFT [37], soft biomet-

rics [47], statistical measures, machine learning [17], correlation (or template) based

methods [39], and hybrid algorithms [52]. The uses of minutiae feature for classifica-

tion commonly indicates finger vein images low-quality performance, which consists

of several fake and limited genuine minutiae. Likewise, fewer amount of accurate and

typical SIFT key-points can damage the enactment of classification. Also, because of

the pose variation of the finger, using such width of the phalangeal joint soft biomet-

ric trait [47] or finger geometry [57] is not productive for classification. In addition,

the statistical measures of feature extraction such as local moments for classification,

is unproductive due to the less discrimination of statistical features. Classification via

machine learning methods needs a massive quantity of training data that can reflect

some of the likely distortions, but it is always impossible [17]. Even if the genuine

veins are lost or the fake veins are presented, the use of correlation or template based

matching can give an accurate result. It removes strong distortion within image reg-

istration; hence, it can be described as classification based on strong registration. The

similarity score is computed by using registered images. Thus, features for registration

are such as vein structure [39]. However, finger poses [40] can decline the correlation

or template-based classification performance. K-nearest neighbor (kNN) classifier is

one of the most well-known supervised learning algorithms in pattern classification,

which employed by some researchers. Many researchers claimed that using K-nearest

neighbor (kNN) classifier has several benefits such as intuitiveness, effectiveness, com-

petitive, and simplicity performance of classification in several domains [58]. However,

KNN works with a distance-based metric for the evaluation of the comparison level

between the feature vector of the input pattern and the tested template(s). Gongping

Yang & al. [38] proposed feature extraction of finger veins using a 2D PCA method

and KNN classifier for classification of everyone. Furthermore, they adopted to solve

the class-imbalance problem using the SMOTE technology. A custom database of 80

individuals’ index fingers of the right hand from 18 finger vein images was used.
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3.7 Review of Existing Databases

In finger vein identification methods, the preparation of a suitable database is a cru-

cial step before feature extraction and matching. The size and diversity of the database

can have a significant impact on the performance and generalizability of the identifi-

cation system. A well-constructed database should include samples from a range of

participants, including both males and females, diverse ethnic groups, adults, and chil-

dren spanning various age groups. It is typically recommended that a minimum of two

samples of vein images be captured for each individual participant, with one sample

used for enrolment and the second for algorithm evaluation [59]. Table 3.4 provides an

overview of publicly available finger vein databases, including the size of the images

and the year in which each database was created. These databases have been used in

both research and industry for finger vein identification. It’s worth noting that most of

the databases in the table were created using the transmission method, except for the

CFVD database, which was obtained using the reflection method [60]. The human hand

consists of five fingers: thumb, index, middle, ring, and pinky. This totals ten fingers

when considering both right and left hands. However, some databases only include the

three fingers on each hand that are more suitable for capturing vein images. The thumb

and pinky fingers are typically excluded because they are thicker and shorter than the

other three fingers [61]. Additionally, near-infrared light may have difficulty penetrat-

ing the thick skin of the thumb finger, making it challenging to capture vein patterns.

The instability of the capturing device’s structure can also affect the ability to capture

high-quality images of the thumb. Therefore, the thumb and pinky fingers are often

omitted from the database. In the table, the fingers are represented as follows: - Right

finger index, middle, and ring: Ri, Rm, Rr - Left finger index, middle, and ring: Li, Lm,

Lr Creating a diverse and representative database is essential to ensure the effectiveness

and reliability of finger vein identification systems.
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3.8 Conclusion

The chapter has embarked on a comprehensive exploration of the captivating world of

finger vein identification and the pivotal role of databases in this cutting-edge technol-

ogy. With its remarkable resistance to spoofing, superior accuracy, and non-invasive

nature, finger vein identification has emerged as a promising and sophisticated biomet-

ric recognition method. Our journey began with a historical perspective, tracing the

evolution of finger vein identification and the methodologies adopted over time. From

its nascent stages to its contemporary applications, finger vein identification has evolved

into a sophisticated and reliable technology with immense potential. The anatomical in-

tricacies of the human finger vein system were laid bare, emphasizing the significance

of Near Infra-Red (NIR) light in capturing these unique biometric patterns. This nat-

ural authentication method, rooted in the distinctive vein patterns of each individual,

showcases remarkable advantages and has become the subject of intense research and

development. The general model of finger vein identification, divided into registration

and identification phases, provided a structural framework for the technology’s practical

application. In the registration phase, individuals’ vein images undergo preprocessing

and feature extraction, creating templates that find their place in databases. The iden-

tification phase involves the matching of an input image with these templates, either

confirming or verifying the user’s identity. Image acquisition methods, including light

reflection, light transmission, side lighting, and bottom light transmission, were scruti-

nized, emphasizing their advantages and limitations. The importance of image quality

in the acquisition process became evident, setting the stage for subsequent stages of pre-

processing and feature extraction. Preprocessing emerged as a critical step in enhancing

image quality and paving the way for effective feature extraction. The various aspects of

preprocessing, such as image restoration, region of interest (ROI) segmentation, and im-

age enhancement, were dissected to underscore their role in capturing the rich details of

finger vein patterns. Feature extraction methods, classified into vein pattern-based, di-

mensionality reduction-based, local binary pattern-based, and texture-based categories,

were explored in depth. The chapter shed light on the diversity of techniques used to
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transform raw images into distinctive feature sets, setting the stage for accurate and

reliable identification. Matching, the decision-making phase, came into focus, with

distinctions made between classifier-based and distance-based matching methods. The

chapter underscored the significance of the various classifiers, distance metrics, and

their suitability for finger vein identification. The chapter also underlined the pivotal

role of databases in the realm of finger vein identification. The creation of represen-

tative databases is essential to support robust and reliable identification systems. The

chapter presented a selection of publicly available databases, highlighting their size,

diversity, and the methods employed in their construction. In conclusion, the world

of finger vein identification is a remarkable intersection of biometric technology and

database management. As it continues to evolve, it promises to offer even more secure

and reliable authentication solutions. With further research, development, and the cre-

ation of comprehensive databases, finger vein identification is poised to play a crucial

role in enhancing security and authentication systems across a wide array of applica-

tions. This chapter has provided a solid foundation for understanding this exciting and

innovative field, setting the stage for future advancements and applications.

In Chapter 4, the attention will pivot toward developing a deep-learning model tai-

lored for finger vein identification, utilizing the InceptionResnet-V2 architecture. This

customized InceptionResnet-V2 model exhibited superior performance when compared

to current state-of-the-art methods in finger vein identification. The research conducted

in this chapter vividly illustrated the potential of deep learning models to significantly

enhance both the security and accuracy of finger vein identification systems.



CHAPTER 4

Deep learning model based on inceptionResnet-v2 for

Finger vein recognition

4.1 Introduction

The burgeoning need for enhancing security in personal identification systems, driven

by the escalating threats of identity theft and cybercrime, has fueled the evolution of

biometric identification technologies. Traditional methods such as fingerprints, face

recognition, and palm prints, while effective, have found a formidable ally in finger

vein (FV) recognition. FV technology, distinguished by its unparalleled accuracy and

security, is rapidly gaining prominence in the realm of biometric identification. Un-

like other biometric methods, FV patterns are intricate and challenging to counterfeit,

making them a reliable choice for automated personal identification systems.

Finger vein identification operates by analyzing the unique patterns of blood vessels

in an individual’s fingers using near-infrared light. First pioneered by Hitachi’s R&D

department [4], this technology has found diverse applications in healthcare, finance,

automobile security, and confidential systems like automated teller machines (ATMs).

52
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Given the need for swift identification processes and the complexity of FV patterns,

there is a demand for cost-effective single-chip designs. Moreover, the field has wit-

nessed a paradigm shift with the advent of deep learning-based models, leveraging the

vast expanse of data and computational power available today.

