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Chapter  1 

INTRODUCTION 

1.1. Overview of the Thesis 

Modern power systems are becoming more vulnerable to operating limit violation and voltage 

instability problems due to large transmission networks, deregulation of the electricity industry 

and utilization of various renewable energy sources as well as different load patterns. The power 

system, at this stage, can become insecure and prone to voltage collapse due to lack of reactive 

power support. Generators have the capability of providing reactive power but are limited to a 

certain extent. Moreover, the reactive power produced by the generators cannot be effectively 

utilized if the demand for the reactive power is far from its location [1]. Optimal reactive power 

dispatch (ORPD) in electrical transmission networks is an essential area of electrical 

engineering aimed at maintaining the stability and quality of the power system. Reactive energy 

is required to maintain a stable voltage in the power system. Optimizing reactive power flow 

involves effectively managing the production and consumption of reactive energy in order to 

minimize energy losses, optimize the use of equipment and maintain stable voltages in the 

network. The various key points linked to optimizing reactive power flow in transmission 

networks are as follows: 

✓ Reactive energy is needed to maintain the voltage at an appropriate level in the electrical 

network.  

✓ Energy generators, such as power stations, can produce reactive energy, while loads, such 

as electric motors, consume it. The aim is to coordinate the production and consumption of 

reactive energy to meet the needs of the network. 

✓ Reactive power compensators, such as capacitors and inductors, can be used to adjust the 

reactive energy in the network. Automatic control systems adjust these devices to maintain 

voltages within acceptable ranges. 

✓ To optimize the flow of reactive energy, electrical engineers use network modelling and 

analysis software to simulate the behavior of the network under different load and 

generation conditions. 

✓ Optimizing reactive energy reduces energy losses in the network, improves energy 

efficiency and extends the life of electrical equipment. 

✓ Proper management of reactive energy is crucial to maintaining the stability of the 
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electricity network. Excessive voltage variations can lead to network disturbances and 

outages [2]. 

Optimal Reactive Power Dispatch (ORPD) is a subproblem of OPF, which has the objective of 

improving the system voltage profile and minimizing system transmission losses. This is 

achieved through redistribution of reactive power in the network through optimal setting of 

generator terminal voltage or reactive power outputs, transformer tapings and output of other 

compensating devices such as shunt capacitors, reactors, synchronous condensers etc. The fast 

progress in the field of power electronics, has resulted into introduction of new devices for more 

flexible operation of the power systems known as Flexible AC Transmission System (FACTS) 

devices. These devices include Static Var Compensators (SVC), Thyristor Controlled Series 

Compensators (TCSC), Thyristor Controlled Phase Angle Regulators (TCPAR), Static 

Condensers (STATCON), Unified Power Flow Controllers (UPFC), etc. These devices have 

been mainly studied and applied for minimizing active power losses and improving the voltage 

profile of the power system.  

This thesis is mainly based on the application of metaheuristic optimization techniques to 

address the optimal reactive power dispatch (ORPD) problem. The metaheuristic algorithms 

are used to investigate the best combination of control variables including generators voltage, 

transformers tap setting as well as reactive compensators sizing to achieve minimum total 

power loss and minimum voltage deviation. 

1.2. Problem statement 

The electrical energy from the generating station is delivered to the consumer terminals via 

transmission and distribution networks. The generating stations supply both active and reactive 

power to the consumers. The Reactive power is critical to the operation of the power networks 

on both safety aspects and economic aspects. Rational reactive power dispatch scheme can 

improve the power quality as well as reduce the real power loss. On the contrary, if the reactive 

power is unreasonably allocated, then it will bring great economic losses and might even 

threaten the security of the power grid. Consumer terminals require a substantially constant 

voltage for satisfactory operation, but in practice electrical loads are time-varying, which means 

that consumer loads change over time, causing power and current fluctuations. Reactive power 

requirements vary continuously according to load and system configuration.  These changes in 

reactive power generation cause fluctuations in system voltage levels. Any change in the design 

of the system or in the demand for energy can alter the voltage levels in the system. The 

injection of reactive power into the electrical network increases voltages, while the absorption 

of reactive power from the network decreases them. The main task of a power system is to 
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sustain the load bus voltages within the nominal range for consumer satisfaction and 

minimizing power losses especially in a deregulated or restructured power industry. For the 

purpose of minimizing the real power loss, utility companies can either change the structure of 

the power grid or replace the old wiring with lower impedance lines. However, both of these 

methods require investing large amounts of money. The simplest and most economical way 

remains reactive power dispatch method. In the early days, the starting point of reactive power 

dispatch is to improve the power factor at each end user by installing reactive power 

compensators. This situation can be improved by the operator by reallocating the production of 

reactive power in the system by modelling it as an ORPD optimization problem. In an electrical 

power system, there is a constant need for the efficient management and dispatch of reactive 

power to maintain grid stability, voltage regulation, and power quality. The primary objective 

of the ORPD problem is to optimize the allocation and control of reactive power resources to 

minimize system losses, ensure voltage levels remain within acceptable limits. Solving the 

ORPD problem effectively involves mathematical optimization techniques and sophisticated 

control algorithms to find the optimal settings for devices that can generate or absorb reactive 

power. The result of solving this problem is a set of control actions for reactive power resources 

that minimize system losses and ensure the reliable and efficient operation of the electrical 

power system. The compensation of the reactive power can be done ether by FACTS (Flexible 

Alternating Current Transmission Systems) devices or classical reactive resources which play 

essential roles in managing reactive power in electrical power systems, but they differ in their 

operation, capabilities, and characteristics. FACTS devices are advanced power electronics-

based devices that can control various parameters of the electrical grid, including voltage, 

impedance, and phase angle. They use real-time control algorithms to adjust these parameters 

and enhance the overall system performance. FACTS devices are highly flexible and can 

rapidly respond to changing grid conditions. The classical reactive resources include 

conventional devices such as synchronous generators and capacitors. These devices provide or 

absorb reactive power but typically do not have the same level of dynamic control and 

flexibility as FACTS devices. Their operation is often based on setpoints and may not adapt as 

quickly to grid changes.  

1.3. Major contributions of the Thesis. 

The main contributions of this dissertation can be summarized in the following points: 

• Different Bio-inspired optimization algorithms were proposed namely MFO, GWO, ALO 

and AHA and applied on little, medium and large-scale power systems (IEEE 14-bus, IEEE-

30 bus, IEEE-57 bus, IEEE-118 bus). 
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• Statistical analysis has been achieved in this study using Box-and-whisker plot and One-way 

ANOVA test system, to give a certain level of confidence to our study and evaluate which 

algorithms are most suitable in solving the ORPD problem. 

• A novel method based on Hybridization of PSO (Particle Swarm Optimization) and TS 

(Tabu Search) named PSO-TS have been proposed for ORPD problem in standard IEEE 

power systems with 30 and 57 bus and with the practical large-scale Algerian 114-bus power 

test system in order to evaluate the performance of the power system in terms of active power 

losses and voltage profile. 

• The proposed PSO-TS optimization method has also been applied to solve mixed integer 

optimization problem with discrete variables, which reflect the real nature of the variables. 

• The proposed PSO-TS algorithm has been implemented to solve ORPD problem considering 

FACTS devices 

• Programming a Windows application to display all the simulations carried out during the 

various system tests. 

• Creation of a model for controlling SVC devices via a man-machine interface running under 

Windows and Android 

• Direct control of the SVC devices via GUI MATLAB using a microcontroller. 

1.4. Organization of the Thesis. 

This thesis has been organized into seven chapters which are below detailed: 

Chapter 1 highlights the Overview of the thesis, the problem statement and the major 

contributions of the research work. 

The second chapter deals with reactive energy then it presents the general background, objective 

functions, constraints, and problem formulation of (ORPD). The conventional algorithm 

techniques are presented and several metaheuristic methods based ORPD in the literature are 

summarized.  

The third chapter provides an overview of a range of Bio-inspired algorithms drawn from a 

natural phenomenon including MFO (Moth Flame Optimization), GWO (Grey Wolf 

Optimizer), AHA (Artificial Hummingbird Algorithm) and ALO (Ant Lion optimization). 

These bio-inspired algorithms were described and presented. The proposed algorithms based 

ORPD problem were applied on different IEEE test systems (from smallest to largest electrical 

transmission networks), and their results were compared with each other and with those of other 

optimization methods presented in the literature. 

In Chapter 4 an efficient hybrid PSO with TS techniques called PSO-TS is implemented to 

solve the ORPD problem. First, the proposed Hybrid algorithm is implemented considering 
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continuous control variables. In the second part, a new approach to identify the sensitive buses 

was presented and was implemented to solve the ORPD problem with two distinct objective 

functions, namely, active power losses and voltage deviation. Afterwards the PSO-TS method 

based ORPD considering discrete control variables is presented and tested on IEEE 14-bus, 

IEEE 30-bus, IEEE 57-bus and the practical Algerian electric 114-bus power system. 

In Chapter 5 a general presentation and modeling of the FACTS technology are presented. 

Afterwards the proposed PSO-TS method has been applied to the ORPD problem considering 

SVC and TCSC devices. The first time, only one type of FACTS was considered. Subsequently, 

both types of facts, i.e. SVC and TCSC, were installed simultaneously. 

In Chapter 6 a mock-up to test the control and command of the SVC devices via a human-

machine interface running under Windows and Android is built. A Windows application 

designed to visualize all the simulations carried out during our thesis work. 

The conclusion and future-work are discussed in Chapter 7. 
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Chapter  2 

OPTIMAL REACTIVE POWER DISPATCH PROBLEM AND METAHEURISTIC METHODS 

2.1. Conventional methods for the ORPD problem 

One of the most important conditions for economic and secure operation of electric power 

system is the optimal reactive power dispatch (ORPD). The ORPD is achieved by appropriate 

coordination of the equipment which manage the reactive power flows to minimize the real 

power loss and/or improve the voltage profile of the power system. Mathematically, the ORPD 

problem can be formulated as a constrained nonlinear optimization problem. Initially the 

conventional methods were used to solve the optimal reactive power dispatch problem. The 

application of these methods had been an area of active research in the recent past. The 

conventional methods are based on mathematical programming approaches and used to solve 

different size of OPF problems. To meet the requirements of different objective functions, types 

of application and nature of constraints, the popular conventional methods are further sub 

divided into: Gradient Method, Newton Method, Linear Programming Method, Quadratic 

Programming Method and Interior Point Method. Even though, excellent advancements have 

been made in classical methods, they suffer from the following disadvantages: In most cases, 

mathematical formulations have to be simplified to get the solutions because of the extremely 

limited capability to solve real-world large scale power system problems. They are weak in 

handling qualitative constraints. They have poor convergence, may get stuck at local optimum, 

they can find only a single optimized solution in a single simulation run, they become too slow 

if number of variables are large and they are computationally expensive for solution of a large 

system. In contrast, metaheuristics approach problems differently. They employ strategies like 

randomness, iteration, and exploration to navigate solution spaces more effectively. Recently 

meta-heuristic optimization techniques were successfully used to solve the ORPD problem 

[37]. These metaheuristics don't guarantee an optimal solution but excel in finding good 

solutions. 

2.2. Introduction 

One of the most important conditions for economic and secure operation of electric power 

system is the optimal reactive power dispatch (ORPD). The optimal reactive power dispatch 

problem is a critical aspect of power system operation, focusing on the efficient control and 

management of reactive power in electrical grids. Reactive power is essential for voltage control 

and ensuring the reliability and stability of the power system. The goal of optimal reactive 
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power dispatch is to minimize system losses, improve voltage profiles, and enhance the overall 

system performance while meeting operational constraints. The ORPD is achieving by 

appropriate coordination of the equipment which manage the reactive power flows. The ORPD 

problem solution aims to minimize a chosen objective function, such as power losses (Ploss) or 

the total of voltage deviation (TVD), through optimal adjustment of the power system control 

variables, under specified active power outputs of all generators (except at the slack bus), while 

at the same time satisfying various operating constraints [3]. In the literature, many methods of 

solving the ORPD problem have been used up to date. At the beginning, several classical 

methods such as gradient based [4] [5], linear programming [6] [7], nonlinear programming [8] 

[9], quadratic programming [10], and interior point [11], were successfully used to solve this 

problem. However, these methods have some disadvantages in the process of solving the 

complex ORPD problem. The drawbacks of these algorithms are the premature convergence 

properties, the algorithmic complexity and the fact that solutions can be trapped in local minima 

[12]. In order to overcome these disadvantages, researchers have, in recent years, successfully 

applied evolutionary and meta-heuristic algorithms such as Genetic Algorithm (GA) [13], 

Differential Evolution (DE) [14], Evolutionary programming (EP)  [15], Particle Swarm 

Optimization (PSO) [16] [17], Biogeography Based Optimization (BBO) [18], Gravitational 

Search Algorithm (GSA) [19] [20], Krill Herd Algorithm (KHA) [21] [22], Harmony Search 

Algorithm (HSA)[23], Teaching–Learning-Based Optimization [24], Differential Search 

Algorithm [25], Ant Colony Optimization Algorithm [26], Artificial Bee Colony Algorithm 

(ABC) [27] and Enhanced Marked Algorithm [28]. The main advantage of these methods 

compared to the classical (deterministic) optimization methods is that they are not limited with 

requirements for differentiability, nonconvexity, and continuity of the objective function or 

types of control variables. Moreover, these methods can be used for practical power systems 

taking into account various types of objective function and constraints. The essence of 

metaheuristic methods is iterative correction of solutions, i.e., generating new populations by 

applying stochastic search operators on individuals from the current population. The main 

performances of metaheuristics are fast search of large solution spaces, ability to find global 

solutions, and avoiding local optimum.  

2.3. Reactive power 

Reactive power is an electric power quantity that oscillates between the source and reactive 

components, like capacitors or inductors, in an alternating current (AC) circuit. Unlike active 

power (measured in watts), which performs useful work, reactive power (measured in volt-

amperes reactive or VARs) doesn't perform any work but is crucial for maintaining voltage 

levels and enabling the operation of inductive and capacitive loads. In simple terms, reactive 
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power arises due to the phase difference between voltage and current in AC circuits. Inductive 

loads (like motors, transformers) cause the current to lag behind the voltage, creating reactive 

power in the form of magnetizing energy stored in the inductor. Capacitive loads (like 

capacitors) cause the current to lead the voltage, generating reactive power in the form of 

electric field energy stored in the capacitor. Utilities manage both active and reactive power in 

power grids to ensure efficient transmission and distribution of electricity, maintaining voltage 

stability and minimizing losses. Devices like capacitors and inductors are employed to regulate 

reactive power, improve power factor, and reduce wastage in electrical systems. 

2.3.1. Importance of reactive power 

Reactive power, while essential for the proper functioning of electrical systems, also comes 

with certain limitations and considerations: 

- Increased Transmission Losses: Reactive power does not perform useful work but still 

needs to be generated, transmitted, and distributed. This process incurs losses in the power 

system, leading to inefficiencies in the transmission and distribution of electrical energy. 

- Voltage Stability: Inadequate reactive power support can result in voltage fluctuations or 

drops in the electrical system. This instability can lead to equipment malfunction, reduced 

efficiency, and even system failures if not managed properly. 

- Power Factor Issues: Low power factor, caused by excessive reactive power relative to 

active power, can increase the current needed to deliver a certain amount of power. This 

results in increased losses in transmission lines, reducing overall system efficiency. 

- Equipment Overheating: Reactive power flows can cause additional current to flow through 

system components, leading to increased heating in transformers, motors, and other 

equipment. Over time, this can decrease equipment lifespan and efficiency. 

- Additional Equipment Costs: Managing reactive power often requires additional equipment 

such as capacitors or synchronous condensers. Installing, maintaining, and operating these 

devices add to the overall cost of the electrical system. 

- Grid Congestion: Inadequate reactive power management can lead to congestion in the grid, 

affecting the smooth transmission of electricity and potentially causing disruptions in power 

supply. 

Efforts to address these limitations involve improving power factor, employing reactive power 

compensation devices, and implementing better grid management techniques to optimize 

reactive power flow and minimize its adverse effects on the electrical system. 
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2.3.2. Reactive power planning 

Reactive power planning aims to enhance power system stability, efficiency, and reliability by 

effectively managing the flow of reactive power throughout power network, ensuring voltage 

levels are maintained within acceptable limits, and optimizing the utilization of reactive power 

resources. Reactive energy planning includes the following points 

- Analyzing the system's needs by conducting studies and assessments to determine the 

required levels of reactive power support. This includes evaluating the system's power 

factor, voltage stability, and the demand for reactive power by various loads. 

- Identifying and deploying sources of reactive power. These can include synchronous 

condensers, shunt capacitors, static VAR compensators (SVCs), static synchronous 

compensators (STATCOMs), and other devices capable of generating or absorbing reactive 

power. 

- Determining the optimal locations and capacities for reactive power compensation devices 

within the electrical grid. Strategic placement ensures effective voltage support and power 

factor improvement across the system. 

- Implementing control strategies and regulation mechanisms to manage the flow and 

distribution of reactive power. These strategies ensure that reactive power resources are 

utilized efficiently and dynamically to meet the system's changing demands. 

- Using modeling and simulation tools to simulate different scenarios, assess the impact of 

reactive power support on the system, and optimize the deployment and operation of 

reactive power devices. 

-  Conducting cost-benefit evaluations to assess the economic implications of deploying 

reactive power resources. This includes considering the costs associated with installing and 

operating reactive power devices against the benefits derived from improved system 

performance and reduced losses. 

-  Ensuring compliance with regulatory standards and grid codes governing reactive power 

support, including requirements for voltage regulation, power factor correction, and system 

stability. 

-  Establishing maintenance schedules and monitoring protocols for reactive power devices 

to ensure their optimal performance and longevity. 

By effectively planning and managing reactive power resources, utilities can enhance system 

stability, improve voltage regulation, optimize power factor, reduce losses, and ensure efficient 

operation of electrical systems. 
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2.3.3. Reactive power compensation 

Reactive power compensation in electric transmission systems involves the deliberate 

adjustment of reactive power levels to enhance the efficiency, stability, and reliability of the 

power grid. This compensation is crucial for maintaining voltage levels, improving power 

factor, and minimizing losses in transmission lines. Here are the main methods of reactive 

power compensation: 

- Capacitor Banks: Shunt capacitors are commonly used for reactive power compensation. 

These capacitors are connected in parallel with the transmission lines and supply reactive 

power to counteract the lagging effect caused by inductive loads. They improve the power 

factor by reducing the reactive power drawn from the system. 

- Synchronous Condensers: These devices operate like rotating machines (similar to 

synchronous motors or generators) but operate without a mechanical load. Synchronous 

condensers provide or absorb reactive power as needed to regulate voltage and support the 

grid. They can rapidly supply or absorb reactive power, aiding in voltage control and 

stabilization. 

- Static VAR Compensators (SVCs): SVCs are power electronics-based devices that provide 

fast and dynamic reactive power compensation. They can both generate and absorb reactive 

power rapidly, contributing to voltage control and stability. SVCs are capable of responding 

quickly to fluctuations in the grid and are often used in high-voltage transmission systems. 

- Static Synchronous Compensators (STATCOMs): These are also power electronics-based 

devices used for reactive power compensation. STATCOMs offer rapid and precise control 

of reactive power, helping to stabilize voltage levels and support the grid during transient 

conditions. 

- Line Reactors and Transformers: These components are designed to mitigate voltage 

fluctuations and harmonics caused by reactive power issues. They help regulate voltage and 

reduce losses in transmission lines. 

- Dynamic Voltage Restorers (DVRs): DVRs are used to compensate for voltage sags or 

interruptions caused by reactive power imbalances. They inject reactive power into the 

system when needed to rapidly restore voltage to acceptable levels. 

By employing these methods of reactive power compensation, utilities can optimize the power 

flow, improve voltage stability, enhance power quality, reduce losses, and ensure the efficient 

and reliable operation of electric transmission systems. The choice of compensation method 

depends on factors like grid requirements, load characteristics, and the specific needs of the 

transmission network. 
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2.4. Optimal Reactive Power Dispatch (ORPD) 

Power systems are complex networks used for generating and transmitting electric power, 

which is expected to consume minimal resources while providing maximum security and 

reliability. One of the most important conditions for economic and secure operation of electric 

power system is the optimal reactive power dispatch (ORPD). The ORPD is achieving by 

appropriate coordination of the equipment which manage the reactive power flows. The ORPD 

is a specific optimal power flow (OPF) problem which is a major and powerful tool for operating 

and planning of power systems first formulated by Carpentier in 1960s. The ORPD has a 

significant influence on the secure and economic operation of power systems [3] . In the modern 

power system operation, each variation for demand-load, results a proper adjustment of reactive 

power generations for keeping the balance between supply and demand with minimum real 

power loss. Hence, the stability of electric grid is preserved. This is can be accomplished locally 

by proper reactive power management. 

The objective of the ORPD in power system is generally to minimize active power losses and 

to improve the voltage profile by minimizing the load bus voltage deviation while satisfying a 

given set of operating and physical constraints. The objective can be achieved by providing 

optimal control variable settings such as generator bus voltages (continuous variable), tap 

changing transformers, and shunt capacitors/reactors (discrete variables).  However, some 

authors include as objective function an additional improvement of voltage stability [24]. Other 

possible objective functions may be cost-based, which means to minimize the possible cost 

related with ORPD such as variable and fixed Var installation cost, real power loss cost, and 

fuel cost. It is also reasonable to use a multi-objective model as the goal of the ORPD 

formulation. Due to the presence of continuous and discrete control variables, ORPD becomes 

a complex combinatorial optimization problem involving non-linear functions having multiple 

local minima. 

2.4.1. ORPD problem formulation 

ORPD is a highly constrained non-linear optimization problem in which a specific objective 

function is to be minimized while satisfying a number of nonlinear equality and inequality 

constraints. The ORPD can be solved as a single objective as well as a multi objective 

optimization problem. The ORPD has commonly been formulated as a complicated constrained 

optimization problem. The general formulation of ORPD is:  

 

{

𝐦𝐢𝐧 𝑱(𝒙, 𝒖) 𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐

𝐠(𝒙, 𝒖) = 𝟎

𝒉(𝒙, 𝒖) ≤ 𝟎

 (2. 1) 

Where: 
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• J(x,u) is the objective function 

• g and h are the set of equality and inequality constraints respectively.  

• x is the state or dependent variables vector.  

• u is the control or independent variables vector. 

The elements of the state variables vector “x” are load buses voltage (VL), generators reactive 

power output (QG) and lines apparent power flow (SL). The control variables vector “u” 

includes the generation buses voltage (VG), the transformer tap settings (T) and the shunt VAR 

compensators (QC) 

2.4.1.1. Objective functions  

In general, the possible objectives of ORPD problems are active the minimization of active 

power losses and the improvement of the voltage profile by minimizing the voltage deviation. 

In addition to that, it is also common to find as an objective function the improvement of the 

voltage stability index. However, some researchers also consider other objective functions such 

as the minimization of the investment cost of shunt compensation devices and the minimization 

of the fuel cost.  

a. Minimization of  total active power losses 

The first objective to be minimized is the system transmission active power losses (Ploss). This 

objective function is expressed as follows [3]. 

 

𝑱𝟏(𝒙, 𝒖) = 𝑷𝒍𝒐𝒔𝒔 =∑𝒈𝒌(𝑽𝒊
𝟐 + 𝑽𝒋

𝟐 − 𝟐𝑽𝒊𝑽𝒋𝒄𝒐𝒔𝜽𝒊𝒋)

𝑵𝑳

𝒌=𝟏

 (2. 2) 

where: 

• 𝐽1 is the objective function 

• 𝑃𝑙𝑜𝑠𝑠 is the total active loss of the system 

• NL is the number of transmission lines.  

• Vi and Vj are the voltage magnitude at buses i and j, respectively. 

• 𝑔𝑘 is the conductance of branch k between buses i and j. 

• 𝜃𝑖𝑗 is the voltage angle difference between bus i and bus j. 

The elements of the state variables vector “x” are load buses voltage (VL), generators reactive 

power output (QG) and lines apparent power flow (SL). The control variables vector “u” includes 

the generation buses voltage (VG), the transformer tap settings (T) and the shunt VAR compensators 

(QC). 

Accordingly, the x vector can be written as follows: 

 𝒙𝑻 = [𝑽𝑳𝟏 …𝑽𝑳𝑵𝑷𝑸
, 𝑸𝑮𝟏 …𝑸𝑮𝑵𝑮

, 𝑺𝑳𝟏 …𝑺𝑳𝑵𝑳
] (2. 3) 
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where NG is the number of generators; NPQ is the number of PQ buses (load buses); The control 

variables vector u can be expressed as: 

 𝒖𝑻 = [𝑽𝑮𝟏 …𝑽𝑮𝑵𝑮
, 𝑻𝟏…𝑻𝑵𝑻 , 𝑸𝑪𝟏 …𝑸𝑪𝑵𝑪

] (2. 4) 

where: 

• NT is the number of tap regulating transformers. 

• NC is the number of shunt VAR compensations. 

b. Voltage-Profile Improvement.  

Another important objective of ORPD study is to regulate the voltage at each node/bus of power 

system. For stable operation of power system, the bus voltage in power system should be as 

smooth as possible. The degree of voltage regulation is computed through total of voltage 

deviation (TVD) which measures the bus voltage deviation from reference voltage (1.0 p.u) at 

each bus. The bus voltage is one of the most important security and service quality indices. 

Improving the voltage profile can be achieved by minimizing the total voltage deviation (TVD), 

which is modeled as follows [3] : 

 

𝑱𝟐(𝒙, 𝒖) = 𝑺𝑽𝑫 =∑ |𝑽𝑳𝒊 − 𝑽𝒓𝒆𝒇|

𝑵𝑷𝑸

𝟏

 (2. 5) 

where: 

• 𝐽2 is the objective function. 

• 𝑆𝑉𝐷 is the total voltage deviation (TVD) 

• VLi is the voltage magnitude at load bus i. 

• Vref is the voltage reference value which is equal to 1 p.u. 

c. Minimization of  voltage stability index 

The minimization of voltage stability index refers to the process of reducing or optimizing a 

metric associated with the stability of the electrical grid concerning voltage levels. Voltage 

stability is crucial in power systems to ensure a continuous and reliable electricity supply. Some 

authors include as an objective function the improvement of a voltage stability index. The 

operating interval of index L is set in [ 0, 1] [30]. The voltage stability index (VSI)  is modeled 

as below [31]. 

 𝑭 
𝑳𝒎𝒂𝒙= 𝒎𝒊𝒏 𝑳𝒎𝒂𝒙 = min [𝐦𝐚𝐱𝑳𝒌] 𝐤 ∈ 𝐍𝐋 (2. 6) 

 

𝑳𝒌 = |𝟏 −∑𝑭𝒋𝒊

𝑵𝑮

𝒊=𝟏

𝑽𝒊
𝑽𝒋
< {𝜽𝒊𝒋 + (𝜹𝒊 − 𝜹𝒋)}| (2. 7) 

 𝑭𝒋𝒊 = −[𝒀𝒊𝒋]
−𝟏
[𝒀𝒊𝒋] (2. 8) 
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Where   𝑭 
𝑳𝒎𝒂𝒙 is the objective function, 𝐿𝑘 is the voltage stability index (L-index) of buses; 𝐹𝑗𝑖 

is the value of the element 𝑖𝑗𝑡ℎof the sub matrix obtained by the partial inversion of 𝑌𝑏𝑢𝑠;  𝑌𝑗𝑗 is 

the admittance matrix of the 𝑗𝑡ℎ buses; 𝑌𝑗𝑖 is the mutual admittance between the 𝑖𝑡ℎ and 𝑗𝑡ℎ 

buses;  𝜃𝑖𝑗 is the phase angle of the term 𝐹𝑖𝑗; 𝛿𝑖, 𝛿𝑗 are the phase angle of the voltage in the 𝑖𝑡ℎ 

and 𝑗𝑡ℎ buses, respectively; 𝑁𝐺  is the number of generation buses. 

d. Minimization of  VAR cost  

Minimizing VAR (Volt-Ampere Reactive) cost involves optimizing the reactive power flow in 

an electrical grid while minimizing associated costs. Minimizing VAR cost is significant in 

power system management as it optimizes the reactive power flow, reduces operational 

expenses, and enhances the overall efficiency of the grid. It involves balancing the need for 

reactive power support with cost-effectiveness to maintain a stable and reliable power system. 

The cost of a reactive power source can be divided into two parts: fixed installation costs and 

operating costs. The fixed costs are mainly the sum of the capital and installation costs of the 

equipment. The variable costs consist of the cost of heating losses and maintenance costs, etc. 

However, operating costs can vary from year to year. A better formulation of the VAR costs 

minimization can be expressed as min ( 𝐹𝑉𝐴𝑅𝑐𝑜𝑠𝑡 ) [32]. 

 𝑭𝑽𝑨𝑹𝒄𝒐𝒔𝒕= 𝐂𝟎 + 𝐂𝟏. 𝐐𝐜 (2. 9) 

Where C0 is the fixed cost prorated per hour ($/hour), C1. Qc is the variable cost ($/hour), C1 is 

the operational cost of compensation device and Qc is VAR source installments 

e. Minimization of Fuel cost  

The objective function in OPF incorporates the total fuel cost associated with generating electric 

power. It involves the cost of fuel consumed by each generator, considering their fuel types, 

efficiencies, and cost curves. The goal is to minimize the total cost of generating electricity.  