Several notable advancements have been made in this domain. [72] introduced a

convolution neural network (CNN) model based on the VGG-16 architecture, showcas-

ing excellent performance, especially concerning finger vein misalignment and envi-

ronmental factors. [73] employed the Densenet-161 architecture, implementing orien-

tation adjustments for vein images, ensuring robust results. [74] proposed a multi-layer

neural network classifier using back propagation neural networks, coupled with Princi-

pal Component Analysis (PCA) for extracting low-level details, thereby enhancing FV

identification accuracy and robustness. Furthermore, [24] devised a lightweight CNN

model integrating central loss function and dynamic regularization, emphasizing com-

putational efficiency without compromising accuracy.

In this study, we present a novel model to FV biometric identification by harnessing

the power of deep learning. Specifically, we adopt the pre-trained InceptionResnet-V2

architecture, as detailed in [75], customizing it with additional embedded layers. This

modification enhances the model’s ability to discern intricate FV patterns across various

datasets.

This chapter is structured as follows:The first section serves as an introduction, pro-

viding an overview of the chapter’s content. Section II provides an in-depth exploration

of the proposed InceptionResnet-V2 architecture for finger vein biometric identifica-

tion. Section III delves into the description of the three datasets utilized for training

our model, shedding light on the diversity and complexity of the data. Subsequently, in

Section IV, we present a comprehensive analysis of the proposed model’s performance,

benchmarking it against the State-of-the-Art (SOTA) FV identification methods. Fi-

nally, the conclusions drawn from our study are presented in Section V, encapsulating

the key findings and implications of our research.
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4.2 Methodology

In this section, we present a detailed exposition of the components integral to our pro-

posed InceptionResnet-V2 based architecture, as depicted in Figure 4.1. This archi-

tectural framework has demonstrated a high degree of accuracy in the identification of

FV images. The process begins with the preprocessing of images from our datasets,

incorporating operations such as augmentations and resizing. Subsequently, low-level

features are extracted from these FV images through the utilization of a pre-trained

InceptionResnet V2 based model. Finally, the extracted features are subjected to a

Dropout layer (20% rate) to mitigate the issue of overfitting. Following this, two fully

connected layers, equipped with the SOFTMAX activation function, are employed to

produce the final identification outcomes.

In this study, we delve into a comprehensive exploration of the InceptionResNet

architecture [75], with a specific focus on its key constituent modules: the Inception

and the ResNet blocks [76]. This tandem combination yields a significant enhancement

in the architectural performance, as visually depicted in Figure 4.2.

The ResNet module plays a pivotal role by introducing residual connections, which

significantly facilitate the training of deep architectures and maintain accuracy even in

considerably increased network depths. On the other hand, the Inception block em-

powers the extraction of a diverse set of features from input images characterized by

varying scales. Notably, in the Inception-ResNet module, the residual scaling factor is

judiciously applied to scale the Inception block. It is recommended to select a residual

scaling factor value within the range of 0.1 to 0.3 to ensure network stability during

training.

The hallmark of inception models lies in their multi-branch structures, constructed

from an ensemble of convolution filters featuring various kernels (1× 1, 3× 3, 5×

5, etc.). Within each branch, these filters are concatenated and meticulously com-

bined. This split-transform-merge architecture of the Inception module imparts a ro-

bust representational capability to its dense layers. The hybrid InceptionResNet-V2

network adeptly harnesses residual connections, fostering highly effective training. To
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Figure 4.1: Block diagram of the proposed model
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Figure 4.2: Overall and module structure of Inception ResNet v2
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further enhance architectural stability, residuals are scaled prior to their addition to

the preceding layer. Figure 4.2.a visually illustrates the internal architecture of this

design, comprising Inception-Resnet-A, Inception-Resnet-B, and Inception-Resnet-C

blocks(see Figure 4.2.b, 4.2.c, and 4.2.d, respectively).

4.2.1 Dataset Description

In this section, we provide a detailed overview of the three distinct Finger Vein (FV)

datasets used to evaluate the performance of our proposed model. These datasets have

been instrumental in gauging the robustness and effectiveness of our InceptionResnet-

V2-based model, enabling a comprehensive analysis of its capabilities (see Table 5.1

for descriptions of the datasets). Additionally, Figure 4.3 illustrates samples of Finger

Vein images, showcasing images from SDUMLA, MMCBNU, and FV-USM.

SDUMLA-HMT Dataset

The SDUMLA-HMT dataset [66] comprises data collected from 106 participants,

each contributing 36 finger vein images. These images are captured six times from three

fingers on both hands, amounting to a total of 3,816 photographs. This rich dataset

provides a diverse range of finger vein patterns, enabling a rigorous assessment of our

model’s ability to discern unique characteristics.

USM-FV Dataset

For the USM-FV dataset [71], we enlisted the participation of 123 individuals, each

contributing images of the index and middle fingers on both hands. Each finger is

photographed six times across two sessions, culminating in a comprehensive dataset of

5,904 photos. The diversity of participants and the substantial number of images offer

a robust benchmark for our model’s performance.

MMCBNU-FV Dataset

The MMCBNU-FV dataset [68]features images from 100 individuals, encompass-

ing the index, middle, and ring fingers from both hands. Each participant’s fingers are

photographed ten times during six sessions, resulting in a dataset of 6,000 finger vein

images. This dataset offers a sizable and diverse set of samples for our model to learn
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(a) (b) (c)

Figure 4.3: Finger Vein Image Samples: (a) SDUMLA, (b) MMCBNU, (c) FV-USM.

Dataset Years # of subjects # of sessions #of images/subject Total images
SDUMLA -HTM 2011 106 1 6 3816

MMCBNU 6000 2013 100 2
10

(10 images per session)
6000

FV-USM 2014 123 2 6 5904

Table 4.1: DESCRIPTIONS OF THE THREE PUBLIC FV DATASETS.

from.

4.2.2 Data Preprocessing and Augmentation

To ensure consistency and optimal performance, all images from these datasets are re-

sized to a standardized dimension of 224× 224 pixels and normalized from the range

[0, 255] to [0, 1]. Furthermore, the datasets are partitioned into three subsets: 70%

for training, 15% for validation, and 15% for testing. Recognizing the inherent chal-

lenges posed by small datasets, we employ data augmentation techniques to counteract

overfitting during model training. Techniques such as rotation, random flipping, and

adjustments in brightness are applied to diversify the training samples, enriching the

model’s ability to generalize across the datasets. This meticulous approach to dataset

preparation ensures that our InceptionResnet-V2-based model is exposed to a compre-

hensive and diverse array of finger vein images, enabling it to achieve robust and reliable

identification results. In the subsequent section, we delve into the experimental setup

and performance evaluation, shedding light on the rigor employed to assess the model’s

capabilities.
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4.3 Results and Discussion

In this section, we present the results of our experiments and engage in a comprehensive

discussion of the outcomes of the proposed model, which has been implemented using

the TensorFlow framework.

4.3.1 Experimental Setup

Our experiments were conducted on a system equipped with an Intel CORE i7 10510U

processor, 16GB of RAM, and an Nvidia GTX 1650 GPU. The model was trained using

the Adam optimizer [77], employing an initial learning rate of 10e-4. The loss function

used was Sparse Categorical Cross-Entropy, and a batch size of 32 was employed for

training.

4.3.2 Evaluation Metric

Equal Error Rate (EER)

To assess the performance of the proposed model, we employed the Equal Error

Rate (EER), a widely recognized metric in biometric systems. EER is the point at which

the False Acceptance Rate (FAR) equals the False Rejection Rate (FRR). This metric

is instrumental for comparing the accuracy of different models with various Receiver

Operating Characteristic (ROC) curves in image recognition tasks.

The formulas for calculating FAR and FRR are as follows:

FAR =
Number of matching scores in false acceptance

Total number of matching scores
(4.1)

FRR =
Number of matching scores in false rejection

Total number of matching scores
(4.2)
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Figure 4.4: ROC curves obtained on SDUMLA, USM-FV, and MMCBNU datasets

Model Accuracy Precision Recall Sensitivity Specificity
SDUMLA 98.980% 98.983% 98.980% 98.484% 97.926%
FV-USM 99.097% 99.544% 99.095% 99.193% 98.747%
MMCBNU 6000 99.660% 99.823% 99.651% 99.892% 99.751%

Table 4.2: Results of the InceptionResNet-V2 Model

4.3.3 Results

The results of our experiments are presented in Tables 4.2, and Figure 4.4 illustrates the

ROC curves of the proposed model on the three databases. A glance at Table 4.2 demon-

strates that the fusion of Inception and ResNet blocks within the InceptionResnet-V2

model yields robust and efficient results on all three datasets.