The fuel cost objective function is usually well-defined as the sum of the individual polynomial 

cost function of real power injections for each generator. It can be presented as [33]: 

 𝑭𝒇𝒖𝒆𝒍𝒄𝒐𝒔𝒕=∑ (𝒂𝒊 + 𝒃𝒊𝑷𝒈𝒊 + 𝒄𝒊𝑷𝒈𝒊
𝟐 )

𝑵𝒈
𝒊=𝟏

 (2. 10) 

Where 𝑃𝑔𝑖is the active power generation at unit i, 𝑎𝑖, 𝑏𝑖, 𝑎𝑛𝑑𝑐𝑖are the cost coefficients of 

the 𝑖𝑡ℎgenerator, 𝑁𝑔is the number of thermal units 

f. Multi-objective function 

In the optimal power flow (OPF) problem, employing a multi-objective function allows for the 

consideration of multiple conflicting objectives simultaneously. It involves optimizing the 

power system while balancing various, sometimes conflicting, goals. In real world application, 

it usually contains simultaneous optimization of multiple-objectives, which generally conflict 

with each other. Multi-objective problems have a set of solutions, the reason for their optimality 
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is that no one can be considered to be better than any other towards all objective functions. In 

a multi-objective OPF, multiple objectives are considered, such as minimizing costs, 

minimizing emissions, minimizing active power losses, minimizing of total voltage deviation. 

etc. These objectives might conflict, for instance, minimizing costs might increase emissions. 

The multi-objective function aims to find trade-offs among these conflicting objectives. A 

general multi-objective optimization problem comprises a number of objectives that has to be 

optimized simultaneously and is connected with a number of equality and inequality 

constraints. It can be formulated as follows [34]: 

 𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝑭(𝑿)  =  𝑭𝟏(𝑿), 𝑭𝟐(𝑿),… … , 𝑭𝒏(𝑿) (2. 11) 

subject to equality and inequality constraints. 

where 𝑋 is a determination vector that presents a solution, 𝑛 is the number of objectives.  

the number of equality and inequality constraint, respectively.  

the aim objective of ORPD is to provide the system with efficient VAR compensation to allow 

the system to be operated under a correct balance between security and economic concerns. 

Generally, ORPD problem has been formulated as multi-objective optimization problem. 

Several methods have been presented to handle the multi-objective formulation of the ORPD 

problem. The most multi-objective methods for ORPD are: 

- Weighted Sum Method: A common approach is to create a single aggregated objective by 

assigning weights to each objective and summing them. For instance, cost might be 

prioritized over emissions by assigning higher weight to cost in the combined objective 

function. 

- Pareto-based Approaches: Using Pareto optimization, where solutions lie on the Pareto 

front, showing the best trade-offs between conflicting objectives without aggregating them 

into a single function. 

2.4.1.2. Problem Constraints 

These constraints are crucial in formulating the optimization problem for reactive power 

dispatch to ensure a solution that meets operational requirements while minimizing system 

losses and maintaining stability. Optimization algorithms and techniques are applied to find the 

optimal settings for controlling reactive power in the system while adhering to these constraints. 

In the optimal reactive power dispatch problem, several constraints need to be considered to 

ensure the efficient and reliable operation of the power system. Some of the key constraints 

include:  

- Voltage Limits: Ensuring that the bus voltages are within acceptable limits to maintain 

system stability and prevent voltage collapse. Both upper and lower voltage limits at 

different buses in the network need to be considered.  
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- Reactive Power Limits: Limits on the reactive power generation at generator buses and 

other devices like shunt capacitors. These limits ensure that devices operate within their 

reactive power capability. 

-  Line Flow Limits: Constraints on power flow through transmission lines to prevent 

overloading and ensure that the power flow remains within the equipment's thermal and 

voltage limits.  

- Transformer Tap Limits: Restrictions on the tap settings of transformers, which can 

influence the reactive power flow and voltage levels in the system.  

- System Balance: Maintaining the overall balance between reactive power generation and 

consumption to ensure the system's stability and reliability.  

- Operational Limits: Operational constraints, such as minimum and maximum control 

settings for devices like capacitors, reactors, and voltage regulators, need to be considered. 

The ORPD constraints are divided into equality and inequality constraints [3].  

a. Equality Constraints 

These constraints reflect the physical laws governing the electrical system known as power flow 

equations. They are the expression of the balance between load demand (power loss included) 

and generated power. The power flow equations are given by: 

 

𝑷𝑮𝒊 −𝑷𝑫𝒊 − 𝑽𝒊∑𝑽𝒋(𝑮𝒊𝒋 𝐜𝐨𝐬 𝜽𝒊𝒋

𝑵𝑩

𝒋=𝟏

+ 𝑩𝒊𝒋 𝐬𝐢𝐧 𝜽𝒊𝒋) = 𝟎 (2. 12) 

 

𝑸𝑮𝒊 −𝑸𝑫𝒊 − 𝑽𝒊∑𝑽𝒋(𝑮𝒊𝒋 𝐬𝐢𝐧𝜽𝒊𝒋

𝑵𝑩

𝒋=𝟏

− 𝑩𝒊𝒋 𝐜𝐨𝐬 𝜽𝒊𝒋) = 𝟎 (2. 13) 

where: 

• PGi, QGi are the respective active and reactive power of the ith generator.  

• PDi, QDi are the respective active and reactive power demand at bus i. 

• NB is the total number of buses; Bij, Gij are real and imaginary parts of (i,j)th element of the 

bus admittance matrix.  

b. Inequality Constraints. 

The inequality constraints of the ORPD reflect the limits on physical devices in the power 

system as well as the limits created to ensure system security. This section delineates all the 

necessary inequality constraints needed for the ORPD implementation in this thesis. These  

inequality constraints are as follows. 

• Inequality Constraints on Security Limits  

o Active power generated at slack bus 
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 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌
𝒎𝒊𝒏 ≤ 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌 ≤ 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌

𝒎𝒂𝒙  (2. 14) 

o Load bus voltage 

Voltage buses are restricted by lower and upper limits as follows. 

 𝑽𝑳𝒊
𝒎𝒊𝒏 ≤ 𝑽𝑳𝒊 ≤ 𝑽𝑳𝒊

𝒎𝒂𝒙     𝒊 ∈ 𝑵𝑷𝑸 (2. 15) 

o Generated reactive power 

Reactive power generated by each generator in an electrical system is restricted by lower 

and upper limits as shown in Eq. 2.16 

 𝑸𝑮𝒊
𝒎𝒊𝒏 ≤ 𝑸𝑮𝒊 ≤ 𝑸𝑮𝒊

𝒎𝒂𝒙     𝒊 ∈ 𝑵𝑮 (2. 16) 

o Thermal limits: the apparent power flowing in line “L” must not exceed the 

maximum allowable apparent power flow value (𝑆𝐿
𝑚𝑎𝑥) 

 𝑺𝑳 ≤ 𝑺𝑳
𝒎𝒂𝒙                        𝑳 ∈ 𝑵𝑳 (2. 17) 

• Inequality Constraints on Control Variable Limits 

The different control variables are bounded as follows: 

o Generator voltage limits 

 𝑽𝑮𝒊
𝒎𝒊𝒏 ≤ 𝑽𝑮𝒊 ≤ 𝑽𝑮𝒊

𝒎𝒂𝒙    𝒊 ∈ 𝑵𝑷𝑽 (2. 18) 

o Transformer tap limits 

Load tap changing transformers have a maximum and minimum tap ratio as shown in Eq. 

(2.19), which can be adjusted. The magnitude of the load tap changer is a discrete variable 

because the tap is changing with a certain increment. This increment depends on the size of 

the specified transformer. 

 𝑻𝒊
𝒎𝒊𝒏, ≤ 𝑻𝒊 ≤ 𝑻𝒊

𝒎𝒂𝒙       𝒊 ∈ 𝑵𝑻 (2. 19) 

o Shunt capacitor limits 

All capacitors in a power system are used as reactive power suppliers. These capacitors are 

restricted by lower and upper reactive power limit as in Eq. (2.20). This limit will retain the 

amount of the exported reactive power into the power system as per the needs. 

 𝑸𝑪𝒊
𝒎𝒊𝒏 ≤ 𝑸𝑪𝒊 ≤ 𝑸𝑪𝒊

𝒎𝒂𝒙     𝒊 ∈ 𝑵𝑪 (2. 20) 

where: 

PG,slack is the real power generation at slack bus.  

VGi is the voltage magnitude at generator bus i.  

Ti is the tap ratio of transformer i.  

Qci is the reactive power compensation source at bus i.  

NPQ is the number of PQ bus.  

(.)max and (.)min are the upper and lower the limits of the considered variables, 

respectively. 
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The objective functions, equality and inequality constraints are non-linear functions and 

they depend upon control variables. The equality constraints given by Equations (2.12) and 

(2.13) are met by solving the load-flow problem. The inequality constraints given by Equations 

(2.18)-(2.20) should be maintained during the solution evolution, while the inequality 

Equations (2.14)-(2.17) should be handled by additional techniques. The difficulty in adapting 

meta-heuristics mainly involves the question of how to preserve the feasibility of solutions 

during different iterations. A variety of approaches can be used to deal with feasibility in 

constrained non-linear optimization problems, which largely fall into two classes namely 

Penalty function approaches and Approaches preserving feasibility throughout evolutionary 

computation. Each method has its advantages and disadvantages. A penalty function approach 

is used in this paper due to its simplicity of implementation and its proven efficiency for many 

constrained non-linear optimization problems [35]. Conversely, feasibility preserving methods 

are highly time-consuming. To use a penalty function method, a penalty factor associated with 

each violated constraint is added to the objective function in order to penalize infeasible 

solutions [36]. Therefore, the optimum is found when all the constraints are respected and the 

objective function is minimized.  

2.4.1.3. Penalty function 

The most efficient and easiest way to handle constraints in optimization problems is by the 

use of penalty functions. The direction of the search process and thus, the quality of the optimal 

solution are hugely impacted by these functions. A suitable penalty function has to be chosen 

in order to solve a particular problem. The main goal of a penalty function is to maintain the 

systems security. These penalty functions are associated with numerous user defined 

coefficients which have to be rigorously tuned to suit the given problem. This research used a 

quadratic penalty function method in which a penalty term is added to the objective function 

for any violation of constraints. The inequality constraints which include the generator 

constraints, reactive compensation sources and transformer constraints are combined into the 

objective function as a penalty term, while the equality constraints and generator reactive power 

limits are satisfied by the Newton-Raphson load flow method. By adding the inequality 

constraints to the objective function 𝐽(𝑥, 𝑢) in Eq. (2.1). By using the concept of the penalty 

function method, the constrained optimization problem is transformed into an unconstrained 

optimization problem in which the augmented objective function becomes the new objective 

function to be minimized.  The ORPD objective function is then modified as follows [18]:  

 

𝑭𝑻 = 𝑱(𝒙, 𝒖) + 𝑲𝑷(𝑷𝑮,𝒔𝒍𝒂𝒄𝒌 − 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌
𝒍𝒊𝒎 )

𝟐
+𝑲𝑽∑(𝑽𝑳𝒊 − 𝑽𝑳𝒊

𝒍𝒊𝒎)
𝟐

𝑵𝑷𝑸

𝒊=𝟏

 (2. 21) 
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+ 𝑲𝑸∑(𝑸𝑮𝒊 − 𝑸𝑮𝒊
𝒍𝒊𝒎)

𝟐
+𝑲𝑺∑(𝑺𝑳𝒊 − 𝑺𝑳𝒊

𝒍𝒊𝒎)
𝟐

𝑵𝑳

𝒊=𝟏

𝑵𝑮

𝒊=𝟏

 

Where: 

• 𝐹𝑇 is the new modified objective function;  

• KP, KV, KQ and KS are the penalty factors of the slack bus generator, bus voltage 

limits, generator reactive power limits, and line flow limits, respectively. 

𝑃𝐺,𝑠𝑙𝑎𝑐𝑘
𝑙𝑖𝑚 , 𝑉𝐿𝑖

𝑙𝑖𝑚, 𝑄𝐺𝑖
𝑙𝑖𝑚 and 𝑆𝐿𝑖

𝑙𝑖𝑚 are defined as follows: 

 
𝑷𝑮,𝒔𝒍𝒂𝒄𝒌
𝒍𝒊𝒎 = {

 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌
𝒎𝒊𝒏  𝒊𝒇  𝑷𝑮,𝒔𝒍𝒂𝒄𝒌 < 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌

𝒎𝒊𝒏  

𝑷𝑮,𝒔𝒍𝒂𝒄𝒌
𝒎𝒂𝒙  𝒊𝒇  𝑷𝑮,𝒔𝒍𝒂𝒄𝒌 > 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌

𝒎𝒂𝒙  (2. 22) 

 
𝑽𝑳𝒊
𝒍𝒊𝒎 = {

 𝑽𝑳𝒊
𝒎𝒊𝒏 𝒊𝒇  𝑽𝑳𝒊 < 𝑽𝑳𝒊

𝒎𝒊𝒏 

𝑽𝑳𝒊
𝒎𝒂𝒙 𝒊𝒇  𝑽𝑳𝒊 > 𝑽𝑳𝒊

𝒎𝒂𝒙  (2. 23) 

 
𝑸𝑮𝒊
𝒍𝒊𝒎 = {

𝑸𝑮𝒊
𝒎𝒊𝒏 𝒊𝒇  𝑸𝑮𝒊 < 𝑸𝑮𝒊

𝒍𝒊𝒎 

𝑸𝑮𝒊
𝒎𝒂𝒙 𝒊𝒇  𝑸𝑮𝒊 > 𝑸𝑮𝒊

𝒎𝒂𝒙 (2. 24) 

 
𝑺𝑳𝒊
𝒍𝒊𝒎 = {

 𝑺𝑳𝒊
𝒎𝒂𝒙 𝒊𝒇   𝑺𝑳𝒊 > 𝑺𝑳𝒊

𝒎𝒂𝒙 

𝟎        𝒊𝒇    𝑺𝑳𝒊 ≤ 𝑺𝑳𝒊
𝒎𝒂𝒙   (2. 25) 

2.5. Metaheuristic optimizations 

The word heuristics comes from the Greek word ‘‘heurisko’’ which means ‘‘to find,’’ ‘‘to 

know,’’ or ‘‘to guide an investigation.’’ It implies that heuristic algorithms are actually 

algorithms created by experimentation in order to obtain a satisfactory solution [38]. Heuristic 

algorithms are problem-solving techniques that prioritize finding a satisfactory solution 

quickly, even if it might not be the optimal or globally best solution. Heuristics is a set of rules 

based on experience which are used in solving a problem. These algorithms use a step-by-step 

approach, evaluating alternatives based on specific criteria without exhaustively exploring all 

possibilities. The disadvantage of heuristic methods is that there is no guarantee of optimality 

of the solution obtained. However, for complex optimization problems, the primary goal is to 

get a solution, regardless of its quality. When some solution exists, various techniques can be 

applied to improve its quality. In fact, this is the basic idea for building metaheuristic 

optimization methods [39]. Classical heuristic methods were mainly developed to solve some 

specific, individual problems using the familiar features of a given problem in solving it. In 

contrast, the metaheuristic optimization methods consist of general set of rules that can be 

applied to solve a variety of optimization problems. Many metaheuristic optimization methods 

have been developed by mimic of some well-known processes, primarily in biology, physics, 

society, and nature in general [39]. Metaheuristic algorithms are higher-level strategies used to 

efficiently explore and navigate solution spaces in search of near-optimal solutions for complex 
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optimization problems. They are more generalized and flexible compared to heuristics. 

Metaheuristics encompass a broad class of algorithms that guide the search through the solution 

space by combining and adapting various heuristic strategies. Metaheuristics are suitable for a 

wide range of problems and are not tied to specific domains. They aim to efficiently explore 

large solution spaces, often using stochastic or iterative methods to find approximate solutions. 

The principle of metaheuristics is to minimize or maximize an objective function. Their 

advantage is that they find a global minimum for a minimization problem and do not get stuck 

on a local minimum.  

A metaheuristic algorithm must be characterized by two major features in order to guarantee 

the search for the global optimum. These two main characteristics are exploration and 

exploitation. Exploration is the ability to extend the search space, while exploitation is the 

ability to find optima around a good solution. The main difference between existing 

metaheuristics is the way in which they try to strike a balance between exploration and 

exploitation. Metaheuristic optimization methods can be classified according to different 

criteria. A fundamental classification of metaheuristic optimization methods is based on the 

number of solutions in an iteration. According to this criterion, metaheuristic methods can be 

classified as follows [40]: 

1. Single-solution-based metaheuristics, also called trajectory methods, such as simulated 

annealing (SA), tabu search (TS), greedy randomized adaptive search procedure, variable 

neighborhood search, guided local search, and iterated local search. 

2. Population-based metaheuristics, such as genetic algorithm (GA), particle swarm 

optimization (PSO), gravitational search algorithm (GSA), and many others. 

We can find other criteria for classifying metaheuristics, as we will see below. 

2.5.1.   Classification of metaheuristic algorithms 

Metaheuristic algorithms encompass a wide range of optimization strategies that efficiently 

explore solution spaces to find near-optimal solutions. These algorithms are classified into 

different categories based on their underlying principles and characteristics. Some common 

classifications include: 

2.5.1.1. Single-Solution Metaheuristics: 

Single-solution metaheuristics are optimization algorithms that operate on a single candidate 

solution at a time, exploring and iteratively improving this solution to find near-optimal 

solutions in complex problem spaces. Unlike population-based algorithms that maintain and 

evolve a population of solutions, single-solution metaheuristics focus on refining a single 

solution through iterations. Some prominent single-solution metaheuristics include: 
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- Simulated Annealing (SA): Inspired by the annealing process in metallurgy, this algorithm 

probabilistically accepts worse solutions to escape local optima, gradually reducing 

exploration. 

- Tabu Search (TS): Focuses on exploring the neighborhood of solutions while maintaining 

a memory structure to avoid revisiting previously explored areas. 

- Variable Neighborhood Search (VNS): Uses multiple neighborhood structures to explore 

the solution space, shifting between different neighborhoods to diversify the search. 

2.5.1.2. Population-Based Algorithms: 

Population-based algorithms are a category of optimization techniques that operate on a 

population of potential solutions to iteratively evolve and search for optimal or near-optimal 

solutions within a given problem space. These algorithms maintain a population of candidate 

solutions and use various mechanisms to update, evaluate, and evolve this population across 

iterations. Some prominent population-based algorithms include: 

- Genetic Algorithms (GAs): Evolutionary algorithms that use concepts like crossover, 

mutation, and selection to evolve a population of candidate solutions toward optimal or 

near-optimal solutions. 

- Particle Swarm Optimization (PSO): Individuals (particles) within a swarm move through 

the solution space, adjusting their positions based on their own experience and the best 

experiences of the entire swarm. 

- Differential Evolution (DE): An evolutionary algorithm that manipulates a population of 

candidate solutions to create new solutions using differences between randomly chosen 

individuals. 

2.5.1.3. Nature-Inspired Metaheuristics:  

Nature-inspired metaheuristics draw inspiration from natural phenomena or processes to 

develop optimization algorithms that mimic the behaviors observed in nature. These algorithms 

explore solution spaces and find near-optimal solutions by leveraging concepts from biology, 

physics, and social behavior. Here are some prominent nature-inspired metaheuristics: 

- Evolutionary Algorithms: Algorithms inspired by biological evolution, like Genetic 

Algorithms (GAs), Evolution Strategies (ES), and Genetic Programming (GP). They use 

concepts such as mutation, selection, and recombination to evolve solutions. 

- Swarm Intelligence: Algorithms based on the collective behavior of swarms or groups, such 

as Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Bee Colony 

Optimization (BCO). These algorithms simulate social behaviors like cooperation and 

communication among individuals. 
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- Artificial Immune Systems (AIS): Inspired by the human immune system, these algorithms 

mimic immune system processes like recognition, memory, and learning to solve 

optimization problems. 

2.5.1.4. Hybrid and Memetic Algorithms: 

Hybrid and memetic algorithms are optimization approaches that combine multiple techniques, 

to leverage their respective strengths and overcome limitations. They merge different 

optimization paradigms to enhance the search capability and improve the quality of solutions 

for complex problems. Their adaptability and ability to combine diverse strategies make them 

powerful tools for solving real-world problems. 

- Hybrid Metaheuristics: Combine different metaheuristic techniques or integrate 

metaheuristics with other optimization methods like mathematical programming, local 

search, or machine learning algorithms. 

- Memetic Algorithms: Blend evolutionary algorithms with local search methods, allowing 

for the exploitation of promising regions discovered by evolutionary processes. 

2.5.2. Population-based metaheuristics 

Population-based metaheuristics are a class of optimization algorithms inspired by natural 

processes like evolution, swarm behavior, and social interactions. They're designed to find high-

quality solutions to optimization problems where finding an exact solution is impractical due 

to the problem's complexity. In the population-based metaheuristic optimization algorithms, the 

population is defined by a set of individuals (agents) which represent potential solutions of the 

optimization problem. The number of agents (N) is named as the size of the population. In 

general, an agent can be represented as vector whose elements are the values of the control 

variables of the optimization problem. The number of control variables (n) is the search space 

dimension of the optimization problem. The efficiency and performance of metaheuristic 

optimization methods are dependent on the proper setting of the corresponding algorithmic 

parameters. Their effectiveness often lies in their ability to strike a balance between exploring 

the search space widely and exploiting promising regions to converge toward optimal or near-

optimal solutions, especially in complex, high-dimensional, and non-linear problem spaces. 

Moreover, these methods can be used for practical optimization problems taking into account 

various types of objective function and constraints. In recent years, various population-based 

metaheuristic optimization methods listed in Figure 2.1 have been proposed for solving the 

different problems. The basic elements of metaheuristic optimization methods can be defined   

as follows: 

 x(t): is a candidate solution represented by an n-dimensional vector, where n is the number of 

control variables. 
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X: Space of possible solutions. It is an n-dimensional solution space which is defined by lower 

and upper limits of control variables. 

Fitness is a direct metric of the performance of the individual population member (agent). The 

fitness of each agent of the population is calculated from the value of the function being 

optimized.  

General structure of the metaheuristic optimization methods can be represented as follows: 

Initialization 

1. Defining the objective function F(x) and the space of possible solutions X; 

2. Generate initial population of N agents 

Usually, the initial positions of each agent are randomly selected between minimum and 

maximum values of the control variables. 

Iterative procedure 

3. Calculate the fitness value F(x) for each agent x in the current population 

4. Generate new population by applying the algorithmic operators on search agents from the 

current population. 

5. Repeat the iterative procedure until the stop criteria is reached. 

6. The optimal solution x* is determined. 

 

 

 

 

  

 

 

 

 

 

Figure 2.1.  Population based-Metaheuristic classifications. 

2.5.3. Summary of some popular metaheuristic optimization algorithms 

2.5.3.1. Genetic algorithm  
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population of candidate solutions, represented as a set of strings or "chromosomes." Each 

chromosome encodes a potential solution to the problem at hand. The chromosomes undergo a 

series of operations analogous to the processes of reproduction and evolution, such as selection, 

crossover, and mutation. [13] 

2.5.3.2. Differential evolution  

Differential Evolution (DE) is an evolutionary optimization algorithm that is particularly 

effective for solving continuous and global optimization problems. It was introduced by Rainer 

Storn and Kenneth Price in 1997. The main idea behind Differential Evolution is to maintain a 

population of candidate solutions (vectors) and use a combination of mutation, crossover, and 

selection operations to iteratively improve the population and search for the optimal solution. 

DE operates directly on the real-valued parameter space, making it suitable for problems with 

continuous variables. [14] 

2.5.3.3. Evolutionary programing  

Evolutionary Programming (EP) is an evolutionary computation technique that focuses on the 

evolution of computer programs or algorithms to solve complex problems. It was developed by 

Lawrence J. Fogel in the 1960s. In EP, a population of computer programs, often represented 

as strings of instructions or code, is evolved through a process of mutation, crossover, and 

selection. The goal is to optimize the behavior of the programs to solve a specific problem or 

perform a desired task. [41] 

2.5.3.4. Backtracking search optimization algorithm  

The Backtracking Search Optimization Algorithm (BSA) is a metaheuristic optimization 

algorithm that was introduced by Xin-She Yang in 2010. It is inspired by the process of 

backtracking, which is commonly used in problem-solving to find a solution by systematically 

exploring different paths. BSA is a population-based algorithm that aims to find the global 

optimum of a given problem by iteratively improving a set of candidate solutions. It combines 

local search with a backtracking mechanism to efficiently explore the search space and 

converge towards the optimal solution. The Backtracking Search Optimization Algorithm 

combines the exploitation capability of local search with the exploration capability of 

backtracking. This combination allows the algorithm  to efficiently  search  the  solution  space, 

escape from local optima, and converge towards the global optimum. [42] 

2.5.3.5. Particle swarm optimization  

Particle Swarm Optimization (PSO) is a population-based optimization algorithm that was 

inspired by the collective behavior of bird flocking or fish schooling. It was first proposed by 

James Kennedy and Russell Eberhart in 1995. In PSO, a population of candidate solutions, 
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called particles, moves through the search space to find the optimal solution. Each particle 

represents a potential solution and keeps track of its position and velocity in the search space. 

The particles adjust their positions based on their own experience and the experience of the 

best-performing particle in the population. [12] 

2.5.3.6. Ant colony optimization  

Ant Colony Optimization (ACO) is a metaheuristic optimization algorithm that is inspired by 

the foraging behavior of ants. It was first introduced by Marco Dorigo in the early 1990s and 

has since been widely used to solve combinatorial optimization problems. ACO is particularly 

effective in solving problems that involve finding optimal paths or tours, such as the traveling 

salesman problem (TSP) or vehicle routing problem (VRP). The algorithm mimics the behavior  

of ants, which communicate with each other through pheromone trails to collectively find the 

shortest path between their nest and food sources. [26] 

2.5.3.7. Artificial bee colony  

The Artificial Bee Colony (ABC) algorithm is a population-based optimization algorithm 

inspired by the foraging behavior of honey bees. It was introduced by Dervis Karaboga in 2005. 

ABC aims to solve optimization problems by simulating the food foraging behavior of bees. In 

the ABC algorithm, the population is represented by a group of artificial bees. Each bee can be 

in one of three roles: employed bee, onlooker bee, or scout bee. These roles simulate different 

behaviors of bees in a real hive. [27] 

2.5.3.8. Gravitational search algorithm 

The Gravitational Search Algorithm (GSA) is a metaheuristic optimization algorithm inspired 

by the laws of gravity and motion. It was proposed by Esmat Rashedi, Hossein Nezamabadi-

pour, and Saeid Saryazdi in 2009. GSA models the optimization problem as a system of masses 

interacting through gravitational forces. In the GSA algorithm, candidate solutions are 

represented as particles in a search space, and the optimization process mimics the gravitational 

interaction between these particles. The algorithm iteratively updates the positions and masses 

of the particles to find the optimal solution [43]. 

2.5.3.9. Colliding bodies optimization 

The Colliding Bodies Optimization (CBO) algorithm is a metaheuristic optimization algorithm 

inspired by the physical phenomenon of colliding bodies. It was proposed by Zong Woo Geem 

in 2006 to solve optimization problems. In the CBO algorithm, candidate solutions are 

represented as particles in a search space, and the optimization process simulates the interaction 

and collision between these particles. The algorithm iteratively updates the positions and 
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velocities of the particles to converge towards the optimal solution.[44] 

2.5.3.10. Black hole algorithm 

The Black Hole Algorithm (BHA) is a metaheuristic optimization algorithm inspired by the 

behavior of black holes in the universe. It was proposed by Mirjalili, and Andrew Lewis in 

2016. BHA aims to solve optimization problems by simulating the gravitational interactions of 

black holes and their influence on particles. In the BHA algorithm, candidate solutions are 

represented as particles, and their movements are influenced by the gravitational force of black 

holes. The algorithm iteratively updates the positions and velocities of the particles to search 

for the optimal solution. [45] 

2.5.3.11. Gray wolf optimizer 

The Gray Wolf Optimizer (GWO) is a metaheuristic optimization algorithm inspired by the 

social hierarchy and hunting behavior of gray wolves. It was proposed by Seyedali Mirjalili and 

Andrew Lewis in 2014. GWO aims to solve optimization problems by simulating the social 

interactions and hunting strategies of gray wolves. In the GWO algorithm, candidate solutions 

are represented as gray wolves, and their movements are influenced by the hierarchical structure 

and coordination within the wolf pack. The algorithm iteratively updates the positions of the 

wolves to search for the optimal solution. [46] 

2.5.3.12. Firefly algorithm 

The Firefly Algorithm (FA) is a metaheuristic optimization algorithm inspired by the flashing 

behavior of fireflies. It was proposed by Xin-She Yang in 2008. The algorithm aims to solve 

optimization problems by simulating the attractiveness and movement of fireflies. In the FA 

algorithm, candidate solutions are represented as fireflies, and their movements are influenced 

by the attractiveness of other fireflies. The algorithm iteratively updates the positions of the 

fireflies to search for the optimal solution. [47] 

2.5.3.13. Cuckoo search algorithm  

The Cuckoo Search Algorithm (CSA) is a metaheuristic optimization algorithm inspired by the 

behavior of cuckoo birds and their reproductive strategy known as brood parasitism. It was 

proposed by Xin-She Yang and Suash Deb in 2009. CSA aims to solve optimization problems 

by simulating the searching and breeding behaviors of cuckoos. In the CSA algorithm, 

candidate solutions are represented as cuckoos' eggs, and their movements are influenced by 

the fitness and diversity of the eggs in the population. The algorithm iteratively updates the 

positions of the eggs to search for the optimal solution. [48] 

2.5.3.14. Moth swarm algorithm  
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The Moth Swarm Algorithm (MSA) is a metaheuristic optimization algorithm inspired by the 

behavior of moths, specifically their movements towards artificial light sources. It was proposed 

by Xin-She Yang and Suash Deb in 2010. MSA aims to solve optimization problems by 

simulating the attraction and movement of moths towards light sources. In the MSA algorithm, 

candidate solutions are represented as moths, and their movements are influenced by the 

brightness and distance to light sources. The algorithm iteratively updates the positions of the 

moths to search for the optimal solution. [49] 

2.5.3.15. Krill herd algorithm  

The Krill Herd Algorithm (KHA) is a metaheuristic optimization algorithm inspired by the 

collective behavior of krill swarms. It was proposed by Xin-She Yang and Suash Deb in 2010. 

KHA aims to solve optimization problems by simulating the movement and foraging behavior 

of krill in search of food. In the KHA algorithm, candidate solutions are represented as krill, 

and their movements are influenced by the feeding behavior of krill in response to food 

concentration and social interactions. The algorithm iteratively updates the positions of the krill 

to search for the optimal solution. [50] 

2.5.3.16. Shuffled frog-leaping algorithm  

The Shuffled Frog-Leaping Algorithm (SFLA) is a metaheuristic optimization algorithm 

inspired by the behavior of frogs and their ability to leap and communicate with each other to 

find food. It was proposed by Xin-She Yang in 2010. SFLA aims to solve optimization 

problems by simulating the leaping and sharing of information among frogs. In the SFLA 

algorithm, candidate solutions are represented as frogs, and their movements and interactions 

are influenced by the quality of the solutions and the information exchange among frogs. The 

algorithm iteratively updates the positions of the frogs to search for the optimal solution [51]. 

2.5.3.17. Bacterial colony foraging optimization  

Bacterial Colony Foraging Optimization (BCFO) is a swarm intelligence-based optimization 

algorithm inspired by the foraging behavior of bacterial colonies. It was proposed by Daeshik 

Kang and Jong-Hwan Kim in 2009. BCFO aims to solve optimization problems by simulating 

the foraging and communication behavior of bacterial colonies in search of nutrients. In the 

BCFO algorithm, candidate solutions are represented as bacterial colonies, and their 

movements and interactions are influenced by the concentration of nutrients and the 

communication among colonies. The algorithm iteratively updates the positions of the colonies  

to search for the optimal solution [52]. 

2.5.3.18. Biogeography-based optimization  
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Biogeography-based optimization (BBO) is a nature-inspired optimization algorithm that is 

based on the principles of biogeography, which is the study of the distribution of species in 

different geographic regions. It was proposed by Dan Simon in 2008. BBO aims to solve 

optimization problems by simulating the migration and evolution of species across habitats. In 

the BBO algorithm, candidate solutions are represented as species, and their movements and 

interactions are influenced by the migration rates and exchange of information among species. 

The algorithm iteratively updates the positions of the species to search for the optimal solution 

[18]. 

2.5.3.19. Teaching–learning-based optimization  

Teaching-Learning-Based Optimization (TLBO) is a population-based optimization algorithm 

inspired by the teaching-learning process in classrooms. It was proposed by Rao et al. in 2011. 

TLBO aims to solve optimization problems by simulating the teaching and learning interactions 

among individuals in a population. In the TLBO algorithm, candidate solutions are represented 

as individuals, and their movements and interactions are influenced by the teaching and learning 

processes. The algorithm iteratively updates the positions of the individuals to search for the 

optimal solution [36]. 

2.5.3.20. League championship algorithm  

I apologize for the confusion in my previous response. The League Championship Algorithm 

(LCA) is a metaheuristic algorithm that was proposed by Alba et al. in 2013. LCA is inspired 

by the concept of sports league championships, where teams compete against each other to 

achieve the best possible ranking. The League Championship Algorithm aims to solve 

optimization problems by emulating the competition and ranking dynamics observed in sports 

leagues. It uses a population-based approach where candidate solutions, representing 

individuals or teams, compete against each other to improve their rankings [53] . 

2.5.3.21. Mine blast algorithm  

The Mine Blast Algorithm (MBA) is a nature-inspired optimization algorithm that was 

introduced by Zong Woo Geem in 2011. It is inspired by the blast effect of a mine explosion, 

where the explosion force is used as an analogy for the optimization process. The Mine Blast 

Algorithm aims to solve optimization problems by simulating the process of mine explosion 

and    subsequent    energy    propagation. It   is   particularly   suitable   for  solving   continuous  

optimization problems [54]. 

2.5.3.22. Sine cosine algorithm  

The Sine Cosine Algorithm (SCA) is a population-based optimization algorithm inspired by the 

sine and cosine functions. It was proposed by Seyedali Mirjalili in 2016 as a simple and efficient 
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algorithm for solving optimization problems. The Sine Cosine Algorithm aims to find the 

optimal solution by simulating the sine and cosine functions to update the positions of 

individuals in the population. It is a metaheuristic algorithm that can be applied to both 

continuous and discrete optimization problems [55]. 

2.5.3.23. Harmony search  

The Harmony Search Algorithm (HSA) is a population-based metaheuristic optimization 

algorithm inspired by the musical improvisation process. It was proposed by Zong Woo Geem, 

Joong Hoon Kim, and G.V. Loganathan in 2001. The HSA mimics the process by which 

musicians improvise harmonies to find an optimal solution to an optimization problem. The 

Harmony Search Algorithm aims to find the best solution by simulating the improvisation of 

musical harmonies. It is particularly suitable for solving continuous optimization problems, but 

it can also be adapted for discrete and combinatorial problems [23]. 

2.5.3.24. Imperialist competitive algorithm  

The Imperialist Competitive Algorithm (ICA) is a population-based optimization algorithm 

inspired by the concept of imperialism and competition among empires. It was proposed by 

Atashpaz-Gargari and Lucas in 2007 as a metaheuristic algorithm to solve optimization 

problems. The Imperialist Competitive Algorithm aims to find the optimal solution by 

simulating the process of imperialism, colonization, and competition. It is particularly suitable 

for solving continuous optimization problems, but it can also be adapted for discrete and 

combinatorial problems [56]. 

2.5.3.25. Differential search algorithm  

I apologize for the confusion, but there is no widely known optimization algorithm called the 

"Differential Search Algorithm." It is possible that you may be referring to the Differential 

Evolution (DE) algorithm, which is a popular population-based optimization algorithm. 

Differential Evolution (DE) is a stochastic and evolutionary optimization algorithm that was 

introduced by Rainer Storn and Kenneth Price in 1997. DE is widely used for solving 

continuous optimization problems and has been applied to various domains [57]. 

2.5.3.26. Glowworm swarm optimization  

Glowworm Swarm Optimization (GSO) is a population-based optimization algorithm inspired 

by the behavior of glowworms. It was proposed by Krishnanand and Ghose in 2005 as a 

metaheuristic algorithm to solve optimization problems. The Glowworm Swarm Optimization 

algorithm aims to find the optimal solution by simulating the behavior of glowworms in 

attracting and repelling each other based on their brightness. GSO is particularly suitable for 

solving optimization problems with multiple optima or in dynamic environments [58]. 
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2.5.3.27. Spiral optimization algorithm  

The Spiral Optimization Algorithm (SOA) is a population-based optimization algorithm 

inspired by the natural spiral patterns observed in various phenomena. It was proposed by Tuba 

and Yel in 2012 as a metaheuristic algorithm to solve optimization problems. The Spiral 

Optimization Algorithm aims to find the optimal solution by simulating the spiral movement 

observed in nature. SOA is particularly suitable for solving continuous optimization problems 

and has been applied to various domains [59]. 

2.5.3.28. The Jaya algorithm  

The Jaya algorithm is a population-based optimization algorithm introduced by R. V. Rao in 

2016. Jaya stands for "Jaya Algorithm for Optimization Inspired by the Nature of 

Optimization." It is a simple and efficient algorithm designed to solve optimization problems. 

The Jaya algorithm is inspired by the concept of cooperation and improvement in human 

society. It aims to improve the fitness of the entire population by encouraging cooperation 

between individuals and promoting the sharing of information [60].  

2.5.3.29. Whale Optimization Algorithm 

The Whale Optimization Algorithm (WOA) is a nature-inspired metaheuristic optimization 

algorithm that is based on the social behavior of humpback whales. It was developed by 

Seyedali Mirjalili in 2016 and is used to solve optimization problems. The algorithm mimics 

the social behavior of humpback whales, specifically their hunting strategy where they 

cooperate to encircle prey. In the WOA, potential solutions to an optimization problem are 

represented as individual whales in a population [61]. 

2.5.3.30. Simulated Annealing 

Simulated Annealing (SA) is a probabilistic metaheuristic algorithm used to find the 

approximate global optimum in a large search space. It is inspired by the annealing process in 

metallurgy, where metals are heated and then slowly cooled to reach a low-energy crystalline 

state. This concept is adapted to solve optimization problems [62] . 

2.5.3.31. Water Cycle Algorithm 

The Water Cycle Algorithm (WCA) is a relatively new nature-inspired optimization algorithm 

inspired by the water cycle process in nature. Developed by Seyedali Mirjalili and Arash 

Mirjalili in 2016, this algorithm aims to solve optimization problems by mimicking the 

movement and behaviors of water molecules in the water cycle. The water cycle involves 

processes like evaporation, condensation, precipitation, and runoff. The WCA simulates these 

processes to explore the solution space and find optimal solutions in a similar manner [63]. 

2.5.3.32. Artificial Hummingbird Algorithm. 
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The Artificial Hummingbird Algorithm (AHA) is a nature-inspired optimization algorithm 

developed based on the foraging behavior of hummingbirds. This algorithm mimics the 

movement patterns and search strategies observed in hummingbirds when they forage for 

nectar, aiming to solve optimization problems efficiently [64] . 

2.5.4. Literature of metaheuristic optimization algorithms-based ORPD. 

Since ORPD is a very important aspect of power system operation and is a non-linear, non-

convex optimization problem with both continuous and discrete control variables, various 

metaheuristic optimization algorithms have been attempted to solve it. The two most 

predominant and efficient classes of metaheuristic optimization algorithms are evolutionary 

algorithms and population-based algorithms. Table 2.1 summarizes some of the metaheuristics 

that have attempted to solve the ORPD problem using specified objective functions. 

Table 2.1.  Some metaheuristic algorithms applied to the ORPD problem 

Methods Authors Ref Objective function 

HSA A.H. Khazali, M. Kalantar [23] Ploss, Lmax, VPI 

PSO M.A. Abido [12] Fuel cost, VPI 

FAPSO Wen Zhang, Yutian Liu [65] Ploss, TVD, VPI 

GA D. Devaraj,  J. Preetha Roselyn [31] VPI 

SPEA2 Houssem Ben Aribia et al [66] Ploss, fuelcost, TVD 

DE- ABC Yuancheng Li et al [67] Ploss 

ABC M. Rezaei Adaryani, A. Karami [68] Ploss, VPI, Lmax, 

GA Ulas Kılıç [69] Ploss 

CPVEIHBMO Ali Ghasemi et al [70] Ploss, TVD, Lmax 

FSSPSO Marcela Martinez-Rojas et al [71] Ploss 

CLPSO K. Mahadevan, P.S. Kannan [9] Ploss, Lmax, VPI 

GA S.Durairaj, P.S.Kannan, et al [72] Ploss, VPI 

GSA R. Suresh et al [73] Ploss, TVD 

DE A.A. Abou El Ela et al [14] Ploss, Lmax, VPI 

DE M. Aradarajan, K.S. Swarup [74] Ploss 

PPSO Ying Li et al [75] Ploss 

EGA–DQLF M. SailajaKumari et al [76] Ploss, fuelcost, Lmax 

HSA K. Lenin [77] Ploss, TVD 

GA D. Devaraj [78] Ploss, Lmax 

OGSA Binod Shaw [79] Ploss, TVD, Lmax 

TS M. A. Abido [80] fuelcost 

DE M. Abdelmoumene et al [81] Ploss, VPI 

SARGA P.Subbaraj, P.N. Rajnarayananb [82] Ploss 

BBO P.K. Roy et al [29] Ploss, TVD 

SPEA M.A. Abido, J.M. Bakhashwain [83] Ploss, TVD 

PSO Pathak Smita, B.N.Vaidya [84] Qloss 

SOA ChaohuaDai et al [85] Ploss, Lmax, TVD 

BB-BC R.Suresh et al [86] Ploss, TVD 

MASRL Y. Xu et al [87] Ploss 

WCA A. A. Heidari et al [88] Ploss 

MICA-IWO M. Ghasemi et al [89] Ploss 

ACO Abou El-Ela AA et al [26] Ploss 
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ACO K. Rayudu et al [90] TVD 

PSO-TVAC Medani KBO, Sayah S [91] Ploss 

DMSDE X. Zhang et al [92] Ploss 

QOTLBO B. Mandal, P.K. Roy [24] Ploss, TVD, Lmax 

BBO Aniruddha Bhattacharya et al [18] Ploss 

MAPSO B. Zhao et al [3] Ploss 

GSA S. Duman et al [19] Ploss, TVD, Lmax 

MOAIA H. Xiong, H. Cheng, H. Li [93] Ploss, TVD, Lmax 

BFO M. Tripathy, S. Mishra [94] Ploss, TVD 

GBTLBO M. Ghasemi et al [95] Ploss 

OSAMGSA Niknam et al [20] Ploss, TVD, Lmax 

SA Raha et al [96] Ploss 

CSA Sulaiman et al [97] Ploss 

CSA Raha, S.B et al [98] Ploss 

MODE Basu. M [99] Ploss, TVD, Lmax 

FA-APT-FPSO M.N. Gilvaei et al [100] Ploss, TVD, Lmax 

EPSDE L. Titare et al [101] Lmax 

DE Kumar SKN, Renuga P [102] Ploss, VAR cost 

DEPSO M.Vishnu, Sunil Kumar T. K [103] Ploss, TVD 

APO–PSO Tawfiq M. Aljohani et al [104] Ploss, TVD, Lmax 

PSO-TS Z. Sahli et al [105] Ploss, TVD 

GAFGP BijayBaran Pal et al [106] Ploss, Lmax, VPI 

ABC Essam A. Al-Ammar et al [107] Ploss, TVD 

ECOA Amlak Abaza et al [108] Ploss, TVD 

GWO-PSO Mohamed A.M. Shaheen et al [109] Ploss, TVD 

FAHCLPSO Naderi, E et al [110] Ploss, TVD 

ICAPSO Mehdinejad. M et al [111] Ploss, VD 

HGAPSO Lenin. K et al [112] Ploss, Lmax 

ESPSO Yapıcı. H et al [113] Ploss 

DSPSO Subbaraj. P et al [114] Ploss 

2.6. Conclusion. 

This chapter first presented the importance of reactive energy, its planning and compensation. 

Afterwards, a survey related to Optimal Reactive Power Dispatch problem has been presented. 

However, the chapter has described the following: 

- Definition of ORPD problem and its important role in power system field. 

- ORPD problem formulation, including the common objective functions of power system, 

control variables and operating constraints. 

- The conventional methods that have been employed to solve ORPD problem. 

- The metaheuristic optimization techniques that have been applied for ORPD. In addition. 

metaheuristic algorithms are classified into different categories based on their underlying 

principles and characteristics.  

- A summarize of some metaheuristics that have attempted to solve the ORPD problem using 

specified objective functions. 

However, the metaheuristic techniques have a superiority than the conventional techniques due 
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to the following merits: 

These methods can be applied in both small and large-scale systems. 

High reliability to obtain the optimal solutions. 

These methods rarely suffer from stagnations or trapped in local minima solutions. 

These methods converged rapidly to the optimal solution compared with conventional methods. 
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Chapter  3 

ORPD PROBLEM BASED BIO-INSPIRED OPTIMIZATION ALGORITHMS 

3.1.  Introduction. 

Meta-heuristics are powerful computational methods used to solve complex problems, often in 

fields such as optimization, operations research and artificial intelligence. Rather than following 

a strict algorithmic scheme, these techniques adopt a heuristic approach, seeking solutions 

intelligently and iteratively, often inspired by natural phenomena or optimization processes 

observed in various fields. These approaches are particularly effective for exploring vast search 

spaces, enabling solutions close to the optimum, or even the optimum itself. What makes meta-

heuristics so attractive is their ability to adapt to different types of problem, even in the absence 

of detailed information about the structure of the problem itself. Although they do not always 

guarantee the best possible solution, meta-heuristics often offer very competitive results and 

are widely used to solve real problems in a variety of contexts. This ability to efficiently explore 

complex search spaces makes them a major area of research and application in computer science 

and engineering. The problem of the Optimal Reactive Power Dispatch (ORPD) is one of the 

problems that researchers have used meta-heuristics to solve. These kinds of methods offer 

powerful approaches to solve this type of optimization problem. In order to find the algorithm 

best suited to a particular problem, such as ORPD in our case, it may be a good idea to 

experiment with several meta-heuristics and compare their performance. Recently, bioinspired 

algorithms have received a great deal of attention. These algorithms transfer the biological 

activities of living organism algorithms into mathematical models, such as PSO, ant colony 

optimization, artificial bee colony, cuckoo search and others, in an optimized manner. In this 

chapter, we have used a number of bioinspired algorithms. We will describe the proposed 

algorithms in detail presenting their applications on a different IEEE test system (from the 

smallest to the largest), as well as a comparison of their results with each other and with those 

of other optimization methods presented in the literature. The methods used are MFO (Moth 

Flame Optimization), GWO (Grey Wolf Optimizer), AHA (Artificial Hummingbird Algorithm) 

and ALO (Ant Lion optimization). 

3.2. Description of the bio-inspired algorithms 

Nature is the best teacher and its designs and capabilities are extremely huge and mysterious, 

so researchers try to imitate nature in technology. Nature and technology have a much stronger 

link, as it seems entirely reasonable that new or persistent problems in computing may have 
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much in common with problems that nature encountered and solved long ago. Bio-inspired 

algorithms are computational techniques that draw inspiration from biological systems, or 

behaviors observed in nature to solve complex optimization and computational problems. These 

algorithms simulate the mechanisms found in natural systems to efficiently search for solutions 

in various domains. Bio inspired computing has come up as a new era in computing 

encompassing a wide range of applications, covering all most all areas including computer 

networks, security, robotics, bio medical engineering, control systems, power systems and 

many more [115]. Here are descriptions of the bio-inspired algorithms used in this study. 

3.3. The proposed bio-inspired algorithms 

3.3.1. Moth Flame Optimization algorithm (MFO) 

The MFO (Moth Flame Optimization) algorithm is a recently developed meta-heuristic based 

on the behavior of moths attracted by the light of a flame. This approach seeks to optimize 

solutions by imitating the movement of moths attracted by a light source. Proposed by Seyedali 

Mirjalili [49], MFO algorithm is based on the simulation of the behavior of moths for their 

special navigation methods in night. The special navigation technique used by moths to travel 

at night called transverse orientation. The idea of transverse orientation is by maintaining a 

fixed angle of natural light such as the moon, which is a very effective mechanism for travelling 

long distance in a straight path because the moon is far away from the moth (Figure 3.1-a). As 

the moon is too far away, it remains stationary and provides a fixed point of reference for the 

moths to navigate in a straight line. However, with the advent of lamps, moths become 

disorientated and mistake the lamp light for an artificial moon. They try to keep a constant 

distance from it and end up circling the artificial light because it is too close (Figure 3.1-b). In 

MFO algorithm the Moths fly around flames in a Logarithmic spiral way and finally converges 

towards the flame. 

 
Figure 3.1. Moth movement mechanism [116] 
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In the MFO algorithm, each moth must move around a single corresponding flame, which 

allows better exploration of the search space and a lower probability of stagnation of local 

optima. Therefore, a set of flame locations can be represented in a matrix with the same 

dimensions as the moth positions. In addition, it should be noted that moths and flames are both 

solutions. The difference between them is the way they are processed and updated at each 

iteration. Moths are true search agents that move around the search space. Meanwhile, the 

flames are the best solutions obtained by the moths so far. In other words, the flames can be 

seen as flags or pins dropped by the moths as they explore a search space. Each moth searches 

around a flame and updates it if a better solution is found. With this mechanism, a moth never 

loses its best solution. In basic MFO, the individual moth represents a potential solution, and 

each position is expressed as a matrix of control variables given below [117]. 

 

𝑴 = [

𝒎𝟏,𝟏 𝒎𝟏,𝟐 ⋯𝒎𝟏,𝒅

𝒎𝟐,𝟏 𝒎𝟐,𝟐 ⋯𝒎𝟐,𝒅

⋮
𝒎𝒏,𝟏

⋱
𝒎𝒏,𝟐

⋮
⋯𝒎𝒏,𝒅

] (3. 1) 

where n is the number of moths and d is the number of variables. The fitness values sorting can 

be given by the following array: 

 

𝑶𝑴 = [

𝑶𝑴𝟏

𝑶𝑴𝟐

⋮
𝑶𝑴𝒏

] (3. 2) 

The fitness value is the return value of each moth where all moths are passed through the fitness 

function. The output of the fitness function is identical to its fitness value in OM array. A basic 

matrix of MFO is represented by flames. Flames matrix can be described as follows: 

 

𝑭 =  [

𝑭𝟏,𝟏 𝑭𝟏,𝟐 ⋯𝑭𝟏,𝒅
𝑭𝟐,𝟏 𝑭𝟐,𝟐 ⋯𝑭𝟐,𝒅
⋮

𝑭𝒏,𝟏

⋱
𝑭𝒏,𝟐

⋮
⋯𝑭𝒏,𝒅

] (3. 3) 

Dimension of moth's matrix is equal to the dimension of flames matrix. The fitness values of 

flames can be sorted in the following array: 

 

𝑶𝑭 =  [

𝑶𝑭𝟏
𝑶𝑭𝟐
⋮

𝑶𝑭𝒏

] (3. 4) 

It is worth mentioning that both of moths and flames are solutions. It is possible to recognize 

the difference between them when analyzing the way to treat and update moths and flame 

positions during running process. Moths are the search agents seek for best position, while 

flames are the flags or the best position of moths. The mathematical equation represents the 
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movement of moths with respect to flame position, which can be formulated as follows [118]: 

 𝑴𝒊 =  𝑺 (𝑴𝒊, 𝑭𝒋) . (3. 5) 

where 𝑀𝑖  𝑖ndicates the ith moth, 𝐹𝑗   indicates the jth flame, and 𝑆 is the spiral function. 

In MFO algorithm, the movement of moths proceeds as logarithmic spiral function to update 

the position of each moth with respect to flame; any spiral movement should satisfy the 

following conditions: • Spiral movement starts from moth. • Spiral movement ending at flame 

position. • Domain of spiral movement is restricted by search space. MFO logarithmic spiral 

function can be given by the following equation: 

 𝑺 (𝑴𝒊, 𝑭𝒋) =  𝑫𝒊 ∙ 𝒆
𝒃𝒕 ∙ 𝒄𝒐𝒔(𝟐𝝅𝒕) + 𝑭𝒋 (3. 6) 

𝑫𝒊  is the distance of the i-th moth for the jth flame, b is a constant that assigns the shape of 

spiral algorithm, t is a random number that lies in between [-1, 1]. The distance 𝑫𝒊 can be 

calculated from the following equation:  

 𝑫𝒊 = |𝑭𝒋 −𝑴𝒊|. (3. 7) 

The lower the value of t, the closer the distance between the ith moth and the jth flame. Figure 

3.2 depicts the spiral flight of a moth around its corresponding flame. If moths were required to 

move around N different flames all the time, this would deteriorate the exploitation of the best 

solution. To resolve this problem, the number of flames is adaptively decreased over the 

iterations as Eq. (3.8). After the reduction in the number of flames in each generation, the 

corresponding moth updates its position according to the worst flame position. 

 
𝑭𝒍𝒂𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓 =  𝒓𝒐𝒖𝒏𝒅(𝑵 − 𝒍 ∗

𝑵 − 𝟏

𝑻
) (3. 8) 

where 𝑙 is the current iteration, N is the maximum number of flames, and T indicates the 

maximum number of iterations. The adaptive mechanism for the flame number provides an 

efficient balance between the exploration and exploitation in a solution space. 

 

Figure 3.2. Spiral flight of a moth around its corresponding flame [118]. 
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The main optimization steps of the MFO algorithm are illustrated on the flowchart below 

(Figure 3.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. flowchart of MFO algorithm 

3.3.2. Ant Lion Optimization Algorithm (ALO) 

The ALO algorithm is modeled based on the hunting mechanism of Antlions in nature. The 

ALO algorithm simulates the interaction between antlions (predators) and ants (prey). In their 

larval period (2.5-3 years), antlions usually eat ants. Antlion digs a hole with a cone shape using 

its jaw. Then it hides in the bottom of the cone and waits. when an ant trap into the hole, it 

begins throwing sand towards the trap in order to bury the prey. After catching the prey and 

consumed it, Antlion throw the prey’ leftover outside the trap as illustrated in Figure 3.5. Figure 

3.4. illustrates different steps that describe the relationship between antlions and ants [119]. 

 

Figure 3.4. Different steps that describe the relationship between antlions and ants [119] 

Define the parameters of the algorithm 

Calculate the fitness functions and tad the best position by flames 

Update flame number, t, and r 

Generate initial moths randomly 

Calculate D for the corresponding moth 

Update M(i,j) for the corresponding moth 

Report the best position among the moths 

Are termination 

criteria satisfied ? 

Start 

End 

No 

Yes 
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Figure 3.5. Cone-shaped traps and hunting behavior of antlions [119] 

The ALO method mimics interaction between antlions and ants in the trap. To simulate these 

interactions, ants must to move over the search space, and antlions are allowed to hunt them 

and become fitter using traps. Since ants move stochastically in nature when searching for food 

like all other insects in nature (Figure 3.5), a random walk is chosen for modelling ants’ 

movement as follows [119]: 

𝑿(𝒕) = [𝟎, 𝒄𝒖𝒎𝒔𝒖(𝟐𝒓(𝒕𝟏) − 𝟏), 𝒄𝒖𝒎𝒔𝒖(𝟐𝒓(𝒕𝟐) − 𝟏), . . . . . . . , 𝒄𝒖𝒎𝒔𝒖(𝟐𝒓(𝒕𝒏) − 𝟏)] (3. 9) 

Where 𝑋(𝑡) is the random walks of ants, 𝑐𝑢𝑚𝑠𝑢 calculates the cumulative sum, n is the 

max_iterations, 𝑡𝑖 is the step of random walk, and r(𝑡𝑖) is a function defined as follows: 

 
r(𝒕𝒊) = {

𝟏 𝒊𝒇 𝒓𝒂𝒏𝒅 > 𝟎, 𝟓
𝟎 𝒊𝒇 𝒓𝒂𝒏𝒅 < 𝟎, 𝟓

 (3. 10) 

where, rand is a randomly generated number uniformly distributed in the range of [0, 1].  

The following steps describe the five main phases in hunting technique of ant lions. 

 

Figure 3.6. Random walk of an ant inside an antlion’s trap [119] 

In every step of optimization, ants update their positions to a random walk search (equation 

3.9). To ensure that all the positions of ants are inside the boundary of the search space, they 

are normalized by using the following expression: 
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𝑿𝒊
𝒕 =

(𝑿𝒊
𝒕 − 𝒂𝒊) × (𝒅𝒊

𝒕 − 𝒄𝒊
𝒕)

(𝒃𝒊 − 𝒂𝒊)
+ 𝒄𝒊

𝒕 (3. 11) 

Where 𝑎𝑖 , 𝑏𝑖 are respectively the minimum and maximum of random walk corresponding of 

𝑖𝑡ℎ variable. 𝑐𝑖
𝑡, 𝑑𝑖

𝑡 indicate respectively the minimum and maximum of 𝑖𝑡ℎ  variable at the 𝑡𝑡ℎ  

iteration. 

random walks of ants are affected by antlions’ traps. In order to mathematically model this 

assumption, the following equations are proposed: 

 𝒄𝒊
𝒕 = 𝑨𝒏𝒕𝒍𝒊𝒐𝒏𝒋

𝒕 + 𝒄𝒕 (3. 12) 

 𝒅𝒊
𝒕 = 𝑨𝒏𝒕𝒍𝒊𝒐𝒏𝒋

𝒕 + 𝒅𝒕 (3. 13) 

where 𝑐𝑡 is the minimum of all variables at 𝑡𝑡ℎ  iteration, 𝑑𝑡 indicates the vector including the 

maximum of all variables at 𝑡𝑡ℎ  iteration and 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 shows the position of the selected 𝑗𝑡ℎ  

antlion at 𝑡𝑡ℎ  iteration. 

Equations (3.12) and (3.13) show that ants randomly walk in a hyper sphere defined by the 

vectors c and d around a selected antlion. Figure 3.6 shows a two-dimensional search space. It 

may be observed that ants are required to move within a hypersphere around a selected antlion. 

During optimization, The ALO algorithm is required to use a roulette wheel operator for 

selecting Antlions based on their fitness for giving a high chance for catching ants. 

With the mechanisms proposed so far, Antlions are capable to build traps proportional to their 

fitness, and ants are required to move randomly near the center of the pit. However, once 

Antlions realize that an ant is in the trap, they shoot sands outwards the center of the pit. This 

proposed mechanism is mathematically modeled as it follows: 

 
𝒄𝒕 =

𝒄𝒕

𝑰
 (3. 14) 

 
𝒅𝒕 =

𝒅𝒕

𝑰
 (3. 15) 

𝐼 is a ratio, given by 𝐼 = 10𝜔
𝑡

𝑇, t is the current iteration T is the maximum number of iterations 

and 𝜔 is a constant defined as it follows: 

 

𝝎 =

{
 
 

 
 
𝟐 𝐢𝐟  𝟎. 𝟏𝑻 < 𝒕 ≤ 𝟎. 𝟓𝑻 
𝟑 𝐢𝐟 𝟎. 𝟓𝑻 < 𝒕 ≤ 𝟎. 𝟕𝟓𝑻
𝟒 𝐢𝐟 𝟎. 𝟕𝟓𝑻 < 𝒕 ≤ 𝟎. 𝟗𝑻
𝟓 𝐢𝐟 𝟎. 𝟗𝑻 < 𝒕 ≤ 𝟎. 𝟗𝟓𝑻

𝟔 𝐢𝐟 𝒕 > 𝟎. 𝟗𝟓𝑻

 (3. 16) 

The ants catching by predator and pit rebuilding in order to catch new prey are described by the 

following equation. 