4.3.4 Comparison with State-of-the-Art (SOTA)

We further evaluate the performance of our proposed model by comparing it with the

State-of-the-Art (SOTA) FV identification methods, including VGG-16 [72], FV-GAN

[74], CNN with center loss and dynamic regularization [24], and CNN with large mar-

gin and softmax loss [78] on the three databases.
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Ref Name of Method Equal Error Rate (EER)
[72] VGG-16 1.37%
[74] FV-GAN 0.94%
[79] Deep Generalized Label Algorithm 2.23%

Our [80] Proposed method 0.725%

Table 4.3: Comparisons of EER on SDUMLA-DB for the proposed model and recent
models

Ref Method EER
[78] CNN (Large Margin Softmax Loss) 0.76%
[24] CNN combining center loss and dynamic regularization 1.07%

Our [80] InceptionResNet-V2 pretrained model 0.41%

Table 4.4: Comparisons of EER on FV-USM-DB for the proposed model and recent
models

The results of these comparisons are detailed in Tables 4.3, 4.4, and 4.5. Notably, in

Table 4.3, our proposed model achieves the lowest EER value of 0.725%, outperforming

Alexnet (EER of 0.8%) and other methods [72], [74],[79], which report EER values

exceeding 0.9%. This observation underscores the superior accuracy of our proposed

model.

Tables 4.4, and 4.5 demonstrate that our model significantly outperforms CNN-

based models. In the FV-USM dataset, our model attains an EER value of 0.41%, while

CNN-based models exhibit EER values greater than 0.7%. Similarly, in the MMCBNU

dataset, our model achieves an EER of 0.2%, while CNN-based models report EER

values exceeding 0.3%. These results further emphasize the superior performance of

our proposed model across all three databases.

In summary, the experimental results validate the high performance of our proposed

model on all three datasets, establishing its superiority over the existing State-of-the-Art

methods.

Ref Method EER
[78] CNN (Large Margin Softmax Loss) 0.30%
[24] CNN combining center loss and dynamic regularization 0.503%
[81] Shallow Convolutional Neural Network 0.47%

Our [80] InceptionResNet-V2 pretrained model 0.20%

Table 4.5: Comparisons of EER on MMCBNU 6000-DB for the proposed model and
recent models
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4.4 Conclusion

In this study, we introduced a novel InceptionResnet-V2 deep learning model for the

purpose of finger vein identification, leveraging the power of transfer learning. The

proposed model, was designed to enhance the field of finger-vein-based biometrics.

Through rigorous experimentation and comparisons with State-of-the-Art (SOTA) meth-

ods on three publicly available databases - SDUMLA, MMCBNU, and FV-USM - we

have provided compelling evidence that our approach surpasses existing methods in

terms of robustness, security, and accuracy. Our contributions and key findings can be

summarized as follows:

1. We harnessed the advanced capabilities of the InceptionResnet-V2 architecture,

optimizing it for finger vein identification through transfer learning.

2. Experimental results demonstrated the superiority of our proposed model in com-

parison to existing SOTA methods. Our model outperformed them across all three

datasets, achieving lower Equal Error Rates (EERs) and showcasing its robustness

and reliability.

3. The potential for future work is promising, with a particular focus on the explo-

ration of advanced deep learning models, such as Capsule Networks (Caps-nets)

and Vision Transformers. These explorations aim to further enhance the recogni-

tion performance of finger vein identification systems, ensuring ongoing innova-

tion and improvement in this critical area of biometrics security.

In conclusion, our work contributes to the evolving landscape of biometric security,

offering a highly accurate and robust solution for finger vein identification. The re-

sults presented in this study underscore the potential for utilizing deep learning to push

the boundaries of biometric identification systems, with an unwavering commitment to

enhancing both security and performance.

Chapter 5 introduces the FVCT model, a novel hybrid Convolutional Transformer-

based approach for finger vein identification. This model, blending the power of con-

volutional neural networks (CNNs) and transformers, captured intricate local-to-global
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relationships exceptionally. FVCT surpassed current transformer and hybrid models,

establishing a new performance benchmark. This chapter’s research underscores the

promise of advancing finger vein identification by integrating CNNs and transformers.



CHAPTER 5

A hybrid convolutional Transformer-Based Network Model for

Finger Vein Identification

5.1 Introduction

In the realm of biometric recognition, the identification of individuals is primarily based

on their distinctive physical characteristics, such as fingerprints, voice patterns, or iris

characteristics [3]. With the increasing demand for digital security in sectors like online

finance and security, biometric recognition plays a vital role in monitoring and verify-

ing identities. Compared to traditional identification methods, biometric recognition

technologies offer enhanced effectiveness, simplicity, and consistent security.

Among the emerging technologies for biometric identification, finger vein (FV)

recognition stands out as a unique feature located within the hypodermic layer, mak-

ing it more challenging to steal or replicate compared to other biometric features on the

body surface [5] . FV identification boasts several advantages over alternative biometric

methods:

1) Enhanced stability: The dispersed nature of FV under the finger skin results

64
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in less variation depending on the individual’s age and weight. Additionally, the FV

is shielded directly by the human skin, preventing pollution by external factors and

reducing susceptibility to damage.

2) Inherent difficulty of usurpation: Due to the specific distribution and imaging cir-

cumstances of the FV, obtaining FV images without the owner’s consent is significantly

challenging.

3) User-friendly operation: FV authentication entails a straightforward process where

users need only place one of their fingers on a finger vein device to perform fast and

effortless identification.

4) Liveliness detection capability: FV imaging exhibits a distinct distribution of

gray levels due to the veins’ ability to absorb near-infrared light at a different rate than

other finger tissues, enabling the detection of liveliness.

5) Portability: VF identification devices are designed to be compact, slightly larger

than the size of a finger, making them easily portable and convenient.

In recent years, the surge in graphics processing units (GPUs) and publicly available

FV databases has led to a surge of deep learning-based FV identification algorithms.

These algorithms surpass traditional methods by enabling deep neural networks to au-

tomatically learn hierarchical features, obviating the need for manual feature extrac-

tion. Convolutional neural networks (CNNs) [82] have been the primary deep learning

choice in FV biometric identification, with a particular emphasis on enhancing CNN-

based architectures. For example, Das & al. [23] proposed a CNN-based FV biometric

recognition system, while Li & al. [83] compared the performance of CNN, AlexNet,

and VGG-16 for FV identification. Additionally, Lu & al. [84] introduced a pre-trained

CNN model and a CNN-based local descriptor for FV identification.

However, CNNs may struggle with capturing spatial dependencies among under-

lying target features, leading to suboptimal performance. Furthermore, CNN pooling

layers often result in information loss, limiting improvements in FV identification ac-

curacy.

In contrast, the Transformer architecture, initially introduced for Natural Language
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Processing (NLP) tasks [85], has recently emerged in computer vision applications

[86]. Transformer models, empowered by self-attention mechanisms, excel at cap-

turing intrinsic properties. Dosovitsky & al. [87] introduced the Vision Transformer

(ViT) model, which excelled in various image classification benchmarks. Unlike CNN

models, ViT integrates global contextual information using self-attention mechanisms,

allowing the extraction of robust features that account for long-range dependencies.

Consequently, Transformer-based models have gained ground in computer vision ap-

plications [86]. However, ViT’s performance falls behind CNNs in low-data scenarios

[88], despite remarkable results with large JFT 300M [89] datasets.

On the contrary, Convolutional Neural Networks (CNNs) possess inherent priors

such as translation invariance (through shared convolutional weights) and scale invari-

ance (via pooling). These priors enable CNNs to learn effectively even from smaller

datasets [88]. However, when compared to Transformers, CNNs struggle to capture

long-range dependencies, necessitating deeper networks with multiple layers to in-

crease the receptive field. Recent studies have sought to combine the strengths of

CNNs and Vision Transformers (ViTs) by leveraging their complementary advantages

[90, 91, 92, 93]. This fusion has given rise to more potent computer vision models that

harmonize both approaches, resulting in improved performance across various com-

puter vision tasks [86].