 𝑨𝒏𝒕𝒍𝒊𝒐𝒏𝒋
𝒕 = 𝑨𝒏𝒕𝒊

𝒕, 𝒊𝒇 𝒇(𝑨𝒏𝒕𝒊
𝒕) > 𝒇(𝑨𝒏𝒕𝒍𝒊𝒐𝒏𝒋

𝒕) (3. 17) 
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where 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 is the 𝑗

𝑡ℎ  position of the selected antlion at iteration t and 𝐴𝑛𝑡𝑖
𝑡 is the position 

of the selected 𝑖𝑡ℎ  ant at iteration t. 

Elitism is one of the most important characteristics of evolutionary algorithms. In ALO 

algorithm, at any iteration the best antlion obtained (solution) is saved as elite. Since the elite 

is the fittest antlion which is able to guide the movements of the remaining ants along the 

iterations. The elitism mechanism mathematically described as follows. 

 
𝑨𝒏𝒕𝒊

𝒕 =
𝑹𝑨
𝒕 + 𝑹𝑬

𝒕

𝟐
 (3. 18) 

where 𝑅𝐴
𝑡  is the random walk around the ant-lion selected by the roulette wheel at 𝑡𝑡ℎ iteration, 

𝑅𝐸
𝑡  is the random walk around the elite at 𝑡𝑡ℎ iteration, and 𝐴𝑛𝑡𝑖

𝑡 denote the position of 𝑖𝑡ℎ ant 

at 𝑡𝑡ℎ iteration.  

The main optimization steps of the ALO algorithm are shown in Fig 3.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Flowchart of ALO algorithm 
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3.3.3. Grey Wolf Optimizer algorithm (GWO) 

GWO is a nature-inspired optimization algorithm inspired from the real life of an organized 

group of Grey Wolf by analyzing their behavior and communication for hunting in nature. 

Naturally, grey wolves live in a group of between 5 to 12 individuals. Grey wolves sternly live 

in a social hierarchy. In the GWO to solve the optimization issues, the behavior of grey wolves 

for hunting is modelled. The social hierarchy of grey wolves consists of 4 categories alpha, 

beta, omega, and delta. The group is guided by a special leader, called alphas. The main task of 

the alphas is to make the most powerful decisions for hunting, choosing location for sleeping, 

to safe the group. A second category named betas works in coordination with the first group, 

agents from this sub group help the leader (alpha) in decision making to achieve the desired 

objectives of the pack. So, the knowledge of leader is improved by the feedback transferred 

from associated agents of this second category. Delta agent’s category, have to achieve many 

tasks such as: scouts, sentinels, elders and hunters. They have to communicate their ideas to 

alpha and beta to guarantee the safety of the pack. Wolves within this category called also 

subordinate. The omega is the lowest ranking Grey Wolf in the pack, they are the last wolves 

that are allowed to eat. The omega plays role of scapegoat, the wolves of this category always 

have to submit to all the other individuals from dominant category [46]. The hierarchy structure 

of Grey Wolf is shown in Figure 3.8.  

 

 

Figure 3.8. Hierarchy structure of Grey Wolf [120] 

Besides the social hierarchy that exists in a group of grey wolves, collective hunting is another 

fascinating communal behavior of grey wolves. The grey wolves’ hunting includes the steps 

represented in Figure 3.9. 

For mathematical modeling of the algorithm, the best solution is considered as alpha (𝛼). Then 
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Figure 3.9. Grey Wolf Hunting process 

beta (𝛽), delta (𝛿) and omega (𝜔) are given priority respectively. During hunt the grey wolves 

encircle prey. The encircling behavior is modeled and described using the following equations 

[120]:  

 �⃗⃗� = |�⃗⃗� ∙�⃗⃗� 𝒑 (𝒕) − �⃗⃗� (𝒕)| (3. 19) 

 �⃗⃗� (𝒕 + 𝟏) = |�⃗⃗� 𝒑 (𝒕) − �⃗⃗� ∙ �⃗⃗� | (3. 20) 

Where 𝒕 indicates the current iteration, 𝐴  and 𝐶  are coefficient vectors, 𝑋 𝑝 is the position vector 

of the prey, and 𝑋  indicates the position vector of a Grey Wolf. The two vectors 𝐴   and 𝐶  are 

calculated as follows: 

 �⃗⃗� = 𝟐�⃗⃗� ∙ �⃗� 𝟏 − �⃗⃗�  (3. 21) 

 �⃗⃗� = 𝟐 ∙ �⃗� 𝟐 (3. 22) 

where components of  𝑎  are linearly decreased from 2 to 0 over the iterations, 𝑟 1 and 𝑟 2 are 

random vectors in [0, 1].  

The location of prey is formulated by the combination of the best knowledge given by alpha 

and beta during the hunting process. The identification of the best location of the prey is based 

on the best solutions achieved during search process [46]. The basic equations describing and 

guiding the hunting process are formulated as follows: 

 𝑫𝜶⃗⃗ ⃗⃗  ⃗ = 𝑪𝟏⃗⃗ ⃗⃗ . 𝑿𝜶⃗⃗⃗⃗  ⃗ − �⃗⃗�  (3. 23) 

 𝑫𝜷⃗⃗ ⃗⃗  ⃗ = 𝑪𝟐⃗⃗ ⃗⃗ . 𝑿𝜷⃗⃗⃗⃗  ⃗ − �⃗⃗�  (3. 24) 

 𝑫𝜹⃗⃗⃗⃗  ⃗ = 𝑪𝟑⃗⃗ ⃗⃗ . 𝑿𝜹⃗⃗ ⃗⃗  − �⃗⃗�  (3. 25) 

 �⃗⃗� 𝟏 = �⃗⃗� 𝜶 − �⃗⃗� 𝟏 ∙ �⃗⃗� 𝜶 (3. 26) 

 �⃗⃗� 𝟐 = �⃗⃗� 𝜷 − �⃗⃗� 𝟐 ∙ �⃗⃗� 𝜷 (3. 27) 

• Searching for prey 

(exploration) 
• Encircling 

the prey 

• Hunting 
• Attacking the prey 

(exploitation) 
Step1 

Step2 

Step3 

Step4 
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 �⃗⃗� 𝟑 = �⃗⃗� 𝜹 − �⃗⃗� 𝟑 ∙ �⃗⃗� 𝜹 (3. 28) 

 
�⃗⃗� (𝒕 + 𝟏) =

�⃗⃗� 𝟏 + �⃗⃗� 𝟐 + �⃗⃗� 𝟑
𝟑

 (3. 29) 

where 𝑋 (𝑡 + 1) is the position vector of prey at iteration (t+1), this position is updated based 

on the best information given by alpha, beta and delta agents during process search. Figure 3.11 

shows how the search agent updates its position to match alpha, beta, and delta positions. 

Afterward, alpha, beta, and delta assess the hunt position, and the other wolves randomly update 

their positions around the hunt. This cycle repeats until the desired outcome is reached [46]. 

The main optimization steps of the GWO algorithm are shown in Fig 3.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. Flowchart of GWO algorithm 
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Figure 3.11. The update steps for Grey Wolves Position [121] 

3.3.4. Artificial Hummingbird Algorithm (AHA) 

The Hummingbird Optimizer algorithm is a nature-inspired optimization algorithm that is based 

on the behavior of hummingbirds. There are over 360 different hummingbird species in the 

globe, and the majority of them only have a 7.5 to 13 cm body length. Hummingbirds may beat 

their wings up to 80 times per second, which is the greatest rate of any bird. Hummingbirds 

consume a lot of flower nectar found inside flowers each day to provide them the energy they 

need to soar (Figure 3.12). Hummingbirds are unique in that they have a remarkable memory 

of finding food. The bird can also remember the spatial-temporal information about the food 

sources and use this information to avoid flowers (food sources), which were visited previously 

[122]. Hummingbirds have three special flight skills and three intelligently adjusted foraging 

strategies.  

 

Figure 3.12. A foraging hummingbird [64] 

The main inspirations behind AHA algorithm to solve optimization problems are the flight 

skills, memory capacity, and foraging strategies of hummingbirds. In the process of foraging, 

hummingbirds have three special flight skills: axial, diagonal, and omnidirectional flight. 
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Figure 3.13 describes the three flight behaviors in three-dimensional space. Figure 3.13(a) 

shows axial flight, in which the hummingbird can choose to fly in an arbitrary direction. Figure 

3.13(b) reflects diagonal flight, in which the hummingbird can fly from any angle of the 

coordinate axis to its diagonal position. Figure 3.13(c) demonstrates omnidirectional flight, in 

which the hummingbird can fly in any direction [123].  

Hummingbirds have also other sorts of search tactics, such as guided, migrating, and territorial 

foraging. These three foraging behaviors are depicted in Figure 3.14. Hummingbird tends to 

visit the food source with the highest nectar-refilling rate among the food sources with the same 

highest visit level. Each hummingbird is able to find its target food source via the visit table 

[64]. 

 

Figure 3.13. The special flight abilities of hummingbirds [123] 

 

Figure 3.14. The different foraging behaviors of hummingbirds [123] 

AHA algorithm uses the random initialization method to generate hummingbird population 𝑋, 

and randomly places n hummingbirds on n food sources, as described by Equation (3.30): 
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 𝒙𝒊 = 𝑳𝒃 + 𝒓 ∙ (𝑼𝒃 − 𝑳𝒃), 𝒊 = 𝟏, . . . , 𝒏, (3. 30) 

𝑥𝑖 is the location of the 𝑖𝑡ℎ food source, 𝑈𝑏 and 𝐿𝑏 represent the boundaries of the search 

domain for a d-dimensional problem, 𝑟 is a random value in [0, 1], 𝑛 represents the population 

size. Moreover, the visit table of the food sources (best solutions) is formed as flows: 

 
𝑽𝑻𝒊,𝒋 = {

𝒏𝒖𝒍𝒍  𝒊𝒇 𝒊 = 𝒋
𝟎       𝒊𝒇 𝒊 ≠ 𝒋

  𝒊 = 𝟏, . . . , 𝒏;  𝒋 = 𝟏, . . . , 𝒏, (3. 31) 

Where 𝑉𝑇𝑖,𝑗 is the visit level, indicating the time period when the 𝑖𝑡ℎ hummingbird did not 

reach the 𝑗𝑡ℎ food source. In the case of 𝑖 = 𝑗, 𝑉𝑇𝑖,𝑗 = 𝑛𝑢𝑙𝑙 refers to the amount of food 

consumed by a hummingbird at a certain food source. 𝑉𝑇𝑖,𝑗 = 0 refers to the 𝑗𝑡ℎ hummingbird 

visiting the food source 𝑖. 

A hummingbird is assumed to search for food at the maximum visit rate and then select the one 

with the maximum nectar-refilling rate from 𝑋 as its optimal solution for the guided foraging 

behavior. This foraging makes use of the three flight abilities of omnidirectional, diagonal, and 

axial flight. In d-dimensional space, the expressions for simulating the axial, diagonal, and 

omnidirectional flight of hummingbirds are expressed by Equations (3.32) -(3.34), respectively. 

 
𝑫(𝒊) = {

𝟏, 𝒊𝒇 𝒊 = 𝒓𝒂𝒏𝒅𝒊([𝟏, 𝒅])

𝟎, 𝒆𝒍𝒔𝒆
  𝒊 = 𝟏, . . . , 𝒅, (3. 32) 

 
𝑫(𝒊) = {

𝟏, 𝒊𝒇 𝒊 = 𝑷(𝒋), 𝒋 = [𝟏, 𝒒], 𝑷 = 𝒓𝒂𝒏𝒅𝒑𝒆𝒓𝒎(𝒒)

𝟎, 𝒆𝒍𝒔𝒆
 (3. 33) 

 𝑫(𝒊) = 𝟏 𝒊 = 𝟏, . . . , 𝒅, (3. 34) 

where 𝑟𝑎𝑛𝑑𝑖([1,𝑑]) is a randomly generated integer in [1,𝑑], 𝑞 in [1, [𝑟𝑎𝑛𝑑.(𝑑-2)] +1], and 

𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑞) represents generating a random arrangement of integers from 1 to 𝑞. 

Hummingbirds use three flight skills in alternation to reach their food source, and they apply 

Equation (3.35) to simulate guided foraging and determine the position of a possible food 

source 𝑣𝑖. 

 𝒗𝒊(𝒕 + 𝟏) = 𝒙𝒊,𝒂𝒊𝒎(𝒕) + 𝑨 ∙ 𝑫 ∙ (𝒙𝒊(𝒕) − 𝒙𝒊,𝒂𝒊𝒎(𝒕)) (3. 35) 

Where  𝑣𝑖(𝑡 + 1) is the position of the candidate solution in iteration  𝑡 + 1 and 𝑥𝑖(𝑡) is the i-

th food source in iteration 𝑡. In addition, 𝑥𝑖,𝑎𝑖𝑚(𝑡) is the location of the target food source where 

the 𝑖𝑡ℎ hummingbird will be located. A in 𝑁(0,1) is the guiding parameter that obeys the 

normal distribution. The position of the 𝑖-th food source of the hummingbird is updated by 

Equation (3.36). 

 
𝒙𝒊(𝒕 + 𝟏) = {

𝒙𝒊(𝒕), 𝒊𝒇 𝒇(𝒙𝒊(𝒕)) ≤ 𝒇(𝒗𝒊(𝒕 + 𝟏))

𝒗𝒊(𝒕 + 𝟏), 𝒊𝒇 𝒇(𝒙𝒊(𝒕)) > 𝒇(𝒗𝒊(𝒕 + 𝟏)) 
 (3. 36) 

where 𝑓(𝑥𝑖(𝑡)) and 𝑓(𝑣𝑖(𝑡 + 1)) represent the nectar replenishment rates of hummingbird food 
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sources and candidate food sources, respectively, that is, the fitness value of the function. 

Once the flower nectar has been consumed, a hummingbird is more likely to search for a new 

source of food than to visit other flowers. As a result, the bird may readily migrate to a nearby 

spot inside its own territory, where a new food source could be located as a potential 

replacement for the existing one. The mathematical formula designed to simulate 

hummingbirds local foraging behavior and a potential food source is as follows: 

 𝒗𝒊(𝒕 + 𝟏) = 𝒙𝒊(𝒕) + 𝑩 ∙ 𝑫 ∙ 𝒙𝒊(𝒕) (3. 37) 

Where 𝑣𝑖(𝑡 + 1) is the position of the candidate food source obtained by hummingbird 𝑖 

through territorial foraging in 𝑡 + 1 iterations, and 𝐵 in 𝑁(0,1) represents the territorial 

parameter obeying the normal distribution. Hummingbirds update the visit table after 

performing territorial foraging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Flowchart of AHA algorithm 
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The mathematical formulation designed to simulate a hummingbird’s migration foraging from 

the source with the lowest nectar-refilling rate to a new one produced at random is: 

 𝒙𝒘𝒐𝒓(𝒕 + 𝟏) = 𝑳𝒐𝒘 + 𝒓 ∙ (𝑼𝒑 − 𝑳𝒐𝒘) (3. 38) 

where 𝑥𝑤𝑜𝑟 is the food source with the worst nectar supplementation in the hummingbird 

population, and 𝑟 is the random vector in [0,1]. Hummingbirds will update the visit table after 

migration and foraging. The flow shart of the AHA algorithm is given in Figure 3.15. 

3.4. Optimal reactive power dispatch 

In general, the goal of the ORPD study is to optimize the active power loss in the transmission 

network through optimal adjustment of the power system control parameters such as generator 

voltages, tap position of tap-changing transformers, and shunt capacitors while satisfying 

equality and inequality constraints at the same time. The ORPD may also have the objective of 

improving voltage profile by employing the reactive compensation devices such as automatic 

voltage regulators, transformer tap settings and shunt capacitors. ORPD is formulated as a 

general constrained optimization problem with continuous control variables. They may be 

classified as a group of equality constrains i.e. a power balance of load flow, as well as 

inequality constraints such as the physical limits of the system of control variables, or the 

physical limits of the system dependent variables. In this chapter we will study the ORPD 

problem by applying the proposed bio-inspired metaheuristics methods detailed in the previous 

section, namely MFO, GWO, AHA and ALO. To verify the effectiveness and efficiency of 

these proposed algorithms, different networks involving small, medium and large networks are 

used. First, the IEEE 14 bus test system is chosen. In 14 bus system, 10 control variables are 

considered including two shunt capacitors linked on buses 9 and 14. The IEEE 30 bus is used 

as second test system and 19 control variables are considered. In this system 9 buses were 

selected to receive shunt capacitors. The IEEE 57 bus is considered as third test system included 

25 control variables. In this network, buses 18,25 and 53 were selected to receive shunt 

capacitors. The IEEE 118 bus is considered as fourth test system. There are 77 control variables 

in which 14 are shunt capacitors in this large test system. The Description of these studied test 

systems is depicted in Table 3.1. In all these test systems, the control variables are considered 

as continuous variables and the locations of the shunt capacitors are those used by most authors 

in the literature. Two different objective functions in the ORPD study are taken into 

consideration, namely: active power loss minimization and voltage deviation minimization 

(Equations 2.2 and 2.5). The shunt capacitor variable is modelled as a shunt admittance. This 

variable will modify the diagonal element Yii of the admittance matrix to which it has been 

connected. The diagonal elements of the nodal admittance matrix Y before connecting the shunt  

capacitor are given by the expression: 
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𝒀𝒊𝒊=∑(𝒚𝒐𝒊𝒋

𝒏

𝒋=𝟏
𝒋≠𝒊

+ 𝒚𝒊𝒋) (3. 39) 

Where  𝒚𝒊𝒋 is the serial admittance of the i-j branch and 𝒚𝒐𝒊𝒋 is the shunt admittance connected 

to node i. 

When the capacitor (𝑦𝑄𝑠ℎ𝑢𝑛𝑡) is connected at bus i, the new value of 𝑌𝑖𝑖 becomes: 

 𝒀′𝒊𝒊 = 𝒀𝒊𝒊+𝒚𝑸𝒔𝒉𝒖𝒏𝒕 (3. 40) 

 Table 3.1. Description of different power test systems 

3.4.1. Population size of the proposed algorithms 

Population size refers to the number of candidate solutions or individuals that coexist and 

evolve simultaneously within the algorithm's search space. Unlike traditional optimization 

techniques or local search metaheuristics that operate with a single solution, most metaheuristic 

algorithms utilize a population-based approach to explore the solution space more 

comprehensively. The choice of population size for the metaheuristic methods is often problem-

specific and requires experimentation to find an optimal or satisfactory value. It is one of the 

important parameters influencing the quality of the result. Larger populations generally allow 

more extensive exploration of the search space, but can increase computational costs. Smaller 

populations can converge more quickly but risk getting stuck in local optima. Researchers often 

carry out experiments to determine the impact of population size on algorithm performance.  

In this section, an empirical study was carried out to select the population size, i.e., we have 

investigated the effect of the population size (number of search-agents) on the performance of 

 IEEE 14-bus IEEE 30-bus IEEE 57-bus IEEE 118-bus 

Buses 14 30 57 118 

Lines 20 41 80 186 

Generators 5 6 7 54 

Tap transformers 3 4 17 9 

Shunt capacitors 2 9 3 14 

Load buses 9 24 50 64 

Control variables 10 19 25 77 

𝑷𝑳𝒐𝒂𝒅 (MW) 259.00 283.40 1250.80 4242 

𝑸𝑳𝒐𝒂𝒅 (MVAR) 73.50 126.20 336.40 1438 

𝑷𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓𝒔  (MW) 272.39 289.211 1279.26 4375.36 

𝑸𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓𝒔  (MVAR) 82.44 108.922 345.45 881.92 

Initial 𝑷𝑳𝒐𝒔𝒔 (MW) 13.393 5.811 28.462 132.863 

Initial TVD (pu) 0.4962 0.4236 1.5528 1.4393 
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the proposed methods (MFO, GWO, AHA and ALO), in which 30 trials runs were conducted 

for different population sizes (20, 30 and 40 search agents) for IEEE 14-bus, IEEE 30-bus, and 

IEEE 57-bus power systems. The results for the different population sizes for all the networks 

studied, have not all been presented, because there are a lot of graphs to be introduced. For this 

reason, we have only presented the results for the IEEE 57-bus (figure 3.16 to figure 3.19). 

 

Figure 3.16. Active power losses for different population size, IEEE 57-bus (MFO method) 

Figure 3.17. Active power losses for different population size (GWO method) 
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Figure 3.18. Active power losses for different population size (AHA method) 

 

Figure 3.19. Active power losses for different population size, IEEE 57-bus (ALO method) 

From the Figures above given (figure 3.16 to figure 3.27), it can be seen that 30 search agents 

are sufficient to obtain the best value closest to the optimum for the MFO and GWO methods 

but for the two methods ALO and AHA, it is observed that the best result is obtained for 40 

search agents. In other words, 30 search agents for MFO and GWO methods and 40 search 

agents for ALO and AHA methods are good enough to get the near global optimum value of 

active power losses. For that reason, in all simulation cases, population size is specified as 30 

for the MFO and GWO methods and 40 for ALO and AHA methods. The maximum number 

of iterations is fixed at 500. Since MFO, GWO, ALO and AHA are a random population-based 

techniques, multiple execution of theses algorithms is essential to assess its performance. For 

this work, the proposed methods are executed 40 times for all the test cases to solve the ORPD 

problem and the best results have been presented. 
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3.4.2. ORPD simulation (case of IEEE 14-bus test system) 

Firstly, the proposed algorithms are applied on the IEEE 14-bus system shown in Figure 3.20. 

In this test system, there are 14 buses, out of which 5 are generator buses. Bus 1 is the slack 

bus, the buses number 2, 3, 6 and 8 are taken as generator buses and the rest are load buses. The 

network has 20 branches, 17 of which are transmission lines and 3 are tap-changing 

transformers. The shunt reactive power sources are considered at buses 9 and 14. Totally, there 

are 10 control variables, which consists of 5 generator voltages, 3 tap changing transformers 

and 2 shunt compensation reactive sources. The load demand is 259.00 MW and 73.5 MVAR 

on 100 MVA base. The initial active power losses are 13.4919 MW. The control variable limits 

are cited in Table 3.2. The system data and the initial operating conditions of the system are 

given from [17].   

Table 3.2. The limits of the control variables for IEEE 14-bus test system 

3.4.2.1. Active power losses minimization 

In this case, the proposed algorithms namely MFO, GWO, AHA and ALO are applied to 

minimize the active power losses (Ploss). Table 3.3 summarizes the results of the optimal 

settings obtained by the proposed algorithms and shows the best results of active power losses. 

From this table it can be seen that MFO, GWO, ALO and AHA methods reduced active power 

losses by 7.745%, 7.922% 9.365% and 9.334% respectively. We can see also from Table 3.4, 

 

Figure 3.20. Single line diagram of IEEE 14 bus system 

Variable limits Lower limit (pu) Upper limit (pu) 

Generator buses voltage 0.9 1.1 

Load buses voltages 0.9 1.1 

Transformers tap setting 0.9 1.1 

Shunt compensators (MVAR) 0 18 
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that the two methods ALO and AHA were able to find better results than MFO, GWO and the 

other algorithms from the literature. Figure 3.23 shows the convergence curves of the proposed 

optimizers and as it can be seen, the ALO algorithm converges to high quality solutions in less 

than 270 iterations. Figure 3.21 and figure 3.22 illustrate the performance of all proposed 

algorithms for 40 independent runs. 

Table 3.3. Simulation results of proposed algorithms for IEEE 14-bus test system 

Table 3.4. Comparative results of IEEE 14-bus test system 

Methods Ploss (MW) Ploss Reduction (%) Methods   Ploss Reduction (%) 

PSO-TVAC [124] 12.279 8.989 CBA [125] 8.75 

MGBTLBO [95] 12.310 8.756 MGBTLBO [125] 8.74 

WOA [124] 12.255 9.167 BA [125] 8.70 

PSO [124] 12.381 8.233 JAYA [125] 8.68 

AHA 12.232 9.334 DE-ABC [125] 8.30 

ALO 12.228 9.365 IGSACSS [125] 8.10 

GWO 12.423 7.922 DE [125] 7.72 

MFO 12.447 7.745 DEEP [125] 7.71 

Figure 3.21. Performance of 30 search agents for 40 trial runs 

Control variables  Initial AHA ALO GWO MFO 

V1 1.0600 1.1000 1.1000 1.1000 1.1000 

V2 1.0450 1.0857 1.0861 1.0776 1.0766 

V3 1.0100 1.0564 1.0571 1.0436 1.0409 

V6 1.0700 1.1000 1.1000 1.0622 1.0600 

V8 1.0900 1.0995 1.1000 1.1000 1.0666 

T4–7 0.9780 1.0309 0.9793 1.0735 1.0153 

T4–9 0.9690 0.9061 0.9696 0.9051 0.9648 

T5–6 0.9320 0.9864 1.0085 0.9495 0.9641 

QC9  0.1800 17.9754 17.7316 3.9360 14.8082 

QC14 0.1800 6.2070 5.9659 6.9710 6.4962 

Ploss (MW) 13.4919 12.2325 12.2284 12.423 12.447 

TVD (pu)  0.4962 0.7445 0.7560 0.4248 0.4084 

Red (%) (Ploss) - 9.334 9.365 7.922 7.745 
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Figure 3.22. Performance of 40 search agents for 40 trial runs 

 

Figure 3.23. Convergence characteristic of IEEE 14-bus system for PLoss minimization 

3.4.2.2. Voltage Deviation minimization. 

In this section the proposed algorithms are applied to minimize the total voltage deviation 

(TVD). In this case, the best results of the voltage deviation minimization achieved by MFO, 
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process for MFO, GWO, AHA and ALO simultaneously. From this figure it can be seen that 

satisfactory results can be achieved by ALO and AHA methods after about 200 iterations, which 

reflects their good search capability over the other two techniques. Figure 3.27 shows the bus 

voltage profiles of the best solutions obtained using the proposed methods. It is clear from this 

figure that the voltage profile has been significantly improved. 
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Table 3.5. Simulation results of proposed algorithms for IEEE 14-bus test system 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. Performance of 30 search agents for 40 trial runs 

 

Figure 3.25. Performance of 40 search agents for 40 trial runs 

Control variables  Initial AHA ALO GWO MFO 

V1 1.0600 1.0563 0.9669 0.9315 0.9000 

V2 1.0450 1.0268 1.0527 1.0726 1.0521 

V3 1.0100 1.0012 1.0323 1.0817 1.0274 

V6 1.0700 1.0130 1.0128 1.0130 1.0129 

V8 1.0900 1.0274 0.9689 0.9215 0.9746 

T4–7 0.9780 1.0311 0.9622 0.9131 0.9681 

T4–9 0.9690 0.9879 0.9921 0.9426 0.9947 

T5–6 0.9320 0.9394 0.9996 1.0167 1.1000 

QC9   0.1800  16.1616 16.6651 0.0603 

QC14 0.1800 13.0441 12.9962 0.1484 13.0931 

TVD (pu)   0.4962 0.0082  0.0082  0.0124 0.008005 

Ploss (MW) 13.4919 13.8139 23.3005 36.0771  37.4749  

TVD Red (%)  - 98.347 98.347 97.501 98.387 
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Figure 3.26. Convergence characteristic of IEEE 14-bus system for TVD minimization  

  

Figure 3.27. Voltage profiles of IEEE 14-bus system for TVD minimization 

3.4.3. ORPD simulation (case of IEEE 30-bus test system) 

In this case, the IEEE 30 bus system (figure 3.28) includes six generation buses connected on 

the bus number 1, 2, 5, 8, 11 and 13, 24 load buses and 41 branches. Four branches are 

transformers with tap changers in lines (6, 9), (6, 10), (4, 12) and (27, 28). In addition, buses 

10, 12, 15, 17, 20, 21, 23, 24 and 29 were selected to receive shunt capacitors. This IEEE 30 

bus test system included 19 control variables. The total system real power demand is 2.834 p.u. 

at 100 MVA base. The voltages of the load buses as well as generator buses have been 

constrained within limits between 0.9 p.u. and 1.1 p.u. The operating range of all tap 
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transformers is set between 0.9 and 1.1. The range of capacitor bank considered is between 0 

and 5 MVAR (Table 3.6). The total active and reactive loads are Pload = 2.834 p.u and Qload = 

1.262 p.u. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.28. Single-line diagram of IEEE 30 bus test system. 