Motivated by this development, this work introduces a hybrid Convolutional Transformer-

based model for finger vein identification. By harnessing feature extraction capabilities

from both CNNs and ViTs, we devise a specialized classifier for finger vein identifi-

cation. Our empirical analysis demonstrates the superior performance of our proposed

technique against several robust baselines.

5.1.1 Contributions

The primary contributions of this work are as follows:

1. Baseline Experimental Results: This chapter presents baseline experimental re-

sults assessing the performance of hybrid Conv-Transformer and ViT models in
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finger vein (FV) identification. The study focuses on four state-of-the-art (SOTA)

Transformer and hybrid Conv-Transformer models, highlighting their efficacy in

accurately identifying finger vein patterns. Nonetheless, there remains room for

further performance improvement.

2. Hybrid Conv-Transformer Model: We introduce a hybrid Conv-Transformer FV

identification model, named FVCT. Comparative analysis reveals its superiority

over existing approaches like DeiT [94], Cait [94], Coatnet [95], and ConvMixer

[96] in the context of FV identification. Furthermore, FVCT exhibits competitive

performance with state-of-the-art models.

3. Comprehensive Experiments: We conduct extensive experiments on three widely

recognized finger vein datasets. The experimental protocol, setup, and evaluation

metrics are meticulously described to ensure a fair and comprehensive compari-

son.

5.1.2 Structure of the Chapter

This chapter is structured as follows:

Section I - Introduction: provides an overview of the chapter’s content, outlining

the key topics and research questions addressed.

Section II - Literature Review: A comprehensive review of related works in the

field. This section explores existing research and advancements in finger vein identifi-

cation, transformers, vision in transformers, and hybrid transformers.

Section III - Transformers in Computer Vision: An in-depth overview of trans-

formers, including their architecture and functioning. We introduce the concept of vi-

sion in transformers and delve into the details of the proposed FVCT model, which

combines the strengths of Convolutional Transformers to address the unique character-

istics of finger vein information.

Section IV - Experimental Results: We present the experimental results of recent

ViT models, hybrid Conv-Transformer models, and the proposed FVCT model. Abla-
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tion models are discussed, focusing on their performance in finger vein identification

tasks. Additionally, we conduct a comprehensive comparison with state-of-the-art fin-

ger vein identification approaches to assess the competitiveness of our proposed model.

Section V - Conclusion and Future Directions: The article concludes by summa-

rizing the key findings and contributions. We also outline potential avenues for future

research and development in the field of finger vein identification.

In Chapter 4, we will delve further into the experimental results and provide detailed

discussions on the performance of the hybrid Convolutional Transformer-based model

and its implications for the field of finger vein identification.

5.2 Literature Review

Finger vein (FV) identification methods can be broadly categorized into two groups:

handcrafted feature-based approaches and deep learning-based approaches. In this sec-

tion, we provide a comprehensive review of key studies associated with these method-

ologies.

5.2.1 Handcrafted Feature-Based Approaches

The first category encompasses manual feature extraction methods employed for FV

recognition, often involving techniques that leverage local grayscale variations within

FV images to extract vein pattern features. Some notable studies include:

Miura & al. [97] proposed an algorithm that extracts vein pattern features from FV

images based on local grayscale variations. Qin & al. [98] improved feature extraction

by incorporating the region growth method, resulting in more precise finger vein pat-

tern extraction. Miura & al. [99] introduced the maximum curvature algorithm, which

determines the maximum curvature of local cross-sections within the image, enhancing

feature extraction accuracy. Gupta & al. [100] proposed local multi-scale matching

filters to address issues related to low-quality FV images, mitigating noise caused by

uneven illumination and improving recognition performance. Rosdi & al. [37] intro-
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duced a local linear binary pattern feature based on finger veins, allowing the extraction

of coding features within linear local regions. Van & al. [101] presented a novel method

for obtaining local invariant directional vein features from digital vein data, which was

combined with GridPCA to remove redundant data and enhance finger vein recognition

accuracy.

5.2.2 Deep Learning-Based Approaches

With the rise of deep learning techniques, researchers have explored methods that lever-

age neural networks for FV identification. Some significant advancements in this cate-

gory include:

He & al. [74] proposed a multi-layer classifier based on backpropagation neural

networks for FV image identification, enhancing it with Principal Component Analy-

sis (PCA) to extract low-level details and improve accuracy and robustness. Tang &

al. [102] developed a simple FV feature extraction method using a pre-trained Convo-

lutional Neural Network (CNN) and distillation learning, achieving high performance

and fast inference capability. Yang & al. [103] introduced FV-GAN, utilizing a fully

convolutional network for feature extraction and classification of FVs. Another ap-

proach presented by Yang & al. [103] involved processing FV image sequences using

CNN and Long Short-Term Memory (LSTM) networks. Hou & al. [104] proposed an

ECA-Resnet model with channel attention and residual connections, combined with an

arccosine center loss function for FV image identification. Zhao & al. [24] introduced a

lightweight CNN model with a central loss function and dynamic regularization, achiev-

ing low error rates with reduced computational complexity.

5.2.3 Transformer-Based Approaches

More recently, Transformer-based techniques have made significant strides in the field

of FV identification. Some notable studies in this emerging area include:

Huang & al. [105] introduced the Finger Vein Transformer (FVT) model for au-

thentication, showcasing competitive results. Li & al. [106] combined the Vision
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Transformer (ViT) with a capsule network for finger vein recognition, demonstrating

the effectiveness of this fusion in FV identification.

This comprehensive review of related work highlights the evolution of FV iden-

tification methodologies, from handcrafted features to deep learning and the recent

emergence of Transformer-based approaches. Each category has contributed to the ad-

vancement of the field, with deep learning and Transformer models showing promise

in achieving higher accuracy and robustness in finger vein identification. In the follow-

ing sections, we delve deeper into the experimental results and implications of these

approaches.

5.3 Methodology

In this section, we present the methodology employed in this study, which includes

an overview of transformers, the concept of vision in transformers, and the integration

of hybrid convolution transformers. Subsequently, we introduce our proposed model,

the Hybrid Conv+Transformers, which leverages this newly developed architecture for

accurate identification and classification of finger vein (FV) images.

5.3.1 Transformer

Originally developed for Natural Language Processing (NLP) tasks, transformers have

emerged as highly efficient architectures for modeling sequential data, such as sentences

or sequences of words. Transformers offer significant advantages over other sequential

models, such as Recurrent Neural Networks (RNNs), by addressing various challenges.

The core building blocks of transformers consist of stacked transformer blocks, which

are multilayer networks comprised of simple linear layers, feed-forward networks, and

self-attention layers. The self-attention mechanism, depicted by the "Multi-Head At-

tention" box in Figure 5.1, is the key innovation of transformers.
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(a) (b)

Figure 5.1: Attention Mechanisms: (a) Self-attention mechanism, (b) Multi-head atten-
tion.

5.3.1.1 Self-Attention

The self-attention layer comprises a multi-head self-attention mechanism and a fully

connected feed-forward network. The multi-head mechanism consists of h self-attention

layers, each performing scaled dot-product attention. Between them, two linear trans-

formations and a ReLU activation function are applied in the fully connected feed-

forward network.

The self-attention mechanism begins by multiplying the query vector with the key

matrix, resulting in a query matrix Q of dimension model. The self-attention layer then

calculates the attention using the query matrix Q, the key matrix K, and the value matrix

V. Finally, the output vector is obtained by transforming the self-attention layer. The

three matrices Q, K, and V contain vectors from different inputs. The construction of

the attention function between these input vectors can be summarized as follows (Figure

5.1.a):

1. Calculate the dot product of different input vectors, denoted as S = Q ·K.

2. Normalize the resulting values for gradient stability using Sn =
S√
dK

.
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3. Apply the softmax function to obtain probability values, denoted as P=Softmax(Sn).

4. Compute the weighted sum of the value matrix using Z =V ·P.

This process can be consolidated into a single function:

Attention(Q,K,V ) = Softmax
(

QKT
√

dk

)
V (5.1)

where dK represents the dimensionality of the key matrix. The output vector of the

attention layer is obtained by concatenating the vectors A{1} · · ·A{m}, where m denotes

the number of attention heads.

5.3.1.2 Multi-Head Attention

The Multi-Head Attention layer extends the capabilities of the self-attention layer by

incorporating multiple self-attention layers. Each self-attention layer attends to differ-

ent parts of the input vectors, and the final output of the multi-head attention layer is a

linear combination of the outputs from these individual attention layers. The multi-head

attention layer takes a sequence of vectors Q, K, and V as input, all of which have the

same dimensionality. The parameter h represents the number of attention heads, and the

dimensionality of each self-attention layer is defined as dk =
dm
h . The vectors from the

different inputs are organized into separate matrices: Q, K, and V . Then, self-attention

is applied to each vector in these matrices:

MultiHead(Q,K,V ) = Concat(head1, ...,headh)W O (5.2)

Here, W O ∈ Rdm×dm is a learnable matrix. The matrices Q, K, and V are divided

into h sub-matrices. The self-attention function is applied to each sub-matrix, and the

resulting outputs are concatenated to produce the final output of the multi-head attention

layer.
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5.3.1.3 Transformers in Vision

Transformer-based architectures have proven to be effective for solving vision prob-

lems, as demonstrated by the introduction of Vision Transformers (ViT). In the ViT

model, Dosovitskiy & al. [87] employed a patch-based approach where the image is

divided into fixed-size patches. Each patch is then linearly embedded, positional em-

beddings are added, and the resulting sequence of vectors is fed into a standard Trans-

former encoder. For classification, a "classification token" is added to the sequence, and

standard methods are used. To account for the locality and 2D properties of images, the

Swin Transformer adopts a hierarchical architecture that utilizes shifted windows [107].

Recent advancements in transformer-based vision models have focused on improving

both model and data efficiency. These advancements include techniques such as sparse

attention [108, 109, 110], pyramid design [111], enhanced locality [112], and improved

training strategies [95, 113], among others. For a comprehensive review, we direct

readers to the dedicated survey on Vision Transformers [86].

5.3.1.4 Hybrid Models

Purely Transformer-based vision models have been observed to exhibit poor generaliza-

tion due to their relatively low induced bias [87, 90]. Additionally, Vision Transformers

often face challenges in terms of optimizability, resulting in subpar performance [91].

To address these limitations, a hybrid approach that combines Transformer and Con-

volution layers has been proposed. This hybrid design involves replacing the coarse

patchify stem of the Transformer model with a few convolutional layers [90, 91]. By in-

corporating convolutional layers, the Transformer model can benefit from their ability to

capture local and spatial information, leading to improved performance [90, 91, 92, 93].

5.3.2 FVCT MODEL

The integration of convolution and self-attention mechanisms in the FVCT (Finger Vein

Convolution-Transformer) model is crucial for the following reasons:

1) Considering practical applications, both Transformers and CNNs have their own
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strengths and weaknesses. In general, transformer models tend to achieve better perfor-

mance but are challenging to train and come with a high computational cost [94]. On

the other hand, CNNs may not match the performance of transformers but offer unique

advantages. CNNs are easier to train and benefit from better hardware support. Partic-

ularly, when it comes to small models intended for mobile or edge devices, CNNs still

dominate [114].

2) CNNs and transformers exhibit distinctive characteristics in information process-

ing. Transformers excel at extracting global information and capturing dependencies

across different positions in the input data [115]. On the other hand, CNNs possess

inductive biases that provide strong priors for capturing local dependencies [90].

To overcome these challenges and leverage the strengths of both architectures, we

propose a novel Finger Vein Convolution-Transformer Network (FVCT) for finger vein

identification tasks. Our model builds upon the architecture of Coatnet [90]. In this sec-

tion, we provide a detailed description of the proposed FVCT model, which combines

convolutional layers and transformer layers to effectively capture both local and global

dependencies. We compare our FVCT model with the main Coatnet architecture, as

illustrated in Table 5.3. We also conduct an ablation study by evaluating it against two

other Coatnet architectures. Furthermore, we have made modifications to reduce the

number of parameters in our FVCT architecture, as outlined in Table 5.2. These contri-

butions highlight the novelty and advancements of our proposed approach compared to

the Coatnet architecture.

5.3.2.1 FVCT Architecture

Our objective is to develop a hybrid network that harnesses the strengths of Convolu-

tional Neural Networks (CNNs) and transformers. Figure 5.2 provides a visual depic-

tion of the FVCT architecture, highlighting its key components and information flow.

The FVCT architecture begins with an input image, which undergoes a series of

stages to extract features at multiple levels. These stages are labeled as S0, S1, S2, S3,

and S4.
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In S0, an initial convolutional stem is applied to the input image. This stem stage

includes a 3× 3 convolution with a stride of 2, which aids in reducing the spatial size

of the input images. It is then followed by two 3× 3 convolutions with a stride of 1,

enabling efficient extraction of local information.

Moving forward, each successive stage in S1, S2, S3, and S4 involves a spatial size

reduction of 2X and an increase in the number of channels at the start of each stage.

In S1, a modified MBConv Block incorporating squeeze-excitation (SE) and GELU

activations is employed to capture relevant features. The SE block enhances important

information, while the GELU activation function introduces non-linearity to the model.

In S2 and S3 stages, Transformer blocks are integrated to leverage the power of self-

attention and capture long-range dependencies in the data. These Transformer blocks

enhance the network’s ability to effectively capture contextual information.

The S4 stage concludes with another MBConv block, further refining the learned

representations.

Finally, the FVCT model culminates with a global average pooling layer, which

aggregates the spatially extracted features, followed by a fully connected classification

layer with a softmax activation function for making the final classification decision.

By combining CNN-based feature extraction with Transformer-based attention mech-

anisms, the FVCT architecture aims to deliver a potent and efficient model for Finger

Vein Identification. Figure 5.2 provides a visual representation of this architecture, il-

lustrating the flow of information and the role of each component in the network.

5.3.2.2 Model Details

a) MBConv

The MBConv block [116] serves as the primary convolution operator in the model.

Both the MBConv and Transformer blocks adopt pre-activation structures to ensure

consistency in the model architecture [117]. The pre-activation structure is used to con-

sistently promote homogeneity between MBConv and Transformer blocks [95, 118].

Specifically, assuming x is an input feature, the formulation of the MBConv block
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Figure 5.2: Proposed model

without downsampling is as follows:

x← x+Proj(SE(DWConv3×3(Conv(Norm(x))))) (5.3)

Here, "Norm" refers to BatchNorm [119], and "Conv" denotes the extended Conv1x1

followed by BatchNorm and GELU activation function [120], which are common choices

for Transformer-based models. "DWConv" stands for Depthwise Conv3×3, followed by

BatchNorm and GELU. "SE" represents the Squeeze-Excitation layer [121], and "Proj"

is the down-projecting Conv1×1 to reduce the number of channels.

In each stage, the first MBConv block undergoes downsampling through the appli-

cation of a Stride-2 Depthwise Conv3×3, and pooling and channel projection are applied

to the shortcut branch:

x← x+Proj(Pool2D(x)+Proj(SE(DWConv3×3(Conv(Norm(x)))))) (5.4)
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This formulation ensures that the MBConv block captures and refines features at

various stages of the FVCT architecture.

b) Relative Attention

For our model, we select a single head from the multi-head attention. Typically,

the same head dimension is used in multi-head attention implementations. The relative

attention is defined as follows:

RealAttention(Q,K,V ) = Softmax
(

Q.KT
√

dK
+B

)
·V (5.5)

Here, Q, K, and V are query, key, and value matrices of size R(H×W )×C, respec-

tively. B represents the learned static location-based matrix. Q.KT
√

dK
denotes the scaled in-

put adaptive attention, where dK refers to the hidden dimension. The attention weights

are jointly determined by B and Q.KT
√

dK
. Taking into account the differences in two-

dimensional coordinates, the relative positional distortion B is parameterized by a ma-

trix. According to typical practice [90], when fine-tuning is performed at a higher reso-

lution, such as H ′×W ′, bilinear interpolation is used to calculate B from R(2H−1)(2W−1)

to R(2H ′−1)(2W ′−1). This relative attention benefits from input adaptivity, translation

equivariance, and global interactions. Therefore, this relative attention mechanism is

utilized by default in the attention operators of our model.