Table 3.6. The limits of the control variables for IEEE 30-bus test system 

Variable limits Lower limit (pu) Upper limit (pu) 

Generator buses voltage 0.9 1.1 

Load buses voltages 0.9 1.1 

Transformers tap setting 0.9 1.1 

Shunt compensators (MVAR) 0 5 

3.4.3.1. Active power loss minimization. 

 Table 3.7 shows the optimum values of the control variables and the active power losses obtained 

by the proposed algorithms. Figures 3.29 and 3.30 illustrate the Performance of all the proposed 

algorithms for 40 trial runs. It can be seen that the active power losses obtained by AHA and 

ALO methods are 4.5127 MW and 4.5315 MW which means a reduction in losses of 17.88% 

and 17.54% respectively. The two others methods (MFO and GWO) have reduced active power 

losses by only 11.32% and 7.60% respectively. Table 3.8 compares the results obtained from 

MFO, GWO, AHA and ALO methods with the other methods in the literature. These results 

indicate that the two proposed ALO and AHA methods exceed all other methods in performance, 

except for the GSA method, which surpassed the ALO method by 0.0172 MW, resulting in a 

decrease of less than 0.31%. The best result in terms of loss reduction obtained by GSA is 

17.859%, while the AHA and ALO methods are 17.888% and 17.546% respectively. Figure 3.31 

shows the convergence characteristics of real power losses of the four proposed methods. 
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Table 3.7. Simulation results of proposed algorithms for IEEE 30-bus test system 

Control variables Initial AHA ALO GWO MFO 

V1 1.0600 1.1000 1.1000 1.0716 1.0705 

V2 1.0430 1.0941 1.0945 1.0625 1.0612 

V5 1.0100 1.0745 1.0753 1.0402 1.0382 

V8 1.0100 1.0759 1.0772 1.0386 1.0383 

V11 1.0820 1.0998 1.1000 1.0977 1.0397 

V13 1.0710 1.1000 1.1000 1.0511 1.0205 

T6–9 0.9320 1.0369 0.9864 1.0192 1.1000 

T6–10 0.9780 0.9003 0.9765 0.9869 0.9345 

T4–12 0.9690 0.9731 0.9878 0.9814 1.0275 

T27–28 0.9680 0.9634 0.9789 0.9795 1.0052 

QC10  0.0000 4.9439 4.9981 2.2670 0.0000 

QC12 0.0000 4.9917 4.9968 4.0813 3.0784 

QC15  0.0000 4.8621 4.9318 1.6247 5.0000 

QC17 0.0000 4.9837 4.6289 4.6196 5.0000 

QC20 0.0000 4.1728 3.3762 2.8740 5.0000 

QC21 0.0000 4.9996 4.9219 2.2094 5.0000 

QC23 0.0000 2.6848 3.7978 2.8866 3.3328 

QC24 0.0000 4.9622 4.8002 4.7419 5.0000 

QC29 0.0000 2.2485 4.1211 2.6607 2.6378 

Ploss(MW)  5.4958 4.5127 4.5315 4.8733 5.0776 

TVD (pu) 0.4236 2.0899 2.0033 0.8205 0.3217 

Ploss Red (%) - 17.888 17.546 11.327 7.609 

Table 3.8. Comparative results of IEEE 30-bus test system 

Methods Active power losses (MW) Reduction (%) 

PSO [124] 4.7779 13.062 

PSO-TVAC [124] 4.6469 15.446 

WOA [124] 4.5943 16.403 

BBO [18] 4.5511 17.189 

DE [14]       4.5550 17.118 

CLPSO [9]     4.5615 17.000 

PSO [9]         4.6282 15.786 

SARGA [82] 4.5740 16.772 

GSA [19] 4.5143 17.859 

AHA 4.5127 17.888 

ALO 4.5315 17.546 

GWO 4.8733 11.326 

MFO 5.0776 7.609 



CHAPTER 3 | ORPD PROBLEM BASED BIO-INSPIRED OPTIMIZATION ALGORITHMS  

Page | 60  

 

 

Figure 3.29.  Performance of 30 search agents for 40 trial runs 

 

 

 

 

 

 

 

 

 

Figure 3.30. Performance of 40 search agents for 40 trial runs 

 

 

 

 

 

 

 

 

Figure 3.31. Convergence characteristic of IEEE 30-bus system for Ploss minimization 

4,40

4,90

5,40

5,90

6,40

6,90

7,40

7,90

8,40

8,90

9,40

1 51 101 151 201 251 301 351 401 451

P
lo

ss
 (

M
W

)

runs

MFO GWO AHA ALO

4,5

4,52

4,54

4,56

4,58

4,6

4,62

0 5 10 15 20 25 30 35 40

P
lo

ss
 (

M
W

)

runs

AHA ALO

4,85

4,9

4,95

5

5,05

5,1

5,15

5,2

5,25

5,3

0 5 10 15 20 25 30 35 40

P
lo

ss
(M

W
)

runs

MFO GWO



CHAPTER 3 | ORPD PROBLEM BASED BIO-INSPIRED OPTIMIZATION ALGORITHMS  

Page | 61  

 

3.4.3.2. Voltage Deviation minimization. 

In this case the total voltage deviation minimization (TVD) is considered and optimized using 

different proposed methods. The optimal values that obtained by these methods are listed in 

Table 3.9. Referring to this Table it is realized that the TVD is upgraded by 78.116% from 

AHA, 79.344% from MFO, 76.440% from ALO, and 73.654% from the GWO algorithm. These 

results show that AHA and MFO leads to obtain the highest reduction of TVD compared to 

ALO and GWO. The IEEE 30-bus Convergence characteristic for TVD minimization of AHA, 

MFO, ALO and GWO algorithms is displayed in Figure 3.34. The Performance of all methods 

for 40 trial runs are exhibited in Figure 3.32 and 3.33. The voltage profile at all buses for IEEE 

30-bus is illustrated in Figure. 3.35. From this figure, we can see that the voltage profiles of 

this test system have been improved compared with the initial state in both AHA and MFO 

methods.     

Table 3.9. Simulation results of proposed algorithms for IEEE 30-bus test system 

Control variables Initial AHA ALO GWO MFO 

V1 1.0600 1.0125 0.9956 0.9756 0.9958 

V2 1.0430 1.0084 1.0975 1.0006 0.9974 

V5 1.0100 1.0195 1.0175 1.0140 1.0195 

V8 1.0100 1.0028 1.0123 1.0028 1.0005 

V11 1.0820 1.0336 0.9077 1.0866 1.0593 

V13 1.0710 1.0203 0.9645 1.0661 1.0436 

T6–9 0.9320 1.0410 0.9127 1.0945 1.0786 

T6–10 0.9780 0.9107 0.9000 0.9083 0.9000 

T4–12 0.9690 0.9941 0.9010 1.0867 1.0402 

T27–28 0.9680 0.9581 0.9651 0.9489 0.9637 

QC10  0.0000 4.9650 2.2691 0.0454 5.0000 

QC12 0.0000 0.1328 0.4662 0.0206 0.1829 

QC15  0.0000 4.8455 4.3654 0.0319 5.0000 

QC17 0.0000 0.0018 1.7544 0.0243 0.0000 

QC20 0.0000 4.9985 4.8976 0.0446 5.0000 

QC21 0.0000 4.8327 3.7088 0.0164 5.0000 

QC23 0.0000 4.9763 4.4438 0.0467 5.0000 

QC24 0.0000 4.9472 3.1092 0.0417 5.0000 

QC29 0.0000 1.6340 2.6276 0.5973 2.3118 

TVD (pu) 0.4236 0.0927 0.0998 0.1116 0.0875 

Ploss (MW) 5.4958 5.7020 15.8529 6.9918 8.1475 

TVD Red (%) - 78.116 76.440 73.654 79.344 
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Figure 3.32. Performance of 30 search agents for 40 trial runs 

Figure 3.33. Performance of 40 search agents for 40 trial runs 

Figure 3.34. Convergence characteristic of IEEE 30-bus system for TVD minimization 
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Figure 3.35. Voltage profiles of IEEE 30-bus system for TVD minimization 

3.4.4. ORPD simulation (case of IEEE 57-bus test system) 

To further evaluate the proposed methods, the IEEE 57-bus system is used (Figure 3.36). This 

benchmark is a medium-sized network, with 57 buses, 80 transmission lines, 7 generators at 

buses 1, 2, 3, 6, 8, 9 and 12. 15 branches are under load change tap transformers. Three shunt 

reactive power sources are installed at buses 18, 25 and 53. The system line data, bus data, 

variable limits and the initial values of the control variables were given in [126], [127]. The 

search space of this case system has 25 dimensions, including 7 generator voltages, 15 

transformer taps and 3 reactive power sources. The upper and lower limits of Bus generator 

Voltages, Bus load Voltages, Tap setting transformers and Shunt compensators of the test 

system are given in Table 3.10. The system loads are given as follows: Pload = 12.508 p.u., 

Qload = 3.364 p.u. The initial total generations and power losses are as follows: PG = 12.7926 

p.u., QG = 3.4545 p.u., Ploss = 0.28462 p.u. 

Table 3.10. The limits of the control variables for IEEE 57-bus test system 

Variables Lower limit (pu) Upper limit (pu) 

Generator buses voltage 0.9 1.1 

Load buses voltage 0.9 1.1 

Transformers tap setting 0.9 1.1 

Shunt compensators (MVAR) 0 30 
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Figure 3.36. Single line diagram of IEEE 57 bus system 

3.4.4.1. Active power loss minimization. 

In this part, the objective function adopted is the minimization of the active power losses by 

means of the AHA, ALO, GWO and MFO algorithms. Table 3.11 shows the minimum value 

of power loss in MW and their percentage of loss reduction obtained by different proposed 

techniques. The total active power losses are reduced from the base case which is 28.462 MW 

to 21.4918 MW, 21.8631 MW, 24.0086 MW and 23.6101 MW by using AHA, ALO, GWO 

and MFO algorithms respectively. From this achievement, AHA algorithm is able to excel 

ALO, GWO and MFO algorithms. These methods produce respectively about 23.186 % 15.648 

% and 17.050 % of loss reduction from the base case compared to AHA method which reduces 

losses by 24.490%. From Table 3.12, it is seen that the AHA algorithm outperforms many 

algorithms in literature. the best result was found by the CBA-IV method (22.83%), which is 

below the AHA result of 1.65%. Additionally, it can be noticed that the obtained control 

variables as shown in Table 3.12 are all within the range of the limit. Figure 3.37 and Figure 

3.38 show the performance of the proposed algorithms for 40 independent runs. Figure 3.39. 

shows the convergence curves of the considered optimizers and it is noticeable that the AHA 

algorithm converges to a high-quality solution in the first quarter of iterations. 



CHAPTER 3 | ORPD PROBLEM BASED BIO-INSPIRED OPTIMIZATION ALGORITHMS  

Page | 65  

 

Table 3.11. Simulation results of proposed algorithms for IEEE 57-bus test system 

Control variables Initial AHA ALO GWO MFO 

V1 1.0400 1.1000 1.1000 1.0787 1.0751 

V2 1.0100 1.0967 1.0985 1.0685 1.0720 

V3 0.9850 1.0843 1.0871 1.0439 1.0548 

V6 0.9800 1.0769 1.0810 1.0366 1.0451 

V8 1.0050 1.0987 1.1000 1.0469 1.0654 

V9 0.9800 1.0833 1.0843 1.0335 1.0471 

V12 1.0150 1.0813 1.0791 1.0287 1.0406 

T4–18 0.9700 0.9316 0.9740 1.0158 0.9000 

T4–18 0.9780 0.9113 0.9282 0.9591 1.0933 

T21–20 1.0430 0.9987 0.9984 0.9618 1.0072 

T24–26 1.0430 0.9870 1.0377 0.9919 1.0039 

T7–29 0.9670 0.9074 0.9657 0.9834 0.9962 

T34–32 0.9750 0.9491 0.9754 0.9411 0.9520 

T11–41 0.9550 0.9062 1.0221 0.9225 0.9112 

T15–45 0.9550 0.9055 0.9095 0.9774 0.9913 

T14–46 0.9000 0.9053 0.9078 0.9729 0.9720 

T10–51 0.9300 0.9199 0.9228 0.9988 0.9854 

T13–49 0.8950 0.9007 0.9000 0.9420 0.9420 

T11–43 0.9580 0.9046 0.9941 0.9756 0.9789 

T40–56 0.9580 0.9997 1.0840 0.9881 0.9973 

T39–57 0.9800 0.9857 1.0583 0.9549 0.9681 

T9–55 0.9400 0.9125 0.9721 0.9838 0.9974 

QC18 0.0000 10.6871 18.4544 0.0277 0.0968 

QC25 0.0000 12.0956 16.6199 0.1165 0.1330 

QC53 0.0000 10.3264 15.3966 0.1129 0.1278 

Ploss (MW) 28.4623 21.4918 21.8631 24.0086 23.6101 

TVD (p.u) 1.5528 6.7249 5.6735 1.1006 1.2372 

Ploss Red (%) - 24.490 23.186 15.648 17.05 

  Table 3.12. Comparative results of IEEE 57-bus test system 

Methods  Ploss (MW) Reduction (%) Methods  Ploss (MW) Reduction (%) 

CFA [125] 24.2900 14,6590 SOA [125] 24.2654 14,7455 

ABC [125] 23.9600 15,8536 BBO [125] 24.5440 13,7666 

CKHA [50] 23.3800 17,8563 OGSA [125] 23.4300 17,6806 

BA [125] 22.2716 21,7505 GSA [125] 23.4600 17,5752 

ABC [125] 23.9666 15,7953 GWO  24.0086 15,6477 

NGBWCA [125] 23.2700 18,2427 MFO 23.6101 17,0478 

MICA-IWO [125] 24.2568 14,7757 ALO 21.8631 23,1858 

CBA-IV [125] 21.9627 22,8358 AHA 21.4918 24,4903 
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Figure 3.37. Performance of 30 search agents for 40 trial runs 

 

Figure 3.38. Performance of 40 search agents for 40 trial runs 
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Figure 3.39. Convergence characteristic of IEEE 57-bus system for Ploss minimization 

3.4.4.2. Voltage Deviation minimization. 

The best results of control variables and power losses yielded by the proposed algorithms are 

tabulated in Table 3.13. According to this Table, it can be observed that the AHA yielded a 

TVD value of 0.5637 compared with the results 0.5747, 0.68197 and 0.6820 achieved by ALO, 

GWO and MFO respectively. It is also recognized from the same Table that an improvement 

of 63.698% in TVD has been achieved by using AHA in comparison to 62.989% with ALO, 

56.081% with GWO and 56.079% with MFO. Figures 3.40 and 3.41 illustrate the Performance 

of all the proposed algorithms for 40 trial runs. These Figures clearly show that the proposed 

method AHA converges to lower value in comparison with ALO, GWO and MFO methods. 

The 57-bus convergence characteristics of MFO, GWO, AHA and ALO is displayed in figure 

3.42. From this figure, it is clear that the convergence characteristics of TVD for the AHA and 

ALO outperform the two other algorithms. The voltage profile at all buses for IEEE 57-bus is 

depicted in Figure. 3.43. From this figure, we can see that the voltage profiles of this test 

system have been improved compared with the initial state in both AHA and ALO methods.   
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  Table 3.13. Simulation results of proposed algorithms for IEEE 57-bus test system 

Control variable Initial AHA ALO GWO MFO 

V1 1.0400 1.0463 1.0173 1.0236 0.9941 

V2 1.0100 0.9288 0.9225 0.9808 0.9253 

V3 0.9850 1.0105 1.0104 1.0222 1.0429 

V6 0.9800 1.0019 1.0021 0.9768 0.9281 

V8 1.0050 1.0053 1.0070 1.0573 1.1000 

V9 0.9800 1.0461 1.0249 1.0264 0.9895 

V12 1.0150 0.9934 1.0078 1.0047 1.0490 

T4–18 0.9700 1.0268 1.0308 0.9799 0.9000 

T4–18 0.9780 0.9994 0.9572 1.0296 1.1000 

T21–20 1.0430 0.9776 0.9951 0.9832 0.9840 

T24–26 1.0430 1.0051 1.0042 0.9991 0.9940 

T7–29 0.9670 0.9818 0.9826 0.9942 1.0195 

T34–32 0.9750 0.9254 0.9324 0.9406 0.9320 

T11–41 0.9550 0.9002 0.9000 0.9013 0.9000 

T15–45 0.9550 0.9011 0.9250 0.9538 0.9506 

T14–46 0.9000 1.0031 0.9736 0.9562 0.9655 

T10–51 0.9300 1.0010 1.0033 0.9959 1.0096 

T13–49 0.8950 0.9000 0.9000 0.9002 0.9000 

T11–43 0.9580 0.9872 0.9874 0.9905 0.9932 

T40–56 0.9580 1.0052 0.9700 0.9814 0.9000 

T39–57 0.9800 0.9160 0.9130 0.9651 0.9511 

T9–55 0.9400 1.0465 1.0099 0.9892 0.9909 

QC18 0.0000 13.4437 13.8252 0.1223 0.1588 

QC25 0.0000 12.4409 15.1368 0.1609 0.1728 

QC53 0.0000 25.9873 21.7412 0.0574 0.2855 

TVD (pu) 1.5528 0.5637 0.5747 0.68197 0.6820 

Ploss (MW) 28.4623 46.9736 41.0056 30.8434 91.0664 

TVD Red (%) - 63.698 62.989 56.081 56.079 

 

 

Figure 3.40. Performance of 30 search agents for 40 trial runs 
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Figure 3.41. Performance of 40 search agents for 40 trial runs 

 

Figure 3.42. Convergence characteristic of IEEE 57-bus system for TVD minimization 

 

 

Figure 3.43. Voltage profiles of IEEE 57-bus system for TVD minimization 
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3.4.5. ORPD simulation (case of IEEE 118-bus test system) 

To test the potential of proposed algorithms in solving large scale systems the standard IEEE 

118 bus test system is considered. The single-line diagram of the IEEE 118-bus test system is 

shown in Figure 3.44. This test system has 54 generator buses, 64 load buses, 186 transmission 

lines, 9 transformer taps and 14 reactive power sources. In this case, the search space of this 

system has 77 dimensions, that is, 54 generator buses, 9 transformer taps and 14 reactive power 

sources. The system line data, bus data, variable limits and the initial values of control variables 

are available in [9],[128]. The load demand is 4242 MW and 1438 MVar on 100MVA base. 

The initial total generations and power losses are: PG = 43.7536 p.u., QG = 8.8192 p.u., Ploss = 

1.33357 p.u. the limits values of voltages for all generating units and tap setting transformer 

control variables are considered to be 0.9–1.1 in p.u, the maximum and minimum values for 

voltages at all load buses are 1.06 and 0.94 in p.u, respectively. In this large electrical test 

system two objective functions are considered, the active power losses and voltage deviation.  

3.4.5.1. Active power loss minimization. 

for this case, the proposed metaheuristic algorithms namely AHA, ALO, GWO and MFO are 

implemented to minimize active power losses. The best ORPD solutions and the corresponding 

control  variables  settings  obtained  by  the  proposed  approaches in 40 trials are presented in  

Figure 3.44. Single line diagram of IEEE 118 bus system 
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Figure 3.45 and Table 3.14. The results indicate that applying These methods lead to 107.6843 

MW, 107.6475 MW, 122.878 MW and 111.4051 MW respectively. It can be seen also from 

Table 3.14 that a 18.979 % decrease (from the initial power loss of 132.8630 MW) in active 

power loss is achieved with the ALO algorithm, which performs better than AHA, GWO and 

MFO algorithms which reduced losses by only 18.951%, 7.515% and 16.150% respectively. 

Table 3.15 which compares the proposed algos with other algorithms in the literature, indicates 

that ALO approach achieved the biggest reduction of active power loss in comparison to that 

obtained by the other approaches in particular, SFS and QOTLBO which reduces active power 

losses by 14,934% and 15,493% respectively. The performance of AHA, ALO, GWO and MFO 

for 40 independent trial runs is shown in Figure 3.46 and 3.47. From these figures, it can be 

seen that the difference between worst and best solution doesn’t exceed 1.8 MW for the ALO 

method and doesn’t exceed 4 MW for the GWO and AHA methods. This clearly reflects the 

stability and robustness of the ALO algorithm in term of exploring the optimal solution at each 

trial, compared with the other algorithms. The convergence characteristics of all implemented 

algorithms for 118-bus system is shown in Figure 3.48. According to this Figure, it is clearly 

that ALO algorithm converges to optimal real power loss after less than 75 iterations. Based on 

the real power loss and convergence characteristics, it is come to an end that the ALO algorithm 

provides superior results than the other implemented algorithms. 

 

Figure 3.45. Generator voltages of IEEE 118 bus system 
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Table 3.14. Simulation results of proposed algorithms for IEEE 118-bus test system  

Control Variables Initial AHA ALO GWO MFO 

𝑻𝟖 0.9850 0.9963 1.0167 0.9624 0.9000 

𝑻𝟑𝟐 0.9600 1.0773 1.0096 1.0012 0.9000 

𝑻𝟑𝟔 0.9600 1.0005 1.0233 1.0011 0.9507 

𝑻𝟓𝟏 0.9350 0.9887 1.0227 0.9476 0.9000 

𝑻𝟗𝟑 0.9600 0.9875 1.0296 0.9179 0.9467 

𝑻𝟗𝟓 0.9850 0.9849 1.0706 0.9898 0.9000 

𝑻𝟏𝟎𝟐 0.9350 1.0197 1.1000 1.0619 1.0944 

𝑻𝟏𝟎𝟕 0.9350 0.9563 1.0792 0.9236 0.9000 

𝑻𝟏𝟐𝟕 0.9350 0.9644 1.0163 0.9326 0.9655 

𝑸𝑪𝟓 0.0000 -21.4094 -19.4555 -15.1507 -40.000 

𝑸𝑪𝟑𝟒 0.0000 2.4593 8.8726 4.1052 13.9977 

𝑸𝑪𝟑𝟕 0.0000 -2.8253 -10.5976 -12.6576 -15.0000 

𝑸𝑪𝟒𝟒 0.0000 5.6260 4.3510 9.6675 7.7034 

𝑸𝑪𝟒𝟓 0.0000 6.0608 9.6419 3.2449 7.9514 

𝑸𝑪𝟒𝟔 0.0000 4.8216 4.5536 6.8210 8.1223 

𝑸𝑪𝟒𝟖 0.0000 2.2088 8.5382 6.0974 10.0000 

𝑸𝑪𝟕𝟒 0.0000 4.5928 8.3175 2.4338 0.0000 

𝑸𝑪𝟕𝟗 0.0000 16.0019 1.4969 13.4165 19.9532 

𝑸𝑪𝟖𝟐 0.0000 17.8840 12.2959 6.2711 0.0000 

𝑸𝑪𝟖𝟑 0.0000 8.6921 3.4439 4.8435 0.0000 

𝑸𝑪𝟏𝟎𝟓 0.0000 8.5596 10.2205 12.6798 20.000 

𝑸𝑪𝟏𝟎𝟕 0.0000 3.0726 4.0117 2.8928 5.7356 

𝑸𝑪𝟏𝟏𝟎 0.0000 2.7430 2.1072 5.3290 4.4769 

Ploss (MW) 132.8630 107.6843 107.6475 122.878 111.4051 

TVD / 4.5456 5.5389 1.1651 5.2609 

Ploss Red (%) / 18.951 18.979 7.515 16.150 

 

Table 3.15. Comparative results of IEEE 118-bus test system 

Methods  Ploss (MW) Reduction (%) Methods Ploss (MW) Reduction (%) 

PSO-TVIW [129] 116,8976 12,016 SFS [129] 113,0213 14,934 

PSO-TVAC [129] 124,3335 6,420 ABC [130] 117,9922 11,193 

SPSO-TVAC [129] 116,2026 12,540 BRCFF [130] 116,5817 12,254 

PSO-CF [129] 115,6469 12,958 TLA [130] 116,0682 12,641 

PG-PSO [129] 116,6075 12,235 DE [130] 119,2770 10,226 

SWT-PSO [129] 124,1476 6,5600 MTLA [130] 114,2213 14,031 

PGSWTPSO [129] 119,4270 10,113 DDE [130] 116,4792 12,331 

MPG-PSO [129] 115,0600 13,400 MTLA-DDE [130] 113,9814 14,211 

SARCGA [129] 113,1200 14,860 GWO 122,8780 7,5150 

HEP [129] 115,5800 13,008 MFO 111,4051 16,150 

QOTLBO [24] 112,2789 15,493 AHA 107,6843 18,951 

TLBO [24] 116,4003 12,391 ALO 107,6475 18,979 
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Figure 3.46. Performance of 30 search agents for 40 trial runs 

 

Figure 3.47. Performance of 40 search agents for 40 trial runs 

 

Figure 3.48. Convergence characteristic of IEEE 118-bus system for Ploss minimization 
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3.4.5.2. Voltage Deviation minimization. 

The optimal solutions obtained by AHA, ALO, GWO and MFO for the objective of voltage 

profile improvement of IEEE 118 bus system are given in Figure 3.49 and Table 3.16. It may 

be noted that all the control variables are in their specified limits. It is observed from the 

simulation results of this table that, in the 40 independent runs performed, the proposed 

algorithms have substantially reduced voltage deviation. Initially, the total voltage deviation 

was 1.43933 p.u. It can be seen that the TVD obtained by AHA, ALO, GWO and MFO are 

0.2203 p.u (84.694% reduction), 0.2638 p.u (81.669% reduction), 0.2859 p.u (80.132% 

reduction) and 0.3360 p.u (76.653% reduction) respectively. Moreover, it is observed that the 

voltage profile improvement is most significant for AHA among all the algorithms. 

Consequently, the proposed AHA algorithm not only benefits from high quality solutions, but 

also by guarantee the feasibility of solutions for large-scale test system. The voltage profiles of 

all load buses for this case of all proposed methods are depicted in Figure 3.53. It can be seen 

that all bus voltage magnitudes are within the admissible limits. The convergence curves of the 

total voltage deviation for IEEE 118-bus system for four implemented algorithms AHA, GWO 

and MFO is presented in Figure 3.52. According to this Figure, it is clearly that proposed 

algorithm converges to optimal TVD after less than 120 iterations. Figure 3.50 and Figure 3.51 

disclose the performance of all proposed algorithms for 40 independent execution runs. It 

observed that the best and worst results of AHA are 0.2121 p.u and 0.3461 p.u, respectively in 

which difference between them is no longer than 0.134 p.u. 

 

Figure 3.49. Generator voltages of IEEE 118 bus system 
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 Table 3.16. Simulation results of proposed algorithms for IEEE 118-bus test system 

Control Variables Initial AHA ALO GWO MFO 

𝑻𝟖 0.9850 0.9798 0.9326 0.9387 1.0335 

𝑻𝟑𝟐 0.9600 1.0484 0.9440 0.9098 0.9000 

𝑻𝟑𝟔 0.9600 1.0065 0.9858 0.9954 0.9932 

𝑻𝟓𝟏 0.9350 0.9791 0.9731 0.9582 0.9717 

𝑻𝟗𝟑 0.9600 0.9888 1.0139 1.0263 0.9620 

𝑻𝟗𝟓 0.9850 0.9980 0.9975 0.9921 0.9696 

𝑻𝟏𝟎𝟐 0.9350 1.0076 0.9739 1.0178 0.9000 

𝑻𝟏𝟎𝟕 0.9350 1.0869 0.9872 0.9669 0.9149 

𝑻𝟏𝟐𝟕 0.9350 0.9793 0.9684 0.9616 0.9842 

𝑸𝑪𝟓 0.0000 -35.0337 -25.7814 -15.3768 -0.0725 

𝑸𝑪𝟑𝟒 0.0000 13.8517 5.2623 7.9276 0.0000 

𝑸𝑪𝟑𝟕 0.0000 -13.8341 -4.8685 -5.9316 -8.9112 

𝑸𝑪𝟒𝟒 0.0000 9.9654 1.1697 2.4040 8.8190 

𝑸𝑪𝟒𝟓 0.0000 9.4345 9.2826 8.7758 10.000 

𝑸𝑪𝟒𝟔 0.0000 7.3992 4.5030 2.6082 0.0000 

𝑸𝑪𝟒𝟖 0.0000 0.2283 4.7879 6.3307 0.0000 

𝑸𝑪𝟕𝟒 0.0000 6.4251 11.2930 8.6687 11.7248 

𝑸𝑪𝟕𝟗 0.0000 9.9770 8.8584 1.2169 0.0009 

𝑸𝑪𝟖𝟐 0.0000 19.7495 17.8508 16.7987 19.2552 

𝑸𝑪𝟖𝟑 0.0000 1.6203 5.8952 6.2343 10.0000 

𝑸𝑪𝟏𝟎𝟓 0.0000 10.2114 3.1191 3.1189 0.0000 

𝑸𝑪𝟏𝟎𝟕 0.0000 2.5711 5.4032 1.3913 0.0000 

𝑸𝑪𝟏𝟏𝟎 0.0000 0.6602 4.4634 2.3626 5.9861 

TVD 1.43933 0.2203 0.26384 0.28597 0.33604 

PLoss(MW) / 170.9650 144.8889 162.6252 237.8739 

Red (%) / 84.694 81.669 80.132 76.653 

 

Figure 3.50. Performance of 30 search agents for 40 trial runs 
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Figure 3.51. Performance of 40 search agents for 40 trial runs 

Figure 3.52. Convergence characteristic of IEEE 118-bus system for TVD minimization 

 

Figure 3.53. Voltage profiles of IEEE 118-bus system for TVD minimization 



CHAPTER 3 | ORPD PROBLEM BASED BIO-INSPIRED OPTIMIZATION ALGORITHMS  

Page | 77  

 

3.5. Statistical analysis  

Several metaheuristic algorithms have been used to solve the optimal reactive power dispatch 

problem. The performance of these algorithms is strongly related to its parameterization and to 

the structure of the problem to optimize. The choice of the metaheuristic is a complex task that 

requires a good knowledge of the algorithm and the problem to be optimized. As these 

algorithms are iterative stochastic processes, evaluating their performance requires the use of 

the appropriate statistical tools [131]. Several tests were carried out throughout this work in 

order to conduct statistical studies to confirm the effectiveness of the proposed methods. For 

this reason, we are going to focus on two statistical study methods, namely: the Box-and-

whisker plot also known as the Box plot and the analysis of a one-way Analysis of Variance 

(ANOVA). The statistical studies were carried out on the results obtained by AHA, ALO, GWO 

and MFO for the objective of voltage minimization of active power losses. These two statistical 

analysis methods (Box plot and One-way ANOVA) were applied to the results obtained by the 

different test systems namely IEEE 14-bus, IEEE 30-bus, IEEE 57-bus and IEEE 118-bus. The 

one-factor analysis of variance was carried out using Excel 2013, and the whisker box-plot 

using R software. 