5.4 Experiments and Results

This section provides a comprehensive description and analysis of the conducted exper-

iments. Firstly, we introduce three widely recognized Finger Vein (FV) datasets, which

serve as the basis for evaluating our proposed protocol in terms of training, valida-

tion, and testing. Secondly, we present in-depth details of the experimental setups and

metrics employed for the purpose of comparison. The third part showcases the results

obtained from our FVCT model. Furthermore, utilizing the same experimental config-

uration, we conduct experiments on four recently developed Vision Transformer (ViT)

and hybrid Convolution-Transformer models, enabling meaningful comparisons with
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(a) (b) (c)

Figure 5.3: Finger Vein Image Samples: (a) SDUMLA, (b) MMCBNU, (c) FV-USM.

Dataset Years # of subjects # of sessions #of images/subject Total images
SDUMLA -HTM 2011 106 1 6 3816

MMCBNU 6000 2013 100 2
10

(10 images per session)
6000

FV-USM 2014 123 2 6 5904

Table 5.1: DESCRIPTIONS OF THE THREE PUBLIC FV DATASETS.

our proposed FVCT. In the fourth part, we perform ablation experiments by selectively

modifying design choices within the FVCT model, aiming to assess their effectiveness.

Finally, a comprehensive comparison is conducted with state-of-the-art approaches in

Finger Vein Identification to establish the superiority of our proposed method.

5.4.1 Datasets

We use the same datasets described in 4.2.1 for evaluating the proposed FVCT model.

Table 5.1 presents a summary of the Finger Vein (FV) datasets utilized in this study.

The datasets were partitioned into three subsets: 70% for training, 20% for testing, and

10% for validation, employing person-level splits to ensure data integrity and prevent

leakage. During training, the images were normalized to a size of 224×224×3. Addi-

tionally, the single-channel grayscale images were duplicated twice to transform them

into three-channel images. To enhance performance and mitigate overfitting, various

image augmentation techniques, such as Horizontal Flip, Vertical Flip, and zoom, were

employed to augment the training data and increase the variability of images during

each training epoch.
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5.4.2 Experimental Setup

5.4.2.1 Evaluation Metrics

The performance of the proposed model is evaluated using the Equal Error Rate (EER)

metric. EER is defined as the point on the Receiver Operating Characteristic (ROC)

curve where the False Acceptance Rate (FAR) and False Rejection Rate (FRR) are

equal. The EER provides a concise measure for comparing the accuracy of different

models in image recognition tasks. A lower EER indicates higher accuracy. FAR and

FRR are calculated using the following formulas:

FAR =
Number of matching scores in false acceptance

Total number of matching scores
(5.6)

FRR =
Number of matching scores in false rejection

Total number of matching scores
(5.7)

These metrics help quantify the model’s performance in terms of its ability to dis-

tinguish between genuine and impostor finger vein samples. By analyzing the FAR and

FRR values, the model’s accuracy and robustness can be assessed effectively.

5.4.2.2 Implementation Details

The experiments were conducted using the PyTorch [122] and Timm [123] libraries.

We utilized pre-trained Cait and Deit models, which had been trained on the Imagenet

dataset, as our Transformer models. The AdamW optimizer [124] was employed for

training the models.

During training, the batch size was set to 32, momentum was set to 0.9, and weight

decay was set to 0.05. We used a cosine learning rate schedule with an initial learning

rate of 10−4. The input images were resized to a size of 224, and both the training and

testing procedures were executed on an NVIDIA Tesla T4 GPU for efficient computa-

tion.

For each dataset, we trained the models for a fixed number of epochs: 20 epochs

on the SDUMLA dataset and 30 epochs on the FV-USM and MMCBNU datasets. Al-
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Stage Size # of blocks # of channels
S0- Conv-stem 1/2 2 64
S1- MBConv 1/4 2 96
S2- Transformer 1/8 5 192
S3- Transformer 1/16 3 384
S4- MBConv 1/32 2 768

Table 5.2: FVCT architecture configurations

though we did not explicitly define a stopping criterion, our observations during the

experiments indicated that the chosen number of epochs was sufficient for convergence.

Further training did not yield significant improvements in performance, leading us to

conclude that the models had reached convergence within the specified epochs.

5.4.2.3 FVCT model configurations

The FVCT model architectural variants are presented in Table 5.2. The number of chan-

nels is incrementally increased from Stage S1 to S4 by a factor of two, while ensuring

that the width of the Stem S0 is less than or equal to that of S1. Furthermore, for sim-

plicity, only the number of blocks in Stages S2 and S3 is scaled during the expansion of

the network’s depth. Each attention head in the attention layers is assigned a value of

32. The MBConv blocks maintain an expansion rate of 4 and a shrinking rate of 0.25

in the Squeeze-Excitation (SE) module. The architectural configurations for each stage

are as follows:

1. Stage S0 (Conv-stem): 2 blocks with 64 channels.

2. Stage S1 (MBConv): 2 blocks with 96 channels.

3. Stage S2 (Transformer): 5 blocks with 192 channels.

4. Stage S3 (Transformer): 3 blocks with 384 channels.

5. Stage S4 (MBConv): 2 blocks with 768 channels.

Our objective in this study is to evaluate the performance of four deep learning

models on three distinct datasets. We utilized the pre-trained Deit [94] and Cait [95]
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Model Pre-trained Eval Size #Params
Deit Deit-S * 224 22M
Cait Cait_xs24 * 224 26.6M
Coatnet CoAtNet-0 - 224 25M
ConvMixer Convmixer_768_32 * 224 21M
FVCT( our model) FVCT - 224 15M

Table 5.3: Comparison of different types of models
Keys:
(*) pretrained model
(-) not pretrained model

Dataset Deit Cait Coatnet ConvMixer FVCT (Ours)
Acc EER Acc EER Acc EER Acc EER Acc EER

SDUMLA
-HTM 93.33% 3.34% 92.27% 3.43% 98.17% 0.75% 98.66% 0.47% 99.46% 0.26%

FV-USM 91.43% 4.43% 89.35% 5.46% 97.22% 0.84% 99.09% 0.53% 99.54% 0.22%
MMCBNU
6000 97.00% 1.50% 95.63% 1.89% 99.12% 0.37% 98.97% 0.31% 99.71% 0.17%

Acc/EER
weighted mean 93.92% 3.09% 92.41% 3.59% 98.17% 0.65% 98.90% 0.43% 99.57% 0.21%

Table 5.4: Performance of different models on three databases.

models as Transformer models, while Coatnet [90] and ConvMixer [96] served as hy-

brid models. To ensure credibility, we selected models with smaller sizes in terms of the

number of parameters. As shown in Table 5.3, our FVCT model has the fewest param-

eters among the four models, highlighting our emphasis on evaluating its performance

relative to similarly sized models.

5.4.3 Results and Discussion

The application of Transformer and Conv-Transformer methods in Finger Vein Identi-

fication is relatively limited in existing literature. To address this gap, we conducted

experiments comparing our proposed model with four state-of-the-art models in the

field: two Transformer models (Deit and Cait) and two hybrid Conv-Transformer mod-

els (ConvMixer and Coatnet). These models were selected to assess the performance of

our proposed model and establish its competitive positioning in the domain.

The experimental results are summarized in Table 5.4, utilizing the experimental

setup and metrics described in Section 5.4.2. Figure 5.4 illustrates the ROC curves of

the proposed Finger Vein Convolution-Transformer (FVCT) model for the three Finger
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Vein datasets.

Firstly, as observed from Table 5.4, the weighted mean Equal Error Rates (EERs)

of the Deit and Cait Transformer models are 3.09% and 3.59%, respectively. This sug-

gests that while Transformer networks can exhibit efficiency in Finger Vein recognition,

they may encounter challenges in achieving optimal performance when confronted with

smaller datasets. This finding aligns with previous studies [88] that have reported the

limitations of Transformer models in handling datasets with limited samples. In con-

trast, the hybrid Convolution-Transformer models, namely Coatnet and ConvMixer, de-

liver outstanding results with weighted EERs of 0.65% and 0.43%, respectively. There-

fore, we conclude that the fusion of CNN and Transformer architectures has yielded

remarkable performance for the Finger Vein identification task.

Secondly, the proposed FVCT model surpasses both the Transformer and hybrid

Convolution-Transformer models on all Finger Vein datasets, achieving a weighted

EER of 0.21%. These results clearly indicate that our FVCT model is not only effective

but also exhibits generalizability across different Finger Vein datasets. Additionally, our

model boasts the fewest parameters (Params) compared to the other models, as shown in

Table 5.2. This benchmark further establishes the efficiency of our model for real-world

recognition tasks.

Overall, the experimental results validate the superiority of our proposed FVCT

model, which leverages the strengths of both CNN and Transformer architectures, for

Finger Vein Identification. The combination of these two paradigms has yielded sig-

nificant advancements in accuracy and efficiency, making it a promising approach for

practical Finger Vein recognition systems.

5.4.4 Ablation Study

In this comprehensive ablation study, our objective is to meticulously investigate the im-

pact of specific design choices within our FVCT model. To achieve this, we conducted

a series of experiments on three public finger vein datasets: SDUMLA, FV-USM, and

MMCBNU while maintaining consistent training configurations, with the exception of
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Figure 5.4: (ROC) curves of the FVCT model

the particular design choice under scrutiny.

a) FVCT Design

As outlined in Section 5.3.2, our model is built upon the esteemed Coatnet architec-

ture. Coatnet explores diverse design variants with progressively increasing numbers of

Transformer stages denoted as C-C-C-C, C-C-C-T, C-C-T-T, and C-T-T-T, where C rep-

resents Convolution and T represents Transformer. In accordance with the findings of

Coatnet [90], the C-C-C-T and C-C-C-C architectures have been deemed the most effec-

tive, suggesting that models with a greater number of convolution stages tend to yield

superior results on datasets of smaller sizes. Furthermore, when comparing architec-

tures on the large-scale JFT dataset, it becomes apparent that the C-C-T-T architecture

has the most significant impact on model capacity.

To evaluate the performance of our proposed architecture, namely C-T-T-C, we con-

ducted dedicated experiments on the three finger vein datasets. As demonstrated in Ta-

ble 5.5, our model consistently outperforms the two alternative architectures, C-C-C-T

and C-C-T-T, thereby substantiating the superiority of our design choice.

b) MBConv with Squeeze Excitation
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dataset SDUMLA-HTM FV-USM MMCBNU 6000
Accuracy EER Accuracy EER Accuracy EER

C-C-T-T (Coatnet) 98.17% 0.75% 97.22% 0.84% 99.12% 0.37%
C-C-C-T 99.03% 0.38% 98.72% 0.51% 99.44% 0.24%
C-T-T-C (Our model) 99.46% 0.26% 99.54% 0.22% 99.71% 0.17%

Table 5.5: Ablation on architecture layout.

dataset SDUMLA-HTM FV-USM MMCBNU 6000
Accuracy EER Accuracy EER Accuracy EER

With SE 99.46% 0.26% 99.54% 0.22% 99.71% 0.17%
Without SE 99.17% 0.31% 99.12% 0.29% 99.56% 0.19%

Table 5.6: Ablation of Squeeze Excitation.

In this segment of the ablation study, we scrutinize the significance of Squeeze Ex-

citation (SE) within the MBConv block. We compare two models: one incorporating

SE and the other without SE. The results are displayed in Table 5.6. The model incor-

porating SE achieved impressive results. This indicates that the inclusion of Squeeze

Excitation in the MBConv block exerts a positive impact on the performance of our

FVCT model, resulting in improved performance for Finger Vein identification across

all datasets.

These meticulous ablation studies offer valuable insights into the design choices in-

corporated within our FVCT model. The results unequivocally establish the superiority

of the C-T-T-C architecture and the indispensability of integrating Squeeze Excitation

in the MBConv block, thereby underscoring their substantial contributions to the overall

performance of the FVCT model across different datasets.

5.4.5 Comparison with recent Finger Vein identification methods

In this section, we compare the performance of our proposed Finger Vein Convolution-

Transformer (FVCT) model with state-of-the-art (SOTA) methods for Finger Vein iden-

tification on the SDUMLA, MMCBNU, and USM datasets. Our comparison includes

five SOTA methods that have been widely used in previous studies. Specifically, we

selected methods proposed by Hou & al. [104], Zhao & al. [24], and Hu & al. [78],
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ref Year Method EER (%)
SDUMLA MMCBNU USM-FV

[78] 2018 Proposed CNN model 0.30 0.76 1.20

[24] 2020
lightweight CNN +
center loss and dynamic regularization

- 0.5 1.1

[104] 2021 CNN+ Arccosine center loss (Arcvein) 1.53 - 0.25
[105] 2022 Transformer (FVT) 1.50 0.92 0.44
[106] 2022 Capsule network+ Transformer (ViT-Cap) 1.3 0.63 0.28
Ours [125] 2023 Hybrid Conv-Transformer (FVCT) 0.26 0.17 0.22

Table 5.7: Comparison with recent Finger Vein identification methods.

which utilize CNN algorithms, as well as methods proposed by Huang & al. [105] and

Li & al. [106], which utilize Transformer algorithms. By comparing the performance of

these methods with our proposed FVCT model, we aim to demonstrate the effectiveness

and superiority of our approach in Finger Vein identification.

The results of the comparative analysis between our proposed FVCT model and five

state-of-the-art (SOTA) methods for Finger Vein identification are presented in Table

5.7. Our FVCT model outperformed the other SOTA methods in terms of Equal Error

Rate (EER) on all three datasets (SDUMLA, MMCBNU, and USM-FV).

Compared to the CNN-based methods proposed by Hu & al. [78] and Zhao &

al. [24], our FVCT model achieved significantly lower EER values, demonstrating its

superiority in extracting Finger Vein features. The lightweight CNN model with center

loss and dynamic regularization by Zhao & al. achieved competitive results, but our

FVCT model still outperformed it.

In terms of Transformer-based methods, our FVCT model surpassed the perfor-

mance of the FVT model proposed by Huang & al. [105] and the Capsule network with

Transformer (ViT-Cap) proposed by Li & al. [106]. This indicates that the combination

of convolutional and Transformer layers in our FVCT model leads to more effective

Finger Vein identification.

Overall, our FVCT model achieved the lowest EER values across all three datasets,

highlighting its superiority compared to existing SOTA methods. This demonstrates the

effectiveness and comprehensiveness of our FVCT model for Finger Vein identification

tasks.
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5.5 CONCLUSION

In this study, we conducted a comprehensive investigation into the integration of con-

volutions into the Vision Transformer (ViT) architecture. Our goal was to leverage

the strengths of both convolutional neural networks (CNNs) and transformers for Fin-

ger Vein Identification. By combining the CNN’s effectiveness in extracting low-level

features and capturing local patterns with the ViT’s ability to model long-range depen-

dencies, we introduced a hybrid approach that merges the two paradigms.

We introduced the Finger Vein Convolution-Transformer (FVCT) model specifi-

cally designed for Finger Vein Identification, setting a new benchmark in the field. Our

model outperformed Transformer models and hybrid Conv-Transformer models (Deit,

Cait, Coatnet, ConvMixer) on the public finger vein datasets. Moreover, the FVCT

model offered a unique representation of local-to-global relationships, enabling it to

excel in Finger Vein Identification compared to other state-of-the-art models.

Future research should focus on further reducing the model’s parameter count and

computational cost of the hybrid Conv-Transformer model. Additionally, improving

the Transformer model’s capability to extract local information would be valuable for

enhancing the model’s performance. These advancements would contribute to the de-

velopment of more efficient and accurate Finger Vein Identification systems.