3.5.1. Box-and-whisker plot (Box-plot) 

3.5.1.1. Definition of Box-and-whisker plot  

The method to summarize a set of data that is measured using an interval scale is called a box 

and whisker plot and commonly also known as a boxplot. It is a statistical visualization that 

provides a graphical representation of the distribution of a dataset. In most cases, a histogram 

analysis provides a sufficient display, but a box and whisker plot can provide additional details. 

The box-plot is a useful way to compare different sets of data as you can draw more than one 

box-plot per graph. The shape of the box-plot shows how the data is distributed and it also 

shows any outliers. It is easy to see where the main bulk of the data is, and make that comparison 

between different groups. These can be displayed alongside a number line, horizontally or 

vertically. Box and whisker plot displays the five-number summary of a set of data:  

• Minimum and Maximum: The smallest and largest values in the dataset, excluding 

outliers (if they exist). 

• Quartiles (Q1, Q2(Median), Q3): Quartiles divide the dataset into four equal parts. Q1 

represents the boundary below which 25% of the data falls, Q2 (the median) marks the 

midpoint where 50% of the data lies below and above it, and Q3 denotes the boundary 

below which 75% of the data falls. 

• Interquartile Range (IQR): The range between Q1 and Q3, covering the middle 50% of 

the dataset. 
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• Whiskers: Lines extending from the box in both directions that indicate the range of the 

non-outlier data. They can represent different ranges, often calculated based on the IQR 

or extend to the minimum and maximum within a specified range. 

• Outliers: Data points lying beyond the whiskers, considered as anomalies or extreme 

values in the dataset. 

The Construction of a box plot is based around a dataset’s quartiles, or the values that divide 

the dataset into equal fourths. The first quartile (Q1) is greater than 25% of the data and less 

than the other 75%. The second quartile (Q2) sits in the middle, dividing the data in half. Q2 is 

also known as the median. The third quartile (Q3) is larger than 75% of the data, and smaller 

than the remaining 25%. In a box and whiskers plot, the ends of the box and its center line mark 

the locations of these three quartiles (figure 3.54). Among the software that can create box plots 

is R, which offers solid capabilities for creating, visualizing and analyzing data using box-plots. 

3.5.1.2. The software “R” 

R is a programming language and software environment used primarily for statistical analysis, 

data visualization and graphics. It is an open-source software widely used in statistics, data 

science and academic research. It provides a wide variety of statistical and graphical techniques 

and is highly extensible with numerous packages available for various purposes. R is popular 

among statisticians, data miners, and analysts for its robustness in data analysis, visualization, 

and machine learning. It's an open-source platform, fostering a strong community that 

contributes to its evolution and the creation of new packages and functionalities. The R software 

environment includes an extensive collection of libraries, a command-line interface, and a 

graphical interface (like RStudio) that facilitate data analysis, statistical modeling, and the 

creation of visualizations and reports. Its flexibility and robustness have made it a popular 

choice among statisticians, data analysts, researchers, and anyone working with data-driven 

decision-making processes. 

3.5.1.3. Box-and-whisker plot applications on test systems 

3.5.1.4. Box-plot applied on IEEE 14-bus test system 

Table 3.17 shows the mean, standard deviation (SD), interquartile range (IQR), median, first 

and third quartile, minimum and maximum of the trials for the three algorithms (AHA, ALO, 

GWO and MFO) for minimizing active power losses. Based on this data, we were able to 

produce a Box and whisker for this test system, considering 40 independent trials, as shown in 

Figure 3.55. It can be seen that the standard deviation of AHA, ALO, GWO and MFO are 

0.01803617 (MW), 0.02724562 (MW), 0.01862761 (MW) and 0.01332164 (MW) respectively, 
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Figure 3.54. Different parts of Box-plot 

Table 3.17. The statistical results of the experimental simulation (IEEE 14-bus test system) 

Methods Mean SD IQR Min 1stquartile Median 3rdquartile Max 

AHA 12.24619 0.01803617 0.018825 12.2325 12.23412 12.23950 12.25295 12.3136 

ALO 12.27343 0.02724562 0.035900 12.2284 12.25445 12.27335 12.29035 12.3389 

GWO 12.48572 0.01862761 0.022625 12.4227 12.47575 12.48730 12.49837 12.5261 

MFO 12.46005 0.01332164 0.019750 12.4470 12.44837 12.45625 12.46813 12.4896 

which means that the values obtained by these methods are all close to their means. The smallest 

value of the standard deviation is that of MFO (0.01332 MW). It is also notable that the 

interquartile range (0.018825) and the mean (12.24619) and the minimum solution (12.2325 

MW) of AHA are lower than that of the other algorithms which means that AHA has the most 

homogeneous values. We can therefore conclude that the AHA method performs best in 

minimizing active losses in this network. More generally, we can say that the proposed method 

is the most efficient for solving the optimal power flow problems of the IEEE 14-bus system.  

3.5.1.5. IEEE 30-bus test system 

As with the previous test network, the same work was carried out on the IEEE 30-bus system. 

Table 3.18 shows the statistical results of the experimental simulation. We can see that the 

lowest  (Best)  value  of  active  losses  was  found  by  the AHA method (4.5168 MW) and the 
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Figure 3.55. Box-and-whisker plot of IEEE 14-bus test system 

highest by the MFO method (5.2400 MW). The best mean (4.516820 MW) is also found by the 

AHA method. Figure 3.56 shows three points beyond the maximum values of the AHA method, 

which represent the outliers (extreme values) of this method located in 4th and 10th position. 

The lowest standard deviation is that of the AHA method (0.006499515 MW), which means 

that its rate of dispersion around its mean is very low compared with the other methods. AHA 

also has the lowest standard deviation (0.006499515 MW), which means that its rate of 

dispersion around its mean is very low compared with other methods. AHA is also the most 

homogeneous of the other algorithms because its interquartile range (Q3-Q1) is the lowest 

(0.002375 MW). We can therefore conclude that, the AHA method performs very well when 

optimizing the IEEE 30-bus system and can determine the optimal solution.  

Table 3.18. The statistical results of the experimental simulation (IEEE 30-bus test system) 

Methods Mean SD IQR Min 1stquartile Median 3rdquartile Max 

AHA 4.516820 0.006499515 0.002375 4.5127 4.514550 4.51540 4.516925 4.5547 

ALO 4.573372 0.020012483 0.025800 4.5315 4.560025 4.56955 4.585825 4.6152 

GWO 4.925835 0.015852179 0.015375 4.8733 4.920475 4.92745 4.935850 4.9478 

MFO 5.108980 0.036282610 0.021475 5.0776 5.087925 5.09745 5.109400 5.2400 
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Figure 3.56. Box-and-whisker plot of IEEE 30-bus test system 

3.5.1.6. IEEE 57-bus test system 

Table 3.19 shows the statistical results of the experimental simulation. The best mean, the 

lowest standard deviation and the lowest IQR are found by the AHA method which are: 

21.66581 MW, 0.1030830 and 0.085275 respectively. We can see also that the lowest value of 

active power losses is found by the AHA method (21.4918 MW) and the highest by the MFO 

method (25.2779 MW). From figure 3.57 we can see that, for the two methods ALO and GWO, 

the distribution is positively asymmetrical, as the top portion of the box and the top whiskers 

are longer than the bottom of the median. The distribution of the MFO method is approximately 

symmetrical, as the two halves of the box are of roughly equal length. The distribution of the 

AHA method is the most concentrated, as the interquartile range is 0.085275 compared with 

0.339725 for ALO, 0.383850 for GWO and 0.805625 for MFO. which means that the rate of 

dispersion of AHA method around its mean is very low. The center of the distribution for the 

MFO method is the highest of the four methods (median at 24.52019). The distribution of the 

GWO method includes potentially extreme values. There are two extreme values, one at 

position 10 and the other at position 17. The statistical analysis of this research illustrated that 

AHA is able to produce competitive results by yielding lower power loss than the other 

algorithms. 
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Table 3.19. The statistical results of the experimental simulation (IEEE 57-bus test system) 

Methods Mean SD IQR Minimum 1stquartile   Median  3rdquartile   Max  

AHA 21.6658 0.1030830 0.085275 21.4918 21.61848 21.64490 21.70375 21.9483 

ALO 22.8012 0.2705268 0.339725 21.8631 22.61530 22.87215 22.95502 23.4346 

GWO 24.4286 0.3223250 0.383850 24.0086 24.19592 24.37025 24.57977 25.2475 

MFO 24.5201 0.5028831 0.805625 23.6101 24.12148 24.57225 24.92710 25.2779 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.57. Box-and-whisker plot of IEEE 57-bus test system 

3.5.1.7. IEEE 118-bus test system 

The statistical performances like, mean, standard deviation, best solution and IQR of active 

power losses obtained in 40 trials are reported in Table 3.20. The results obtained show that the 

active power losses values obtained by AHA (107.6843 MW) and ALO (107.6475 MW) are 

nearer to their means (109.1746 MW, 108.4633 MW) respectively. The distribution of the AHA 

and ALO methods are the most concentrated with an IQR of 1.208100 and 0.455925 

respectively. The Standard deviation of AHA method (0.9010233) and ALO method 

(0.4124813) are lesser than the other techniques. From figure 3.58. We can see that the range 

of AHA, ALO and GWO methods is very small, which means that the solutions found by these 

three methods are homogeneous. The distribution of MFO method is positively asymmetric. 

The centers of the distribution for the AHA and ALO method are the lowest (109.1746 and 

108.4633) respectively. The statistical analysis of this research illustrated that AHA and ALO 

algorithms can be used for solving Optimal reactive power dispatch problems successfully. 
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Table 3.20. The statistical results of the experimental simulation (IEEE 118-bus test system) 

Methods Mean SD IQR Min 1stquartile   Median  3rdquartile   Max  

AHA 109.174 0.9010233 1.208100 107.684 108.4567 109.094 109.6648 111.423 

ALO 108.463 0.4124813 0.455925 107.647 108.2037 108.421 108.6596 109.415 

GWO 125.1201 1.1270939 1.618175 122.8780 124.3752 125.3768 125.9933 126.8411 

MFO 127.9176 11.5391521 13.112600 111.4051 119.4520 127.0788 132.5646 156.5084 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.58. Box-and-whisker plot of IEEE 118-bus test system 

3.5.2. Statistical test of one-way ANOVA 

ANOVA is a statistical method used to compare the means of three or more groups in order to 

determine whether at least one of the group means is significantly different from the others. 

ANOVA examines the variance within the different groups and compares it to the variance 

between the groups. It is generally used when there is a single independent variable, or factor, 

and the objective is to check whether variations in this factor have a measurable effect on a 

dependent variable. We are interested in the main effects of these factors and the effect of their 

interaction on the quantitative (dependent) variable. The principle is to test the null hypothesis 

(H0) that the means of three (or more) populations are equal, against the alternative hypothesis 

(Ha) that at least one mean is different. For k means, according to the official notation for 

statistical hypotheses, we write: 𝐻0 if 𝜇1=𝜇2=⋯=𝜇𝑘 or 𝐻𝑎 if at least one of the means is different 

(where 𝜇𝑘 is the mean of the 𝑘th level of the factor). 

ANOVA generates an 𝐹-statistic and a 𝑝-value. The F-statistic indicates whether there are 

significant differences among the group means, and the p-value tells us the probability of 
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observing such differences due to random chance. If the p-value is below a certain significance 

level (often 0.05), it suggests that there's enough evidence to reject the null hypothesis, 

indicating that there are significant differences between at least two group means. In the case 

of our study, the stochastic nature of the proposed metaheuristic optimization algorithms 

requires to run each technique several times on the same objective function in order to obtain 

the best result values, which probably vary to each execution. In addition to the Box-and-

whisker plot which gives us the mean, worst, best solution and standard deviation, one-way 

analysis of variance (ANOVA) has been performed to observe the statistical significance of the 

difference between the performance of different implemented algorithms. The one-way 

ANOVA results obtained from experimented algorithms on four test systems (IEEE 14-bus, 

IEEE 30-bus, IEEE 57-bus and IEEE 118-bus) are listed in Tables 3.21. In this study, the 

alternative hypothesis is considered. We can see that the value of the probability P is much 

lower than the 0.05 level of significance considered in all test systems. We can state also that 

the null hypothesis is rejected. We can conclude that there is a statistically significant difference 

between the means of the different groups. This is strong evidence that the mean values of the 

groups differ.  

Table 3.21. Analysis of variance for the different study cases. 

IEEE 14-bus test system 

Source of variance SS df MS F P-value F-crit 

Between groups 1,84399107 3 0,61466369 1544,30226 9,972E-116 2,66256855 

Within groups 0,06209117 156 0,00039802    
Total 1,90608224 159     

IEEE 30-bus test system 

Source of variance SS df MS F P-value F-crit 

Between groups 9,6579222 3 3,2193074 6405,10798 4,615E-163 2,66256855 

Within groups 0,07840804 156 0,00050262    

Total 9,73633024 159     

IEEE 57-bus test system 

Source of variance SS df MS F P-value F-crit 

Between groups 226,813516 3 75,6045052 686,384449 1,2798E-89 2,66256855 

Within groups 17,1832314 156 0,11014892    

Total 243,996747 159     

IEEE 118-bus test system 

Source of variance SS df MS F P-value F-crit 

Between groups 12698,1234 3 4232,70778 125,039043 2,6612E-41 2,66256855 

Within groups 5280,76989 156 33,851089    

Total 17978,8932 159     

SS: Sum of Squares; df: Degrees of Freedom; MS: Mean Squares 
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3.6. Conclusion 

Bio inspired algorithms are going to be a new revolution in computer science since they are 

among the most powerful algorithms for optimization. In this chapter, a number of bioinspired 

algorithms were described and presented namely: MFO, GWO, AHA and ALO. These 

proposed bio-inspired algorithms based ORPD problem were applied on a different IEEE test 

systems (from the smallest to the largest), and their results were compared with each other and 

with those of other optimization methods presented in the literature. Considering the cases and 

comparative studies presented in this chapter, the proposed bio-inspired algorithms appear to 

be very effective in particular for their solutions quality as well as their significant active power 

losses and voltage deviation reductions. As these proposed algorithms are iterative stochastic 

processes, evaluating their performance requires the use of statistical tools. In this chapter, 

several tests were carried out in order to conduct statistical studies to confirm the effectiveness 

of the proposed methods. Two statistical study methods, namely: the Box-and-whisker plot and 

the analysis of a one-way Analysis of Variance (ANOVA) are presented. These two statistical 

analysis methods were applied to the results obtained by the different test systems namely IEEE 

14-bus, IEEE 30-bus, IEEE 57-bus and IEEE 118-bus. 
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Chapter  4 

HYBRID OPTIMIZATION BASED METAHEURISTIC METHODS FOR THE ORPD PROBLEM  

4.1. Introduction 

Optimization problems are of great importance in many fields. They can be tackled, for 

example, by approximate algorithms such as metaheuristics. Metaheuristic algorithms are 

problem-solving techniques used to find approximate solutions for optimization problems, 

especially in scenarios where exact solutions are either impractical or computationally 

infeasible due to the problem's complexity. These algorithms are general-purpose and don't 

guarantee an optimal solution but aim to efficiently explore the solution space to find good 

solutions. The first two decades of research on metaheuristics were characterized by the 

application of rather standard metaheuristics. However, in recent years it has become evident 

that the concentration on a sole metaheuristic is rather restrictive. A skilled combination of a 

metaheuristic with other optimization techniques, a so-called hybrid metaheuristic, can provide 

a more efficient behavior and a higher flexibility when dealing with real-world and large-scale 

problems. This can be achieved, by combining the complementary strengths of metaheuristics 

[132]. The use of hybrid algorithms is a new and successful trend in solving optimization 

problems. The main goal of this research is to obtain a more powerful algorithm that combines 

the advantages of individual algorithms. Hybrid algorithms benefit from this synergy. However, 

it is important to choose an appropriate combination of component algorithms to achieve a 

better overall performance in a particular situation or problem. This research tends to combine 

the PSO (Particle Swarm Optimization) and TS (Tabu Search) optimization techniques to form 

a hybrid tool that can outperform the algorithms when used individually in solving power 

system optimization problems. Generally, PSO has a more global searching ability at the 

beginning of the run and a local search near the end of the run. The PSO technique can generate 

high-quality solutions and has a more stable convergence characteristic than other stochastic 

methods. However, when solving complex multimodal problems, PSO can be trapped in local 

optima [3]. The PSO technique can generate high-quality solutions and has a more stable 

convergence characteristic than other stochastic methods. However, when solving complex 

multimodal problems, PSO can be trapped in local optima [79]. To overcome this drawback, 

PSO performance can be enhanced with few adjustments. Hybridization is one of these 
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modifications or techniques which, nowadays, is a popular idea being applied to evolutionary 

algorithms in order to increase their efficiency and robustness [133]. Recently, hybrid PSO has 

provided promising results for problems such as the power loss minimization problem [134]. 

In this section an efficient hybrid PSO with the tabu search (PSO-TS) method is implemented 

to solve the ORPD problem with two distinct objective functions, namely, active power losses 

and voltage deviation. The proposed optimization approach was tested on IEEE 14-bus, IEEE 

30-bus, IEEE 57-bus and the practical Algerian electric 114-bus power system. To demonstrate 

the effectiveness of the proposed PSO-TS algorithm, the obtained results were compared with 

TS, PSO and with several methods published in the literature, namely: Biogeography Based 

Optimization (BBO) technique [29] , Differential Evolution (DE) algorithm [14], General 

passive congregation PSO (GPAC), local passive congregation PSO (LPAC), coordinated 

aggregation (CA) [134], CLPSO method [9], Interior point (IP) method [11]. 

4.2. The proposed Hybrid PSO-TS Algorithm 

Hybridization is a way of combining two techniques in a judicious manner, so that the resulting 

algorithm contains positive features of both algorithms. The success of the meta-heuristics 

optimization algorithms depends to a large extent on the careful balance between two 

conflicting goals: exploration (diversification) and exploitation (intensification). In order to 

achieve these two goals, the algorithms use either local search techniques, global search 

approaches, or an integration of both, commonly known as hybrid methods [133]. For the 

ORPD problem, different hybridizations with PSO have been used to improve the algorithm’s 

performance by avoiding premature convergence. For instance, PSO has been hybridized with 

the linear interior point method [135], fuzzy logic [136], Pareto optimal set [137], direct search 

method [114], differential evolution [33], a multi-agent systems [3], imperialist competitive 

algorithm [111], genetic algorithm [112] and eagle strategy [113]. Tabu search was used to 

solve OPF and optimal reactive power planning problems [80], [138] but the hybridization of 

TS with PSO has never been used even though it was effective in solving other optimization-

constrained problems [139]. Both algorithms (PSO, TS) and their hybridization (PSO-TS) for 

solving the ORPD problem are discussed in the following sections. 

4.2.1. Particle Swarm Optimization 

The concept of PSO was first suggested by Kennedy and Eberhart in 1995 [140]. PSO is a 

population-based evolutionary computation technique. The main idea is to evolve the 

population (particles) of initial solutions in a search space in order to find the best solution. This 

evolution is an analogy of the behavior of some species as they look for food, like a flock of birds 
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or a school of fish [141]. These particles move through the search domain with a specified 

velocity in search of optimal solution. Each particle maintains a memory which helps it to keep 

track of its previous best position. The positions of the particles are distinguished as personal 

best and global best. 

The swarm of particles evolves in the search space by modifying their velocities according to 

the following equations [133] : 

 𝒗𝒊
𝒌+𝟏 = 𝒘𝒊𝒗𝒊

𝒌 + 𝒄𝟏𝒓𝒂𝒏𝒅 × (𝒑𝒃𝒆𝒔𝒕𝒊 − 𝒙𝒊
𝒌) + 𝒄𝟐𝒓𝒂𝒏𝒅 × (𝒈𝒃𝒆𝒔𝒕 − 𝒙𝒊

𝒌) (4. 1) 

where: 

• 𝑣𝑖
𝑘 is the current velocity of particle i at iteration k. 

• 𝑤𝑖 is the inertia weight. 

• rand is a random number between 0 and 1. 

• 𝑐1 and 𝑐2 are the acceleration coefficients. 

• 𝑝𝑏𝑒𝑠𝑡𝑖 is the best position of the current particle achieved so far. 

• 𝑔𝑏𝑒𝑠𝑡 is the global best position achieved by all informants. 

• 𝑥𝑖
𝑘 is the current position of particle i at iteration k. 

The new position of each particle is given by the following equation: 

 𝒙𝒊
𝒌+𝟏 = 𝒙𝒊

𝒌 + 𝒗𝒊
𝒌+𝟏 (4. 2) 

The inertia weighting factor for the velocity of particle i is defined by the inertial weight 

approach [134].  

 𝒘𝒊 = 𝒘𝒎𝒂𝒙 −
𝒘𝒎𝒂𝒙 −𝒘𝒎𝒊𝒏

𝒊𝒕𝒆𝒓𝒎𝒂𝒙
× 𝒌 (4. 3) 

where: 

• itermax is the maximum number of iterations.  

• k is the current number of iteration.  

• wmax and wmin are the upper and lower limits of the inertia weighting factor, respectively.  

The efficiency of PSO has been proved for a wide range of optimization problems. 

However, constrained non-linear optimization problems have not been widely studied with this 

method. Hu and Eberhart were the first to try to adapt PSO to constrained non-linear problems 

[143]. The difficulty in adapting meta-heuristics mainly involves the question of how to 

preserve the feasibility of solutions during different iterations.  
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A variety of approaches can be used to deal with feasibility in constrained non-linear 

optimization problems, which largely fall into two classes: 

• Penalty function approaches, and 

• Approaches preserving feasibility throughout evolutionary computation,  

Each method has its advantages and disadvantages. A penalty function approach is used in 

this thesis due to its simplicity of implementation and its proven efficiency for many constrained 

non-linear optimization problems [144]. Conversely, feasibility preserving methods are highly 

time-consuming. To use a penalty function method, a penalty factor associated with each 

violated constraint is added to the objective function in order to penalize infeasible solutions 

[36]. Therefore, the optimum is found when all the constraints are respected and the objective 

function is minimized. The ORPD objective function is then modified as follows [18]: 

 

𝑭𝑻 = 𝑭 +𝑲𝑷(𝑷𝑮,𝒔𝒍𝒂𝒄𝒌 − 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌
𝒍𝒊𝒎 )

𝟐
+𝑲𝑽∑(𝑽𝑳𝒊 − 𝑽𝑳𝒊

𝒍𝒊𝒎)
𝟐

𝑵𝑷𝑸

𝒊=𝟏

 

+ 𝑲𝑸∑(𝑸𝑮𝒊 − 𝑸𝑮𝒊
𝒍𝒊𝒎)

𝟐
+𝑲𝑺∑(𝑺𝑳𝒊 − 𝑺𝑳𝒊

𝒍𝒊𝒎)
𝟐

𝑵𝑳

𝒊=𝟏

𝑵𝑮

𝒊=𝟏

 

(4. 4) 

where F is equal to J1 given by Equation (2.2) in the case of the power losses minimization or 

equal to J2 given by Equation (2.5) in the case of the voltage deviation minimization; KP, KV, 

KQ and KS are the penalty factors of the slack bus generator, bus voltage limit violation, 

generator reactive power limit violation, and line flow violation, respectively. 

𝑃𝐺,𝑠𝑙𝑎𝑐𝑘
𝑙𝑖𝑚 , 𝑉𝐿𝑖

𝑙𝑖𝑚, 𝑄𝐺𝑖
𝑙𝑖𝑚 and 𝑆𝐿𝑖

𝑙𝑖𝑚 are defined as follows: 

 
𝑷𝑮,𝒔𝒍𝒂𝒄𝒌
𝒍𝒊𝒎 = {

 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌
𝒎𝒊𝒏  𝒊𝒇  𝑷𝑮,𝒔𝒍𝒂𝒄𝒌 < 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌

𝒎𝒊𝒏  

𝑷𝑮,𝒔𝒍𝒂𝒄𝒌
𝒎𝒂𝒙  𝒊𝒇  𝑷𝑮,𝒔𝒍𝒂𝒄𝒌 > 𝑷𝑮,𝒔𝒍𝒂𝒄𝒌

𝒎𝒂𝒙  (4. 5) 

 
𝑽𝑳𝒊
𝒍𝒊𝒎 = {

 𝑽𝑳𝒊
𝒎𝒊𝒏 𝒊𝒇  𝑽𝑳𝒊 < 𝑽𝑳𝒊

𝒎𝒊𝒏 

𝑽𝑳𝒊
𝒎𝒂𝒙 𝒊𝒇  𝑽𝑳𝒊 > 𝑽𝑳𝒊

𝒎𝒂𝒙  (4. 6) 

 
𝑸𝑮𝒊
𝒍𝒊𝒎 = {

𝑸𝑮𝒊
𝒎𝒊𝒏 𝒊𝒇  𝑸𝑮𝒊 < 𝑸𝑮𝒊

𝒍𝒊𝒎 

𝑸𝑮𝒊
𝒎𝒂𝒙 𝒊𝒇  𝑸𝑮𝒊 > 𝑸𝑮𝒊

𝒎𝒂𝒙 (4. 7) 

 
𝑺𝑳𝒊
𝒍𝒊𝒎 = {

 𝑺𝑳𝒊
𝒎𝒂𝒙 𝒊𝒇   𝑺𝑳𝒊 > 𝑺𝑳𝒊

𝒎𝒂𝒙 

𝟎        𝒊𝒇    𝑺𝑳𝒊 ≤ 𝑺𝑳𝒊
𝒎𝒂𝒙   (4. 8) 

4.2.2. Tabu Search Method  

In 1986, Fred Glover proposed a new approach, called “tabu search” (TS). TS is a meta-

heuristic that guides a local heuristic search procedure to explore the solution space beyond 
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local optimality. This technique uses an operation called “move” to define the neighborhood of 

any given solution. One of the main components of TS is its use of adaptive memory, which 

creates a more flexible search behavior [145] [145]. The simplest of these processes consists of 

recording in a tabu list the features of the visited regions in the space search, which provides a 

means to avoid revisiting already inspected solutions and thus avoid becoming trapped in local 

optima. Generally, the advantages of the TS optimization technique can be summarized as 

follows [80]: 

• TS is characterized by its ability to avoid entrapment in a local optimal solution and 

to prevent the same solution being found by using the flexible memory of the search 

history. 

• TS uses probabilistic transition rules to make decisions, rather than deterministic ones. 

Hence, TS is a kind of stochastic optimization algorithm that can search a complicated 

and uncertain area to find the global optimum. This makes TS more flexible and robust 

than conventional methods. 

• TS uses adaptive memory processes for guiding the seeking in the problem search space. 

Therefore, it can easily deal with non-smooth, non-continuous and non-differentiable objective 

functions. 

4.3. Hybrid PSO-Tabu Search Approach Applied to ORPD 

Several arguments support the hybridization of PSO with TS. Firstly, PSO is a global 

population-based algorithm while TS proposes fast local search mechanism. Secondly, the 

incorporation of TS into PSO enables the algorithm to maintain population diversity. Finally, 

TS is integrated to prevent PSO from falling into local optima. To this end, TS is proposed to 

serve as a local optimizer of the best local solutions (pbest). The pbest solutions of PSO are the 

inputs of the TS diversification procedure. For each solution “s”, a list of neighborhoods is 

defined. Candidate solutions from these neighborhoods are examined and the best one becomes 

the new current solution that replaces “s”. The move leading to the solution “s” is saved in the 

tabu list, called best_list. This process is repeated to produce successive new solutions until a 

defined stopping criterion is satisfied.  

The neighborhoods of a solution “s” are defined by hyper-rectangles introduced in 

[146]. A hyper-rectangle of “s” with a radius “r” is the space containing solutions (s’) such 

that the distance between s and (s’) is less than “r”. To generate m neighbors for the solution 

“s”, m hyper-rectangles centered on “s” are created, and a point is randomly chosen from each 
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of them. The best of the m chosen points then replaces “s”. The search procedure of PSO-TS 

algorithm will terminate whenever the predetermined maximum number of generations is 

reached, or whenever the global best solution does not improve over a predetermined number of 

iterations. The diversification procedure is outlined in Algorithm 4.1 while, the general and 

detailed flowcharts of the proposed PSO-tabu search are given in Figures 4.1 and 4.2, respectively. 

Algorithm 4.1. Tabu search procedure (Diversification) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inputs 

pbest; // best historical solution of particles 

pbestval; solutions values 

m; //neighborhood size 

r; //radius of hyper-rectangles 

eps; //threshold for accepting new solution 

best_list = ( pbest, r); // Initializing the tabu list best_list  

Repeat 

For each solution s(VGi ,Ti ,Qci) in pbest 

//generation of m neighbors 

i = 1 

While i <= m 

 Generate the hyper-rectangle of radius  r*i  around s, 

  choose randomly a solution NS in the hyper- rectangle 

 If NS  best_list  then  

 add the move to best_list; 

 if eval(NS)-pbestval(s)  eps then update pbestval and pbest  

 s = NS, 

 End if 

 i = i+1; 

End While 

Until (stopping criteria) 
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Figure 4.1. General flowchart of PSO-TS method. 