CHAPTER 6

Conclusion

The field of biometric security systems has witnessed remarkable advancements and a

shift toward more secure, efficient, and convenient methods of personal identification.

This thesis, titled "Biometric Security System: Unimodal Identification Using Finger

Veins," has undertaken an in-depth exploration of the realm of finger vein identification.

The journey has led to significant contributions to the field and laid the foundation for

future innovations in biometric security systems. In this concluding chapter, we sum-

marize the key findings, reflect on the research process, and provide recommendations

for future work in this critical area of biometrics.

The primary research question that guided this thesis was: Can finger vein identifi-

cation be advanced as a secure and efficient unimodal biometric recognition modality?

Through the exploration of various aspects of finger vein identification, including his-

torical development, feature extraction techniques, and the application of deep learning

models, we have provided a comprehensive response to this question. The findings of

this thesis affirm that finger vein identification holds the potential to be an advanced,

secure, and efficient unimodal biometric recognition modality.

87



CHAPTER 6. CONCLUSION 88

6.1 Summarizing the Research Process

The research process embarked with a thorough examination of the overarching field

of biometric systems. Chapter 2 provided a solid foundation for understanding the fun-

damentals of biometric systems, their operation, performance evaluation, and diverse

applications. This chapter highlighted the need for advanced, secure, and efficient bio-

metric recognition methods.

Chapter 3 delved into the intricacies of finger vein identification, tracing its histori-

cal development, exploring various techniques for feature extraction, and emphasizing

the significance of databases. The chapter laid the groundwork for understanding the

anatomical and operational aspects of finger vein identification, setting the stage for

further exploration.

In Chapter 4, the focus shifted to the development of a deep learning model for fin-

ger vein identification based on the InceptionResnet-V2 architecture. The InceptionResnet-

V2 model, customized for finger vein identification, showcased superior performance

in comparison to existing state-of-the-art methods. The research in this chapter demon-

strated the potential of deep learning models in enhancing the security and accuracy of

finger vein identification.

Chapter 5 introduced a hybrid Convolutional Transformer-based model for finger

vein identification. This model, known as FVCT, harnessed the strengths of both con-

volutional neural networks (CNNs) and transformers, offering a unique representation

of local-to-global relationships. The FVCT model outperformed existing transformer

and hybrid models, setting a new benchmark in the field. The research in this chapter

highlighted the potential for advancing finger vein identification through the fusion of

CNNs and transformers.

6.2 Contributions

The contributions of this thesis to the field of biometric security systems are manifold.

Through the exploration of finger vein identification, we have advanced the understand-
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ing and application of this modality as a secure and efficient unimodal biometric recog-

nition method. The specific contributions include:

• InceptionResnet-V2 Model: Chapter 3 introduced a novel deep learning model,

based on the InceptionResnet-V2 architecture. The proposed model demonstrated

superior performance in finger vein identification, surpassing existing state-of-

the-art methods. This contribution underlines the potential of transfer learning in

enhancing the robustness and accuracy of biometric recognition systems.

• Hybrid Convolutional Transformer Model: Chapter 4 introduced the Finger Vein

Convolution-Transformer (FVCT) model, a hybrid approach that merges the strengths

of convolutional neural networks (CNNs) and transformers. The FVCT model set

a new benchmark in finger vein identification, outperforming existing transformer

and hybrid models. This contribution underscores the potential for fusing differ-

ent deep learning paradigms to advance biometric security.

• Comprehensive Exploration: Throughout this thesis, we conducted a multifaceted

exploration of finger vein identification, encompassing historical development,

feature extraction techniques, and the application of deep learning models. This

comprehensive exploration provides a solid foundation for future research and

development in the field of biometric security systems.

6.3 Future Work

The research conducted in this thesis opens the door to several avenues for future work

and innovation in the field of biometric security systems. Some key recommendations

for future research include:

• Advanced Deep Learning Models: The exploration of advanced deep learning

models, such as CNN, Capsule Networks (Caps-nets), and Vision Transformers,

holds promise for further enhancing the recognition performance of finger vein
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identification systems. Future research should focus on developing and optimiz-

ing these models for improved accuracy and efficiency.

• Reducing Computational Cost: While the FVCT model demonstrated exceptional

performance, future work should aim to reduce the model’s parameter count and

computational cost. This will make the model more practical for real-world ap-

plications, including those with limited computational resources.

• Enhancing Local Information Extraction: Improving the Transformer model’s

capability to extract local information is essential for enhancing the model’s per-

formance, especially in scenarios with complex finger vein patterns. Future re-

search should focus on techniques to enhance local feature extraction within the

transformer architecture.

• Diverse Datasets: Expanding the scope of research to include diverse and repre-

sentative datasets is crucial for the development of robust and reliable finger vein

identification systems. Future work should involve the creation and utilization of

datasets that encompass a wide range of finger vein patterns.

In conclusion, this thesis has explored the field of biometric security systems, with a

specific focus on finger vein identification. The research has provided a comprehensive

understanding of this innovative biometric technology and its critical role in enhancing

security and authentication systems. The contributions made in the development of

advanced deep learning models, such as InceptionResnet-v2-Based and FVCT models,

showcase the potential for further advancements in the field.

The findings presented in this thesis underscore the significance of finger vein iden-

tification as a secure and efficient unimodal biometric recognition modality. The fu-

sion of different deep learning paradigms and the exploration of advanced models have

paved the way for future innovations in biometric security.

As the field of biometric security systems continues to evolve, the research con-

ducted in this thesis contributes to ongoing efforts to enhance the security, accuracy,

and convenience of personal identification. With a commitment to advancing biometric
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security, this thesis provides a strong foundation for future research and development,

ultimately leading to more secure and efficient biometric recognition systems across

diverse applications.
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APPENDIX A

Biometric modalities and their characteristics

Biometric

Modality

Advantages Limitations

Face

• physical contact is not required

• Convenient, less complex statistics

• Fast recognition process

• 3D offers increased precision

• For twins, differences may not be clear

• With age, facial traits may change

• Potential privacy concerns

• Lighting and variations in pose can reduce

accuracy

Fingerprint

• Generally uses small, low-cost readers

• Reliable and highly accurate

• Fast matching process

• An effective biometric for large-scale sys-

tems

• Widely accepted forensic tool

• Not considered hygienic

• Twists, cuts, or dirt may create obstacles

Iris

• High accuracy and more protective

• High stability of characteristics over time

• Moderate data storage requirements

• Works well with either verification or iden-

tification applications

• Small sample size

• Diseases may affect accuracy

• Challenges at a large distance
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Ear

• Identification process is fast

• Most stable and less computational com-

plexity

• Less computational complexity

• Identification process is fast

• Uncomfortable as it requires direct contact

Hand Geometry

• Operates well in challenging environments

• Widely used

• Less processing

• Not accurate for moderate to large popula-

tions

• Unhygienic

• Injuries and jewels may harm the results

Palmprint

• Large variety of features

• High reliability and permanent

• Good recognition even with low-resolution

scanners

• Unhygienic

• Injuries may create obstacles

Retina

• Among the most accurate of biometrics

• Moderate storage requirements for tem-

plates

• Special hardware is required

• Expensive

Vein Pattern

• Highly private

• Very accurate

• Difficult to circumvent

• Near contactless, hygienic

• Not yet widely used

• Can be impacted by bright ambient light

Voice

• Easy implementation

• Less expensive

• Convenient to employ

• High public acceptance

• Throat disease can affect accuracy

• Generally large storage requirements for

templates

• Not sufficiently distinctive for identification

over large databases

Keystroke Dy-

namics • Easy implementation and use

• Additional hardware is not required for key-

boarding

• Only useful for certain applications
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Gait

• Easy to capture the image

• Convenient to use

• No distance problem

• Computationally expensive

• Lack of accuracy

Signature

• More accuracy

• Less false acceptance rate

• Low storage requirement

• Can be forged

• Changes based on the emotional and medi-

cal condition of the person

DNA

• Highly unique feature

• High performance

• Its universality is very high

• More storage required

• Not an automatic technique

• More informative, so privacy issues

Table A.1: Biometric modalities and their characteristics [1, 9, 8]
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