4.4. Application and Results  

4.4.1. PSO-TS algorithm based ORPD considering continuous control variables 

In a first step we will consider that all control variables are continuous. In order to verify the 

performance and efficiency of the proposed PSO-TS algorithm, a test is carried out on IEEE 

30-bus power system. For the purpose of comparison, two reactive power injection schemes 

have been considered: 

- Case 1: IEEE 30 bus system with 12 control variables [147].  

- Case 2: IEEE 30 bus system with 19 control variables [5]. 

For both cases, the two objective functions are considered: active power losses (𝑃𝐿𝑜𝑠𝑠) 

(Equation (2.2)) and total of bus voltage deviation (TVD) (Equation (2.5)). In the study, all 

inequality constraints (Equations (2.14)– (2.20)) were taken into consideration. The PSO-TS 

parameter selection is a challenging task not only for this algorithm but also for other meta-

heuristic algorithms. The parameter settings used in the proposed PSO-TS algorithm are 

determined through extensive experiments, including initial inertia weight, acceleration factors, 
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Figure 4.2. Detailed flowchart of the PSO-TS method 
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number of generations, swarm size, tabu list length, total number of neighborhood and radius 

of neighborhood. Based on these results, the control parameter settings shown in Table 4.1 have 

been used in the proposed PSO-TS algorithm and for all simulation studies in both objective 

functions. 

Table 4.1. Control parameter settings. 

 

4.4.1.1. Case 1: IEEE 30 bus test system with 12 control variables  

In this case the IEEE 30 bus system contains six generator units connected to buses 1, 2, 5, 8, 

11 and 13; four regulating transformers connected between the line numbers 6–9, 6–10, 4–12 

and 27–28; and two shunt compensators connected to bus numbers 10 and 24. The transmission 

feeder numbers is of 41. The transmission line data and loads were taken from [147]. The 

generator voltages, transformer tap settings and VAR injection of the shunt capacitors were 

considered as continues control variables. The voltage magnitudes of all the buses were between 

0.95 and 1.1 p.u, the transformer tap settings were within the range of 0.9–1.1 p.u and the shunt 

capacitor sizes were within the interval of 0 to 30 MVAR [134]. There are 12 control variables 

in this case, namely, 6 generator voltages, 4 transformer taps and 2 capacitor banks.  

a. Simulation Results for Active Power Losses Minimization 

The objective in this case is to minimize the total active power losses. Before minimization, the 

total power losses were 5.2783 MW. Minimum and maximum limit settings for tap setting 

transformers, reactive compensators and bus voltages are tabulated in Table.4.2. Table 4.3 

summarize the results of the optimal settings and the system power losses obtained by PSO, TS 

and PSO-TS proposed approaches and methods reported in [134, 29], namely, CA, IP-OPF, 

LPAC, GPAC and BBO. These results show that the dispatch optimal solutions determined by 

the PSO-TS led to better results. Active power losses are lower than those given by TS, PSO 

and considered references. Using PSO-TS algorithm, power losses were reduced from 5.2783 

MW to 4.6304 MW, indicating a reduction of 12.27%, while PSO and TS taken alone reduce 

Parameters Value 

Initial inertia weight w decreased from 0.9 to 0.4 

Acceleration factor c1 2 

Acceleration factor c2 2 

Maximum number of generations (PSO) 200 

Swarm size 20 

Tabu list length 7 

Number of neighborhoods 3 

Radius of neighborhood 0.1 

Maximum number of generations (TS) 1000 
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power losses by only 1.03% and 5.61%, respectively. For the other optimization algorithms, 

the best result is given by BBO algorithm [29] which reduces the losses by 5.93%. It can be 

concluded that the proposed PSO-TS method is able to determine the near-global optimal 

solution. At the same time, the proposed method succeeded in keeping the dependent variables 

within their limits. Figure 4.3 shows the supremacy of PSO-TS algorithm over the other 

methods. The convergence characteristics of power loss objective function for this case are 

plotted in Figure 4.4 which shows that while the PSO and TS algorithms converge faster than 

the PSO-TS, the minimum obtained by the latter is far better than those given by the former. 

As the hardware and the software environments significantly affect the computational time, it 

is not possible to compare the computational time requirements of the different methods unless 

all the methods are run on the same hardware and programmed using the same environment. 

As a rough guide, however, the average time taken by PSO-TS in this case is 19 s.  

Table 4.2. IEEE 30-bus test system variable limits (case 1) 

Variables lower limits (p.u) upper limits (p.u) 

Generator buses voltage 0.95 1.1 

Load buses voltage 0.95 1.1 

Transformers tap setting 0.9 1.1 

shunt compensators (MVar) 0 30 

Table 4.3. Simulation results of TS, PSO and PSO-TS algorithms (Case 1) 

Control variables CA[134] IP-OPF[134] LPAC[134] GPAC[134] BBO[29] TS PSO PSO-TS 

V1 1.02282 1.10000 1.02342 1.02942 1.1000 1.0684 1.1000 1.0992 

V2 1.09093 1.05414 0.99893 1.00645 1.0943 1.0933 1.0943 1.0948 

V5 1.03008 1.10000 0.99469 1.01692 1.0804 1.0893 1.1000 1.0766 

V8 0.95000 1.03348 1.01364 1.03952 1.0939 1.0853 1.1000 1.0977 

V11 1.04289 1.10000 1.01647 1.03952 1.1000 1.0017 0.9505 1.0837 

V13 1.03921 1.01497 1.01101 1.04870 1.1000 1.0780 1.1000 1.0754 

T6–9 1.07894 0.99334 1.04247 1.04225 1.1000 0.9979 1.0547 0.9257 

T6–10 0.94276 1.05938 0.99432 0.99417 0.9058 0.9008 1.1000 1.0291 

T4–12 1.00064 1.00879 1.00061 1.00218 0.9521 1.0337 0.9000 0.9265 

T27–28 1.00693 0.99712 1.00694 1.00751 0.9638 0.9441 0.9468 0.9422 

QSh10 0.15232 0.15253 0.17737 0.17267 0.2891 0.1395 0.3000 0.2864 

QSh24 0.06249 0.08926 0.06172 0.06539 0.1007 0.1838 0.0000 0.1363 

Ploss (MW) 5.09209 5.10091 5.09212 5.09226 4.9650 5.2240 4.9819 4.6304 
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Figure 4.3. Comparative graph of the power losses (Case 1) 

 
Figure 4.4 Convergence characteristic of the power losses (Case 1) 

b.  Simulation results for total voltage deviation minimization 

The objective in this case is the minimization of the voltage deviation in order to improve the 

system voltage profile. The TVD and the optimal setting of control variables obtained by our 
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PSO-TS converge faster than PSO and TS considered alone and gives also better results. Before 

minimization, the TVD was 0.619 p.u. As shown in Table 4.4, the obtained TVD using the 

proposed PSO-TS hybrid approach is 0.1113 p.u which means a reduction of 82.02% while the 

ones given by the mentioned methods are, respectively, 80.21%, 79.97%, 79.42%, 80.71%, 

69.73% and 79.40%. These results clearly indicate that PSO-TS outperforms the other methods 

in term of solution quality (see Figure 4.6).  

Table 4.4. Simulation results of TS, PSO and PSO-TS algorithms (Case 1) 

 
Figure 4.5. Convergence characteristic of the voltage deviation objective (TVD) (Case 1) 
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Control 

Variables 

CA    

[134] 

IP-OPF 

[134] 

LPAC 

[134] 

GPAC 

[134] 

BBO   

[29] 
TS PSO PSO-TS 

V1 1.0890 1.10000 1.03879 1.00963 1.0033 1.0760 0.9875 1.0014 

V2 0.9500 0.99100 1.01776 1.00984 1.0071 1.0494 0.9513 1.0592 

V5 1.0860 0.96145 1.04863 1.01000 1.0189 1.0056 1.0641 1.0542 

V8 1.1000 0.95986 1.04993 1.03516 1.0148 1.0238 1.0596 1.0133 

V11 1.0021 1.10000 0.98373 1.03000 0.9908 1.0085 1.0972 0.9905 

V13 1.0279 0.95000 1.00524 1.00274 1.0697 0.9641 1.1000 1.0291 

T6–9 1.0287 0.99734 1.03054 1.02139 1.0039 0.9486 1.0344 0.9762 

T6–10 0.9000 1.08595 0.91429 0.93327 0.9000 0.9840 1.1000 1.0163 

T4–12 0.9929 1.00087 0.99469 0.99338 1.0490 0.9647 0.9000 0.9537 

T27–28 1.0248 1.00482 1.02078 1.02729 0.9546 1.0287 0.9516 0.9481 

QSh10 0.0000 0.11072 0.00000 0.04348 0.0924 0.0917 03000 0.2890 

QSh24 0.0000 0.15928 0.03586 0.00000 0.1244 0.2278 0.0440 0.0697 
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Figure 4.6. Comparative graph of the voltage deviation objective (TVD) (Case 1). 
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Table 4.5. IEEE 30-bus test system variable limits (case 2) 

Variables Lower limits (p.u) Upper limits (p.u) 

Generator buses voltage 0.95 1.1 

Load buses voltage 0.95 1.1 

Transformers tap setting 0.9 1.1 

shunt compensators (MVAr) 0 5 

a. Simulation Results for Active Power Losses Minimization 

To demonstrate the superiority of the proposed algorithm in the minimization of transmission 

power losses, Table 4.6 shows the optimal setting of control variables obtained by our PSO-TS 

algorithm and different considered methods. Figure 4.7 illustrates the PSO-TS simulation 

results compared with those reported in the literature such as DE [14], BBO, comprehensive 
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learning PSO (CLPSO), Quasi-Oppositional Teaching Learning Based Optimization 

(QOTLBO) [24], teaching-learning-based optimization  (TLBO) [24], Gravitational search 

algorithm (GSA) [47],  Artificial ecosystem optimization (AEO) [148] and Novel bat algorithm 

(NBA) [148]. The initial conditions for all these methods are the same and are taken from [5]. The 

total active power losses which were initially 5.8322 MW, are reduced to 4.5213 MW by the 

proposed method, i.e., a reduction in power losses by 22.48%. Figure 4.7 shows also that the 

proposed PSO-TS outperforms the cited meta-heuristic methods. The convergence characteristics 

of TS, PSO and PSO-TS are given by Figure 4.8 which indicates a much better solution for the 

proposed hybrid algorithm. 

Table 4.6. Simulation results of TS, PSO and PSO-TS algorithms (Case 2) 

CVs 
DE 

[14] 

CLPSO 

[24] 

BBO 

[24] 
QOTLB 

[24] 
TLBO 

[24] 

GSA 

[47] 

NBA 

[148] 

AEO 

[148] 
TS PSO 

PSO-

TS 

V1 1.1000 1.1000 1.1000 1.1000 1.1000 1.0999 1.1000 1.1000 1.0835 1.1000 1.1000 

V2 1.0931 1.1000 1.0944 1.0942 1.0936 1.0743 1.0951 1.0944 1.0567 1.1000 1.0943 

V5 1.0736 1.0795 1.0749 1.0745 1.0738 1.0749 1.0775 1.0751 1.0671 1.0832 1.0749 

V8 1.0756 1.1000 1.0768 1.0765 1.0753 1.0768 1.0792 1.0770 1.0944 1.1000 1.0766 

V11 1.1000 1.1000 1.0999 1.1000 1.0999 1.0999 1.0960 1.1000 0.9873 0.9500 1.1000 

V13 1.1000 1.1000 1.0999 1.0999 1.1000 1.0999 1.0998 1.1000 1.0863 1.1000 1.1000 

T6–9 1.0465 0.9154 1.0435 1.0664 1.0251 1.0000 1.0313 1.0392 1.0745 1.1000 0.9744 

T6–10 0.9097 0.9000 0.9011 0.9000 0.9439 0.9300 0.9424 0.9000 0.9960 1.0953 1.0510 

T4–12 0.9867 0.9000 0.9824 0.9949 0.9992 0.9800 1.0009 0.9729 0.9678 0.9000 0.9000 

T27–

28 
0.9689 0.9397 0.9691 0.9714 0.9732 0.9700 0.9854 0.9632 1.0267 1.0137 0.9635 

QSh10 0.0500 0.0492 0.0499 5.0000 5.0000 3.7000 4.2055 4.9948 0.0146 0.0500 0.0500 

QSh12 0.0500 0.0500 0.0498 5.0000 5.0000 4.3000 5.0000 4.9963 0.0376 0.0500 0.0500 

QSh15 0.0500 0.0500 0.0499 5.0000 5.0000 3.700 3.3446 4.8409 0.0000 0.0000 0.0500 

QSh17 0.0500 0.0500 0.0499 5.0000 5.0000 2.200 5.0000 4.9985 0.0335 0.0500 0.0500 

QSh20 0.0440 0.0500 0.0499 4.4500 4.5700 3.100 4.3974 4.2895 0.0019 0.0500 0.0386 

QSh21 0.0500 0.0500 0.0499 5.0000 5.0000 3.9000 4.9844 5.0000 0.0242 0.0500 0.0500 

QSh23 0.0280 0.0500 0.0387 2.8300 2.8600 4.2000 4.8984 2.6464 0.0307 0.0500 0.0500 

QSh24 0.0500 0.0500 0.0498 5.0000 5.0000 4.4000 3.7526 4.9998 0.0294 0.0500 0.0500 

QSh29 0.0259 0.0500 0.0290 2.5600 2.5800 2.0000 2.8649 2.2293 0.0399 0.0260 0.0213 
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Figure 4.7. Comparative graph of the power losses (Case 2) 

 

Figure 4.8. Convergence characteristic of the power losses (Case 2). 

4,555 4,5615
4,5511

4,535 4,538

4,952

4,553

4,526

4,9203

4,6862

4,5213

4,3

4,4

4,5

4,6

4,7

4,8

4,9

5

DE CLPSO BBO QOTLB TLBO GSA NBA AEO TS PSO PSO-TS

P
lo

ss
 (

M
W

)

4,50

4,70

4,90

5,10

5,30

5,50

5,70

5,90

0 20 40 60 80 100 120 140 160 180 200

P
lo

ss
 (

M
W

)

Iterations

TS

PSO

PSO-TS



CHAPTER 4 HYBRID OPTIMIZATION BASED METAHEURISTIC METHODS FOR THE ORPD PROBLEM  

Page | 101  

 

b. Simulation results for Total voltage deviation minimization 

The TVD minimization has also been tested using the PSO-TS proposed method on the IEEE 

30 bus with 19 control variables. The optimal control variables settings and the TVD obtained 

by the different methods are shown in Table 4.7 and Figure 4.9. These results show that the 

optimal solutions determined by PSO-TS lead to lower TVD than those found by TS, PSO, 

TLBO [24] and DE [14] (Figure 4.9). The PSO-TS algorithm has reduced the TVD from the 

initial state value of 1.1521 p.u to 0.0866 p.u representing a reduction of 92.48% while the TVD 

reductions given by TS, PSO, TLBO and DE are of 86.63%, 91.27%, 92.07% and 92.09% 

respectively. This shows that the PSO-TS is well capable of determining the global or near-

global optimum solution. The proposed method succeeded also in keeping the dependent variables 

within their limits. Figure 4.10 gives the TVD evolution over iterations of TS, PSO and PSO-TS 

methods where it is shown that the PSO-TS algorithm converges to a much better minimum. 

Table 4.7. Simulation results of TS, PSO and PSO-TS algorithms (Case 2) 

Control Variables DE [14] TLBO [24] TS PSO PSO-TS 

V1 1.0100 1.0121 0.9518 0.9898 0.9867 

V2 0.9918 0.9806 1.0888 0.9529 0.9910 

V5 1.0179 1.0207 1.0502 1.0493 1.0244 

V8 1.0183 1.0163 1.0052 0.9988 1.0042 

V11 1.0114 1.0293 1.0730 1.0749 1.0106 

V13 1.0282 1.0323 1.0637 1.0404 1.0734 

T6–9 1.0265 1.0435 1.0137 1.0548 1.0725 

T6–10 0.9038 0.9056 1.0342 1.1000 0.9797 

T4–12 1.0114 1.0195 0.9993 0.9115 0.9273 

T27–28 0.9635 0.9492 0.9652 0.9458 0.9607 

QSh10 0.0494 0.0484 0.0355 0.0500 0.0095 

QSh12 0.0108 0.0066 0.0419 0.0500 0.0215 

QSh15 0.0499 0.0500 0.0032 0.0486 0.0226 

QSh17 0.0023 0.0009 0.0008 0.0500 0.0005 

QSh20 0.0499 0.0500 0.0491 0.0500 0.0359 

QSh21 0.0490 0.0500 0.0134 0.0500 0.0401 

QSh23 0.0498 0.0495 0.0382 0.0500 0.0427 

QSh24 0.0496 0.0493 0.0426 0.0500 0.0374 

QSh29 0.0223 0.0024 0.0306 0.0000 0.0210 
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Figure 4.9. Comparative graph for the total voltage deviation (TVD) (Case 2). 

 

Figure 4.10. Convergence characteristic of the voltage deviation objective (TVD) (Case 2). 
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studied algorithms, it is imperative to run several trials on the same problem instance in order 

to obtain values that are close to the global optimum. Several tests have also been carried out 

for statistical study purposes. The values in relative unit (p. u) are taken in a base of 100 KV 

and 100 MVAR.  

4.4.2.1.  Determination of sensitive buses  

In this study, the PSO-TS based reactive power optimization approach was applied to the IEEE 

30-bus power system with 12 control variables. This system contains six generator units 

connected to buses 1, 2, 5, 8, 11 and 13, four regulating transformers connected between the 

line numbers 6–9, 6–10, 4–12 and 27–28 as in case 1. The difference in this case is that the 

buses where the shunt compensators will be installed are no longer buses 10 and 24 (locations 

that appear in the test network [134] taken into consideration by all the previous authors) but 

the shunt capacitors will be installed at the most sensitive buses. A sensitive bus is a load bus, 

which requires the installation of a shunt capacitor. To identify this type of buses and their 

number, we have studied three cases. The two first cases are based on the active power losses 

(𝑃𝐿𝑜𝑠𝑠), and the third one is based on the total voltage deviation (TVD). 

4.4.2.1.1. Determination of  sensitive buses by removing the entire load (case 1) 

To find the locations of the shunt compensators (sensitive buses) and their number, we remove 

the load from each load bus and calculate the active power losses (𝑃𝐿𝑜𝑠𝑠) each time. The bus 

giving the least active power losses will be considered as the most sensitive. Table 4.8 shows 

the classification of the sensitive buses according to the new values of the active power losses 

when the loads of these buses are eliminated. This table shows the classification of the bus 

sensitivities, from the most sensitive (bus 7) to the least sensitive (bus 29).  

Table 4.8. Classification of load buses based on the case 1 

 

4.4.2.1.2. Determination of  sensitive buses by removing the reactive load (case 2) 

In order to find the locations of the shunt compensators in this case, we set each load bus 

Load bus New Ploss (MW) Load bus New Ploss (MW) 

7 4.787 4 5.691 

21 4.816 10 5.696 

30 5.040 14 5.707 

26 5.155 23 5.769 

24 5.271 18 5.771 

19 5.306 16 5.838 

17 5.487 20 5.850 

15 5.517 3 5.944 

12 5.670 29 5.944 
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reactive power to zero and calculate the active power losses (PLoss) each time. The bus giving 

the least active power losses will be considered as the most sensitive bus. Table 4.9 shows the 

classification of the sensitive buses according to the new values of the active power losses. We 

can see from this table that the most sensitive buses are 21, 24, 26, 17 and so on until bus 12. 

Table 4.9. Classification of buses based on the case 2 

Load bus New Ploss value (MW) Load bus New Ploss value (MW) 

21 5.3385 10 5.4766 

24 5.3693 29 5.4792 

26 5.4393 16 5.4817 

17 5.4407 18 5.4826 

19 5.4474 20 5.4850 

7 5.4596 4 5.4879 

30 5.4604 3 5.4912 

23 5.4674 14 5.4914 

15 5.4731 12 5.5096 

4.4.2.1.3. Determination of  sensitive buses based on the Voltage Deviation (case 3) 

To find the sensitive buses based on the total voltage deviation we will follow the same method 

mentioned below. i.e., we remove the reactive load from each PQ load and calculate the total 

voltage deviation (TVD) instead of the active power losses. The bus giving the smallest value 

of the total voltage deviation will be considered the most sensitive bus. The table 4.10 gives us 

the classification of the buses based on the new values of the total of voltage deviation. The 

most sensitive buses from this table are 29, 3, 4, 30, 14 and 20 

Table 4.10. Classification of buses based on the total of voltage deviation. 

Load bus New value of TVD (pu) Load bus New value of TVD (pu) 

29 0.6976 16 0.7151 

3 0.7003 23 0.7162 

4 0.7014 10 0.7185 

30 0.7027 15 0.7234 

14 0.7032 19 0.7456 

20 0.7073 12 0.7470 

26 0.7082 17 0.7602 

18 0.7098 24 0.7766 

7 0.7151 21 0.8264 

4.4.2.2.  Capacitors placement Process. 

 Once the sensitivities of the nodes have been determined and classified, the number of 

capacitor banks to be placed on the network is determined by testing. The first capacitor bank 

is placed on the network, and its effect on active power losses is tested. If power losses have 
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been reduced, the second capacitor is placed and its effect on power losses is observed. If no 

significant decrease in active power losses is observed, the capacitor is removed and a single 

capacitor is placed on the network. Otherwise, two capacitors are required, and a third capacitor 

is placed on the grid and its effect on power losses examined. This process continues until there 

is no effect on power losses. 

4.4.2.3. Simulation results. 

Once the sensitive buses have been identified by the different methods described above (case 

1, case 2 and case 3), we install the shunt capacitors on the sensitive busses found in each case 

by minimizing two objective functions, namely the active power losses (Ploss) and the total 

voltage deviation (TVD). The test system used is the IEEE 30-bus described above. The 

sensitive busses considered will be the busses that give the minimum active power losses. The 

number of shunt capacitors to be installed is two; beyond two, no improvement will be obtained. 

Once the sensitive busses approach has been validated on the IEEE 30-bus test system, we will 

continue to optimize the two objective functions mentioned above in larger test networks, i.e. 

IEEE 57-bus test system and the Algerian 114 bus network. 

4.4.2.3.1. IEEE 30 bus test system 

The test network to be studied is the IEEE-30 buses described in the section 4.4.1.1  

a. Active Power Losses Minimization (Ploss) 

After implementing the PSO-TS algorithm to minimize power losses for the different methods 

of determining sensitive nodes, three locations for the shunt capacitors were selected based on 

node sensitivities. The first and second cases are based on the calculation of the active power 

loss by removing the full load and the reactive load respectively and the third case is based on 

the calculation of the total voltage deviation. Table 4.11 summarize the results of the optimal 

settings and the system power losses obtained by the PSO-TS algorithm of the three cases. 

These results show that the optimal solutions determined by PSO-TS in the case 2 lead to lower 

𝑃𝐿𝑜𝑠𝑠 than those found by TS, PSO, PSO-TS and PSO-TS in case 1 and 3 (Figure 4.11). The 

PSO-TS algorithm in case 2 has reduced the power losses 𝑃𝐿𝑜𝑠𝑠 from the initial state to 4.5872 

MW representing a reduction of 13.09 % compared to TS, PSO, PSO-TS and PSO-TS (case 1) 

and PSO-TS (case 3), which reduced 𝑃𝐿𝑜𝑠𝑠 by 1.02 %, 5.61 %, 12.27 %, 12.67 %, and 8.64 %, 

respectively. This shows that the installation of the shunt capacitors in sensitive buses found by 

the second method is well capable of determining better solution than the other cases and 

methods. The convergence characteristics of power losses objective function for the three cases 
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are shown in Figure 4.12 which shows a relatively slow convergence in the case of locations 

determined by the sensitivity of the nodes with respect to the reactive power of the loads, with 

however a much better.    

Table 4.11. Simulation results for the Sensitive Buses Approach  

Control 

variables 
TS PSO PSO-TS 

PSO-TS 

(case 1) 

PSO-TS 

(case 2) 

PSO-TS 

(Case 3) 

V1 1.0684 1.1000 1.0992 1.0990 1.1000 1.1000 

V2 1.0933 1.0943 1.0948 1.1000 1.0975 1.1000 

V5 1.0893 1.1000 1.0766 1.0687 1.0787 1.0753 

V8 1.0853 1.1000 1.0977 1.1000 1.1000 1.1000 

V11 1.0017 0.9505 1.0837 1.1000 1.1000 1.1000 

V13 1.0780 1.1000 1.0754 1.1000 1.0964 1.1000 

T6–9 0.9979 1.0547 0.9257 0.9072 0.9926 1.0307 

T6–10 0.9008 1.1000 1.0291 0.9399 1.0737 1.1000 

T4–12 1.0337 0.9000 0.9265 0.9000 0.9000 0.9000 

T27–28 0.9441 0.9468 0.9422 0.9149 0.9743 0.9976 

QSh10 0.1395 0.3000 0.2864 - - - 

QSh24 0.1838 0.0000 0.1363 - 0.0880 - 

QSh07 - - - 0.1285 - - 

QSh21 - - - 0.2052 0.1393 - 

QSh03 - - - - - 0.0000 

QSh29 - - - - - 0.0193 

Ploss (MW) 5.2240 4.9819 4.6304 4.6095 4.5872 4.8225 

 

 

Figure 4.11. Comparative results of the power losses of the three cases 
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Figure 4.12. convergence characteristic of the power losses (case 1, 2 and 3) 

b. Total voltage deviation minimization (TVD) 

The hybrid PSO-TS algorithm in this case is to minimize the total of voltage deviation for the 

three cases (case 1, case 2 and case 3). The results tabulated in Table 4.12 shows that the optimal 

solutions determined by PSO-TS in the case 2 lead to lower TVD than those found by PSO-TS 

in case 1 and case 3 (Figure 4.13). The PSO-TS algorithm in case 2 has reduced the TVD from 

the initial state witch where 0.619 p.u to 0.1155 representing a reduction of 81.34 % compared 

with PSO-TS (case 1) and PSO-TS (case 3), which have reduced TVD by 79.85 % and 80.14 

%, respectively. It can be seen that installing shunt capacitors on sensitive bus according to the 

second approach is more suitable for finding a better solution than other cases. The convergence 

characteristics of the TVD objective functions for the three cases are shown in Figure 4.14. 

From this figure the convergence curve of the proposed PSO-TS of the second case converges 

towards a high-quality solution compared with the other two cases. In this case, the algorithm 

converged in less than 180 iterations. 
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Table 4.12. Simulation results for the Sensitive Buses Approach 

Control variables TS PSO PSO-TS 
PSO-TS 

(case 1) 

PSO-TS 

(case 2) 

PSO-TS 

(Case 3) 

V1 1.0760 0.9875 1.0014 0.9960 0.9976 0.9796 

V2 1.0494 0.9513 1.0592 1.0631 0.9714 1.0711 

V5 1.0056 1.0641 1.0542 1.0702 1.0694 1.0675 

V8 1.0238 1.0596 1.0133 0.9691 1.0594 1.0113 

V11 1.0085 1.0972 0.9905 1.1000 0.9577 1.0994 

V13 0.9641 1.1000 1.0291 1.0542 1.1000 1.0104 

T6–9 0.9486 1.0344 0.9762 1.0129 1.0221 0.9556 

T6–10 0.9840 1.1000 1.0163 1.0638 1.0056 1.0016 

T4–12 0.9647 0.9000 0.9537 0.9000 0.9268 0.9000 

T27–28 1.0287 0.9516 0.9481 0.9402 0.9493 0.9566 

QSh10 0.0917 03000 0.2890 -  - 

QSh24 0.2278 0.0440 0.0697 - 0.0785 - 

QSh07 - - - 0 - - 

QSh21 - - - 0.1988 0.1748 - 

QSh03 - - - - - 0.1502 

QSh29 - - - - - 0.0206 

TVD (p. u) 0.1874 0.1275 0.1113 0.1247 0.1155 0.1229 

Reduction (%) - - - 79.85 81.34 80.14 

 

 

Figure 4.13. Comparative results of the TVD (3 cases) 
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Figure 4.14. Convergence characteristic of the TVD (case 1, 2 and 3). 

4.4.2.3.2. IEEE 57 bus test system 

To confirm that the chosen method, based on the sensitivity to load reactive power, is the more 

appropriate and gives better results, the proposed hybrid algorithm have been implemented on 

the IEEE 57-bus test network. This system consists of 80 branches, seven generator-buses and 

15 branches with load-tap setting transformers. The shunt reactive sources are at buses 18, 25 

and 53 (standard buses). The bus one is the slack bus and the buses 2, 3, 6, 8, 9 and 12 are PV 

buses. The remaining nodes are PQ buses. Thus, the control variables vector is of length 25, 

i.e., seven generator voltages, 15 transformer taps, and three shunt reactive sources. The voltage 

magnitudes of all the buses are between 0.95 and 1.1 p.u, the transformer tap settings are within 

the range of 0.9–1.1 p.u and the shunt capacitor sizes are taken from 0 to 30 MVAR. The total 

system load is 1250.8 MW and 336.4 MVAr. The initial system active power loss is 28.462 

MW. The classification of sensitive buses based on load reactive power is presented in table 

4.13.  For three capacitors and as given by Table 4.13, the most sensitive buses to be considered 

are 53, 31 and 38 (sensitive buses obtained using the second case approach). Beyond three 

capacitors, the active power losses do not improve. The proposed algorithm is tested and 

compared with other algorithms on optimal performance in terms of active power losses and 

total voltage deviation. 
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Table 4.13 Load reactive power-based classification (case 2) 

Load bus New 𝑷𝐥𝐨𝐬𝐬 value (MW) Load bus New 𝑷𝐥𝐨𝐬𝐬value (MW) 

53 28.1391 44 28.4060 

31 28.2113 18 28.4112 

38 28.2333 15 28.4139 

35 28.2575 28 28.4164 

25 28.2648 17 28.4265 

47 28.2703 54 28.4298 

42 28.2931 29 28.4318 

50 28.3136 13 28.4361 

33 28.3165 20 28.4366 

30 28.3217 27 28.4470 

49 28.3660 43 28.4481 

56 28.3753 19 28.4495 

57 28.3796 16 28.4526 

52 28.3803 51 28.4552 

23 28.3823 10 28.4559 

14 28.3831 5 28.4581 

41 28.3898 55 28.4715 

32 28.3981 18 28.4112 

a. Active power losses minimization 

Table 4.14 lists the minimum power losses obtained by different methods, namely: PSO-TS in 

both cases (normal case and case 2), Canonical Genetic Algorithm (CGA), Adaptive Genetic 

Algorithm (AGA), Full Learning PSO (CLPSO) Gravitational Search Algorithm (GSA) [41]. 

From the results presented in this table, it is clear that the proposed algorithm with the sensitive 

bus approach performs much better than the other methods. The convergence characteristic for 

Ploss minimization of PSO-TS with sensitive bus approach is depicted in figure 4.15 which 

indicates a much better solution for the proposed hybrid algorithm and the performance of 30 

independent runs of the proposed method is illustrated in figure 4.16. To have an idea of average 

performance of the proposed algorithm with sensitive bus approach, the best, worst, average 

minima and standard deviation are given respectively as follows: 21.3146, 22.2734, 21.5928 

and 0.2977.   
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Table 4.14. Simulation results for the Sensitive Buses Approach  

CVs Initial 
CGA 

[41] 

AGA 

[41] 

CLPSO 

[41] 

GSA 

[41] 

PSO-TS 

(normal case) 
TS PSO 

PSO-TS 

(case 2) 

V1 1.0400 0.9686 1.0276 1.0541 1.0654 1.1000 1.0867 1.1000 1.1000 

V2 1.0100 1.0493 1.0117 1.0529 1.0682 1.0900 1.0721 1.1000 1.1000 

V3 0.9850 1.0567 1.0335 1.0337 1.0657 1.1000 1.0070 1.1000 1.0939 

V6 0.9800 0.9877 1.0010 1.0313 1.0432 1.1000 1.0790 1.1000 1.1000 

V8 1.0050 1.0223 1.0517 1.0496 1.0549 1.1000 1.0597 1.1000 1.1000 

V9 0.9800 0.9918 1.0518 1.0302 1.0598 1.1000 1.0724 1.1000 1.1000 

V12 1.0150 1.0044 1.0570 1.0342 1.0685 1.0747 1.0443 1.1000 1.0816 

T4-18 0.9700 0.9200 1.0300 0.9900 1.0300 0.9000 1.0734 1.1000 1.1000 

T4-18 0.9780 0.9200 1.0200 0.9800 1.0700 1.1000 1.0820 0.9000 0.9000 

T20-21 1.0430 09700 1.0600 0.9900 0.9500 1.1000 0.9911 1.1000 1.1000 

T24-26 1.0430 0.9000 0.9900 1.0100 1.0200 1.1000 0.9665 1.0007 1.0045 

T7-29 0.9670 0.91000 1.1000 0.9900 0.9800 1.0625 0.9018 0.9000 0.9000 

T34-32 0.9750 1.1000 0.9800 0.9300 1.0500 0.9000 1.0684 1.0053 0.9904 

T11-41 0.9550 0.9400 1.0100 0.9100 1.0800 0.9000 1.0536 0.9000 1.1000 

T15-45 0.9550 0.9500 1.0800 0.9700 0.9600 0.9840 1.0320 0.9000 0.9000 

T14-46 0.9000 1.0300 0.9400 0.9500 0.9400 1.0122 0.9965 0.9000 0.9000 

T10-51 0.9300 1.0900 0.9500 0.9800 1.0270 0.9832 1.0277 0.9040 0.9000 

T13-49 0.8950 0.900 1.0500 0.9500 1.0450 0.9658 0.9178 0.9000 0.9000 

T11-43 0.9580 0.900 0.9500 0.9500 1.0800 1.1000 0.9603 0.9000 0.9000 

T40-56 0.9580 1.0000 1.0100 1.0000 0.9900 1.1000 1.0155 0.9959 1.1000 

T39-57 0.9800 0.9600 0.9400 0.9600 1.0455 0.9879 1.0721 0.9814 1.1000 

T9-55 0.9400 1.0000 1.0000 0.9700 1.0247 1.0943 0.9256 0.9000 0.9000 

Qsh18 - 0.8400 0.0168 0.0988 0.07965 0.0000 - - - 

Qsh25 - 0.0081 0.01536 0.0542 0.00595 0.2994 - - - 

Qsh53 - 0.0536 0.03888 0.0628 0.04764 0.0000 0.1652 0.0990 0.0516 

Qsh31 - - - - - - 0.1469 0.0536 0.3000 

Qsh38 - - - - - - 0.1006 0.3000 0.0824 

Ploss 

(Mw) 
28.0080 25.2440 24.5648 24.5152 24.1264 24.3907 24.9508 24.4325 21.3146 
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Figure 4.15. Convergence characteristic for active power losses minimization 

 (case of sensitive bus approach) 

 

 

Figure 4.16. Performance of 30 independent runs (case 2) 
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show that the proposed algorithm with the sensitive bus approach (case 2) performs much better 

than the other methods namely: APOPSO (0.9430 pu), GSA (1.1100 pu), OGSA (0.6982 pu), 

PSO-TS (normal case) (0.9737 pu), TS (1.2184 pu), PSO (0.6998 pu). The convergence 

characteristic for TVD minimization of PSO-TS with sensitive bus approach is depicted in 

figure 4.17 and the performance of 30 independent runs of the proposed method is illustrated in 

figure 4.18. The best, worst, average minima and standard deviation are given respectively as 

follows: 0.67590, .8545, 0.7687 and 0.0560. 

Table 4.15. Simulation results for the Sensitive Buses Approach 

Control 

variables 

APOPSO 

[149]  

GSA 

[19]  

OGSA 

[79]  

PSO-TS 

(normal case) 
TS PSO 

PSO-TS 

(case 2) 

V1 1.02 1.1 1.0138 1.0243 1.0319 1.0146 1.0015 

V2 1.009 1.1 0.9608 0.9529 1.0477 1.1000 0.9648 

V3 0.977 1.0737 1.0173 1.0400 0.9570 0.9500 0.9500 

V6 0.976 1.0422 0.9898 0.9500 1.0714 0.9735 1.1000 

V8 1.044 1.0523 1.0362 0.9500 1.0576 1.0456 0.9500 

V9 1.001 1.0455 1.0241 0.9500 1.0306 0.9500 0.9500 

V12 1.012 1.0468 1.0136 0.9500 1.0304 1.0681 1.1000 

T4-18 0.998 1.0100 0.9833 1.1000 0.9580 1.0436 0.9000 

T4-18 0.994 1.0100 0.9503 1.1000 0.9011 0.9196 1.0051 

T20-21 0.959 1.0300 0.9523 1.1000 1.0177 0.9700 1.0046 

T24-26 0.980 0.9800 1.0036 0.9000 1.0731 1.1000 1.0068 

T7-29 0.968 0.9800 0.9778 1.1000 0.9732 0.9764 0.9893 

T34-32 0.931 1.0200 0.9146 1.0625 0.9949 1.1000 1.0211 

T11-41 0.922 1.0000 0.9454 1.1000 0.9824 0.9000 0.9320 

T15-45 0.911 1.0000 0.9265 0.9831 0.9430 1.1000 0.9994 

T14-46 0.979 0.9800 0.9960 1.1000 0.9288 0.9400 0.9672 

T10-51 1.001 1.0200 1.0386 0.9821 0.9558 0.9909 0.9283 

T13-49 0.882 1.0000 0.9060 1.1000 1.0722 0.9000 0.9864 

T11-43 0.871 0.9900 0.9234 1.1000 1.0782 0.9318 0.9259 

T40-56 0.966 1.0100 0.9871 0.9000 1.0179 1.0414 1.0288 

T39-57 0.951 0.9900 1.0132 1.1000 0.9913 0.9189 0.9000 

T9-55 0.911 1.0200 0.9372 1.1000 1.0695 1.0019 0.9721 

Qsh18 0.02 0.0800 0.0463 0.3000 - - - 

Qsh25 0.097 0.1080 0.0590 0 - - - 

Qsh53 0.042 0.0780 0.0628 0.3000 0.2133 0.2606 0.2770 

Qsh31 - - - - 0.1380 0.1634 0.1699 

Qsh38 - - - - 0.1972 0.3000 0.3000 

TVD (pu) 0.9430 1.1100 0.6982 0.9737 1.2184 0.6998 0.6759 
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Figure 4.17. Convergence characteristic of the TVD minimization. 

 

 

 
Figure 4.18. Performance of 30 independent runs of the IEEE 57-bus system ((case 2)) 
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functions (active power losses and total voltage deviation). As in previous simulations, the 

inequality constraints are handled by penalty coefficients. The obtained results are compared 

with other evolutionary algorithms. 

4.4.3.1. IEEE 14-bus test system 

The PSO-TS method is applied to the ORPD problem taking into account continuous and 

discrete control variables for the active power loss minimization. Tables 4.16 summarizes the 

results of the optimal control variables obtained by PSO, TS, PSO-TS and the results obtained 

by several algorithms in literature. The results indicate that PSO-TS leads to active power losses 

of 12.1479 MW (initially these losses were 13.4919 MW) indicating a lower value than those 

of PSO and TS as well as the algorithms reported in the literature, namely PSO-TVAC [91], 

WOA  [124], MGBTLBO [95], MTLA [130], DDE [130], MTLA-DDE [130] and SARGA 

[82]. In addition, the percentage reductions are presented in these tables. We can see that the 

proposed PSO-TS was able to reduce the active losses by 9.9615%. The proposed method was 

able to keep all the control variables within their bounds. Figures 4.19 shows the superiority of 

our algorithm over the others. The convergence curve of PSO-TS is given by Figure 4.20 

indicating convergence after 190 iterations for the case of discrete variables. As illustrated by 

Figure 4.21, the performances of the PSO-TS are shown for 40 independent runs.  

Table 4.16. Simulation results of TS, PSO and PSO-TS algorithms (case of discrete variables). 

CV Initial 
MTLA 

[130] 

DDE 

[130]  

MTLA-

DDE [130] 

MGBTLBO 

[95] 

PSO-

TVAC [91] 

WOA 

[124] 

SARGA 

[82] 
TS PSO 

PSO-

TS 

V1 1.0600 1.0746 1.0743 1.0753 1.100 1.1013 1.1000 1.0000 1.0787 1.1000 1.1000 

V2 1.0450 1.0566 1.0561 1.0573 1.0791 1.0882 1.0859 1.0960 1.0464 1.0952 1.0932 

V3 1.0100 1.0272 1.0266 1.0284 1.0484 1.0585 1.0566 1.0360 1.0601 1.1000 1.0600 

V6 1.0700 1.0506 1.0469 1.0505 1.0553 1.0418 1.0858 1.0990 1.0158 1.1000 1.1000 

V8 1.0900 1.0111 1.0401 1.0353 1.0326 1.0440 1.1000 1.0780 1.0383 1.1000 1.1000 

T4–7 0.9780 1.0400 1.0400 1.0800 1.0100 1.0420 0.9585 0.9500 1.0300 0.9100 1.0500 

T4–9 0.9690 0.9300 0.9700 0.9100 1.0100 1.0176 1.0453 0.9500 1.0400 1.100 0.9000 

T5–6 0.9320 1.0400 1.0100 1.0100 1.0300 1.0747 1.0163 0.9600 1.0600 0.9900 0.9900 

QC9 0.1800 0.3000 0.3000 0.3000 0.0300 0.171 0 0.1249 0.1800 0.1800 0.1800 0.1700 

QC14 0.1800 0.0700 0.0700 0.0800 0.0700 0.0820 0.0801 0.0600 0.1700 0.0700 0.0800 

Ploss 

(MW) 
13.491 12.910 12.928 12.897 12.310 12.279 12.255 13.216 13.042 12.257 12.147 

Red 

(%) 
- 4,308 4,175 4,403 8,760 8,989 9,167 2,044 3,334 9,147 9,961 
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Figure 4.19. Comparative graph of the active power losses (Case of discrete variables) 

 

Figure 4.20. Convergence characteristic for power losses objective (case of discrete variables)  

 

Figure 4.21. Performance for 40 independent runs 
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4.4.3.2. IEEE 30-bus test system 

In order to verify the performance and feasibility of the proposed PSO-TS based reactive power 

optimization approach, the PSO-TS algorithm has also been tested on IEEE 30-bus power 

system [134]. It consists of 30 buses, out of which 6 are generator buses. Bus 1 is the slack bus, 

2, 5, 8, 11 and 13 are taken as PV buses and the remaining 24 are PQ buses. The network has 

41 branches, 4 transformers and 2 capacitor banks. The four branches 6–9, 9–10, 4–12, 27–28 

are under load tap changing transformers within the interval [0.9, 1.1]. The two capacitor banks 

are set at buses 10 and 24 and take their values within the interval [0, 30] MVAr. The number 

of control variables is 12, which consist of six PV generator voltages within the range of [0.95, 

1.1], four tap changing transformers and two shunt capacitor banks. The initial operating 

conditions of this system are given by [147]. In this part, the adopted objective function is the 

active power losses minimization. The best settings of the control variables obtained via the 

PSO-TS algorithm and the other algorithms are reported in Tables 4.17 and 4.18. Figure 4.24 

shows the convergence curves of the considered algorithm. As noticeably, the PSO-TS 

technique converges to high quality solution in the last quarter of iterations. In addition, it can 

be seen that the PSO-TS algorithm outperforms the other methods namely: RGA [150], 

CMAES [150], MNSGA-II [150], MOPSO NSGA-II [150], [150], PSO [151],  DE [388], ICA 

[89], IWO [89], MICA-IWO [89], SGA [3], MAPSO [3] (Figure 4.22).  Figure 4.23 shows 40 

independent runs of the proposed algorithm. The Best (4.5708), worst (4.6578), mean (4.6130) 

and the standard deviation (0.02121) of Ploss minimization results show that the solution is 

relatively stable. 

Table 4.17. Simulation results of TS, PSO and PSO-TS algorithms (case of discrete variables). 

Control Variables TS PSO PSO-TS 

V1 1.0974 1.1000 1.1000 

V2 1.0968 1.1000 1.0949 

V5 1.0513 1.1000 1.0738 

V8 1.0868 1.1000 1.1000 

V11 1.0690 1.1000 1.1000 

V13 1.0739 1.1000 1.0999 

T6–9 0.9500 1.1000 0.9900 

T6–10 0.9800 1.1000 1.0600 

T4–12 1.0300 0.9000 0.9000 

T27–28 1.0800 0.9900 0.9600 

QSh10 0.0900 0.0700 0.0800 

QSh24 0.0600 0.0200 0.0100 

Ploss (MW) 5.0607 4.6173 4.5708 
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Table 4.18. Best solutions comparison  

Methods Ploss (MW) Loss reduction (%) 

RGA [150] 4.9510 6.200 

CMAES [150] 4.9450 6.314 

MOPSO [150] 4.9510 6.200 

NSGA-II [150] 4.9520 6.181 

MNSGA-II [150] 4.9454 6.307 

DE [151] 5.0110 5.064 

ICA [89] 4.9444 6.325 

IWO [89] 4.9995 5.282 

MICA-IWO [89] 4.9178 6.829 

SGA [3] 4.9800 5.651 

MAPSO [3] 4.8747 7.646 

TS 5.0607 4.122 

PSO 4.6173 12.523 

PSO-TS 4.5708 13.403 

 

 

Figure 4.22. Comparative graph of the active power losses (Case of discrete variables) 
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Figure 4.23. Performance of 40 independent runs 

 

Figure 4.24. Convergence characteristic for the power losses 
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other optimization technique reported in the literature like NLP, CGA,  AGA, PSO-w, PSO-cf, 

CLPSO, SPSO, L-DE, L-SACP-DE, L-SaDE, SOA [127], OGSA [79] and GSA [19]. From 

Table 4.19, it may be observed that PSO-TS reduced active power losses from 28.4623 MW 

(initial losses) to 21.3315 MW, i.e. a reduction of 25.053%, which is less than the amount 

obtained by TS and PSO as well as those of other algorithms. Figure. 4.25 shows the 

Convergence characteristic of real power loss based PSO-TS and indicates a convergence 

around 190 iterations while the Figure 4.26 gives the objective function minimum values for 

30 independent runs and shows the relative stability of the proposed PSO-TS method as 

indicated by the statistical indicators below: 

The best result= 21,3315 MW, the worst result=22.7303 MW, the mean=21.7629 MW and the 

standard deviation =0.4043. 

Table 4.19. Simulation results of TS, PSO and PSO-TS algorithms (case of discrete variables). 

Control 

variables 

OGSA      

[79] 

GSA         

[19]  

NLP       

[127]  

CGA      

[127] 

AGA      

[127]   

PSO-w    

[127] 

PSO-cf   

[127] 

V1 1.0600 1.0600 1.0600 0.9686 1.0276 1.0600 1.0600 

V2 1.0594 1.0600 1.0600 1.0493 1.0117 1.0578 1.0586 

V3 1.0492 1.0600 1.0538 1.0567 1.0335 1.0438 1.0464 

V6 1.0433 1.0081 1.0600 0.9877 1.0010 1.0356 1.0415 

V8 1.0600 1.0550 1.0600 1.0223 1.0517 1.0546 1.0600 

V9 1.0450 1.0098 1.0600 0.9918 1.0518 1.0369 1.0423 

V12 1.0407 1.0186 1.0600 1.0044 1.0570 1.0334 1.0371 

T4-18 0.9000 1.1000 0.9100 0.9200 1.0300 0.9000 0.9800 

T4-18 0.9947 1.0826 1.0600 0.9200 1.0200 1.0200 0.9800 

T20-21 0.9000 0.9220 0.9300 0.9700 1.0600 1.0100 1.0100 

T24-26 0.9001 1.0167 1.0800 0.9000 0.9900 1.0100 1.0100 

T7-29 0.9111 0.9963 1.0000 0.9100 1.1000 0.9700 0.9800 

T34-32 0.9000 1.1000 1.0900 1.1000 0.9800 0.9700 0.9700 

T11-41 0.9000 1.0746 0.9200 0.9400 1.0100 0.9000 0.9000 

T15-45 0.9000 0.9543 0.9100 0.9500 1.0800 0.9700 0.9700 

T14-46 1.0464 0.9377 0.9800 1.0300 0.9400 0.9500 0.9600 

T10-51 0.9875 1.0168 0.9800 1.0900 0.9500 0.9600 0.9700 

T13-49 0.9638 1.0526 0.9800 0.9000 1.0500 0.9200 0.9300 

T11-43 0.9000 1.1000 0.9800 0.9000 0.9500 0.9600 0.9700 

T40-56 0.9000 0.9800 0.9800 1.0000 1.0100 1.0000 0.9900 

T39-57 1.0148 1.0247 1.0800 0.9600 0.9400 0.9600 0.9600 

T9-55 0.9830 1.0373 1.0300 1.0000 1.0000 0.9700 0.9800 

Qsh18 0.0682 0.0783 0.0835 0.0840 0.0168 0.0514 0.0998 

Qsh25 0.0590 0.0059 0.0086 0.0082 0.0154 0.0590 0.0590 

Qsh53 0.0630 0.0469 0.0110 0.0538 0.0389 0.0629 0.0629 

Ploss (MW) 23.4300 23.4612 25,9023 25.2441 24.5648 24.2705 24.2802 

Red (%) 17.6797 17.5701 8.9934 11.3060 13.6926 14.7267 14.6926 
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Table 4.19 (continued) 

Control 

variables 

CLPSO 

[127] 

SPSO 

[127] 

L-DE  

[127] 

L-SACP-

DE [127] 

L-SaDE 

[127] 

SOA 

[127] 
TS    PSO   PSO-TS  

V1 1.0541 1.0596 1.0397 0.9884 1.0600 1.06 1.0877 1.1000 1.1000 

V2 1.0529 1.0580 1.0463 1.0543 1.0574 1.0580 1.0353 1.1000 1.1000 

V3 1.0337 1.0488 1.0511 1.0278 1.0438 1.0437 1.0988 1.1000 1.1000 

V6 1.0313 1.0362 1.0236 0.9672 1.0364 1.0352 1.0343 1.0941 1.1000 

V8 1.0496 1.0600 1.0538 1.0552 1.0537 1.0548 1.0730 1.1000 1.1000 

V9 1.0302 1.0433 0.94518 1.0245 1.0366 1.0369 0.9834 1.1000 1.0953 

V12 1.0342 1.0356 0.99078 1.0098 1.0323 1.0336 1.0378 1.1000 1.0810 

T4-18 0.9900 0.9500 1.0200 1.0500 0.9400 1.0000 1.0800 1.1000 1.0800 

T4-18 0.9800 0.9900 0.9100 1.0500 1.0000 0.9600 1.0600 0.9000 0.9000 

T20-21 0.9900 0.9900 0.9700 0.9500 1.0100 1.0100 1.0400 1.1000 1.1000 

T24-26 1.0100 1.0200 0.9100 0.9800 1.0100 1.0100 0.9200 1.0000 1.1000 

T7-29 0.9900 0.9700 0.9600 0.9700 0.9700 0.9700 1.0200 0.9000 0.9000 

T34-32 0.9300 0.9600 0.9900 1.0900 0.9700 0.9700 0.9700 1.1000 1.0100 

T11-41 0.9100 0.9200 0.9800 0.9200 0.9000 0.9000 0.9700 0.9000 1.1000 

T15-45 0.9700 0.9600 0.9600 0.9100 0.9700 0.9700 0.9800 0.9000 0.9000 

T14-46 0.9500 0.9500 1.0500 1.0800 0.9600 0.9500 1.0100 0.9000 0.9000 

T10-51 0.9800 0.9700 1.0700 0.9900 0.9600 0.9600 0.9800 0.9000 0.9000 

T13-49 0.9500 0.9200 0.9900 0.9100 0.9200 0.9200 1.0600 0.9000 0.9000 

T11-43 0.9500 1.0000 1.0600 0.9400 0.9600 0.9600 0.9800 0.9000 0.9000 

T40-56 1.0000 1.0000 0.9900 0.9900 1.0000 1.0000 0.9600 0.9900 1.1000 

T39-57 0.9600 0.9500 0.9700 0.9600 0.9600 0.9600 1.0000 0.9800 1.1000 

T9-55 0.9700 0.9800 1.0700 1.1000 0.9700 0.9700 1.1000 0.9000 0.9000 

Qsh18 0.0988 0.0393 0.0000 0.0000 0.0811 0.0998 - - - 

Qsh25 0.0542 0.0566 0.0000 0.0000 0.0580 0.0590 - - - 

Qsh53 0.0628 0.0355 0.0000 0.0000 0.0619 0.0628 0.0500 0.1000 0.1000 

Qsh31 - - - - - - 0.1400 0.0600 0.0600 

Qsh38 - - - - - - 0.1800 0.3000 0.3000 

Ploss 

(MW) 

24.51 24.43 27.81 27.91 24.26 24.26 25.6437 21.5229 21.3315 

Red (%) 13.8852 14.1663 2.2908 1.9394 14.7635 14.7635 9.902 24.3802 25.0527 

 

Figure 4.25. Convergence characteristic for the power losses 
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Figure 4.26. Performance of 30 independent runs 

4.4.3.4. Practical Algerian 114-bus power system 

In order to conduct deeper study of performance and efficiency of the proposed Hybrid PSO-

TS algorithm, it is applied to the practical large-scale Algerian power test system with 114 bus 

(figure 4.27). The Algerian power system data are given in Appendix A. This system comprises 

175 transmissions lines, 15 generators, and 16 tap changer transformers. In addition, shunt 

capacitors are also considered as control variables. The shunt capacitor locations are determined 

by the sensitive buses approach. The total system real and reactive power demands in initial 

state are 3727 MW and 2070 MVAr.  Bus 4 is selected as the slack-bus. Using the sensitive bus 

approach, we have classified the busses of the Algerian network.  The table 4.20 shows the 

classification of the busses from the most sensitive to the least sensitive. To identify the number 

of the shunt capacitors to install, we optimized the active power losses by inserting them 

gradually (one by one). After inserting the seventh reactive power source, there was no further 

improvement in the value of active power losses, so we have an optimum number of 6 shunt 

capacitors. Therefore, the system has a total of 37 variables to be optimized, including fifteen 

generators, sixteen transformers and six shunt capacitors. The minimum and maximum limits 

for the control variables are depicted in Table 4.21 [152]. 
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Figure 4.27. Single line diagram of Algerian 114-bus system [153] 

Table 4.20. Classification of load buses. 

bus 𝑷𝑳𝒐𝒔𝒔 bus 𝑷𝑳𝒐𝒔𝒔 bus 𝑷𝑳𝒐𝒔𝒔 bus 𝑷𝑳𝒐𝒔𝒔 bus 𝑷𝑳𝒐𝒔𝒔 bus 𝑷𝑳𝒐𝒔𝒔 

66 76.0772 24 76.9634 69 77.1144 76 77.2217 113 77.2758 47 77.3824 

56 76.3162 82 76.9733 29 77.1204 77 77.2248 50 77.2888 40 77.3846 

91 76.3693 68 76.9755 87 77.1326 71 77.2250 110 77.2892 6 77.4251 

73 76.3895 59 77.0097 70 77.1496 20 77.2366 49 77.3189 10 77.5197 

63 76.5254 92 77.0289 39 77.1634 38 77.2495 45 77.3200 13 77.5599 

89 76.6521 106 77.0623 33 77.1875 102 77.2593 43 77.3201 8 77.5781 

54 76.8517 90 77.0851 23 77.1879 99 77.2620 112 77.3251 1 77.9258 

85 76.8857 94 77.0878 97 77.1879 51 77.2672 3 77.3265 41 78.0063 

61 76.9155 34 77.0968 25 77.2053 104 77.269 9 77.3438 26 78.0125 

67 76.9203 32 77.1047 95 77.2072 79 77.2697 103 77.3498 12 78.2962 

53 76.9272 65 77.1070 36 77.2078 78 77.2725 114 77.3530 21 78.3947 

62 76.9324 107 77.1089 88 77.2080 37 77.2732 84 77.3605   

55 76.9410 57 77.1134 30 77.2166 108 77.2744 7 77.3681   

Table 4.21. Algerian 114-bus test system variable limits 

Variables Lower limits (p.u) Upper limits (p.u) 

Generator buses voltage 0.9 1.1 

Load buses voltage 0.9 1.1 

Transformers tap setting 0.9 1.1 

shunt compensators (MVAr) 0 25 
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a. Simulation results for active power losses minimization  

The PSO-TS method was applied to a real Algerian network of 114-bus, taking into account 

continuous and discrete variables and the two objective functions earlier defined. Table 4.22 

shows the optimal control variables for the 114-bus Algerian network, obtained by TS, PSO 

and PSO-TS. According to these results, the lowest active power losses are obtained using the 

PSO-TS method. The proposed algorithm reduced the active power losses from 77.2746 MW 

(initial losses) to 59.9319 MW with a reduction rate of 22.443% in the case of continuous 

variables and from 77.2746 MW to 60.4422 MW, i.e. a reduction of 21.783% in the case of  

Table 4.22. Simulation results of TS, PSO and PSO-TS for the Ploss (Algerian 114-bus system) 

Control variables 
Continuous variables Discrete variables 

TS PSO PSO-TS TS PSO PSO-TS 

V4 0.9820 1.1000 1.1000 1.0632 1.0889 1.1000 

V5 1.0122 1.1000 1.1000 1.0243 1.1000 1.1000 

V11 0.9165 1.1000 1.1000 1.0946 1.0889 1.1000 

V15 0.9592 1.1000 1.0995 1.0656 1.0677 1.1000 

V17 1.0828 1.1000 1.1000 1.0426 1.1000 1.1000 

V19 0.9826 1.1000 1.1000 0.9857 1.0942 1.1000 

V22 1.0656 1.1000 1.1000 1.0286 1.1000 1.1000 

V52 0.9822 1.1000 1.1000 1.0734 1.1000 1.1000 

V80 0.9374 1.0942 1.1000 1.0267 1.1000 1.1000 

V83 1.0048 1.1000 1.1000 1.0263 1.1000 1.1000 

V98 1.0875 1.1000 1.1000 0.9984 1.0748 1.1000 

V100 1.0331 1.1000 1.1000 1.0032 1.1000 1.1000 

V101 1.0646 1.1000 1.1000 1.0473 1.1000 1.1000 

V109 1.0678 1.1000 1.1000 1.0557 1.1000 1.1000 

V111 1.0892 1.1000 1.1000 1.0372 1.1000 1.1000 

T80–88 1.0745 0.9000 0.9000 1.04 0.90 0.90 

T81–90 0.9528 1.0456 0.9000 1.00 0.90 0.98 

T86–93 1.0327 1.1000 0.9000 0.99 0.94 0.98 

T42–41 1.0360 0.9605 0.9449 0.95 0.96 0.90 

T58–57 1.0679 0.9000 0.9472 1.08 0.90 0.90 

T44–43 1.0357 0.9000 0.9517 0.94 0.90 0.90 

T60–59 1.0040 0.9734 0.9905 0.98 0.97 0.98 

T64–63 0.9575 0.9460 0.9535 0.96 0.90 0.97 

T72–71 0.9111 0.9000 0.9002 1.05 0.90 0.90 

T17–18 1.0130 1.0233 1.0403 1.01 1.04 1.03 

T21–20 0.9695 0.9996 1.0079 1.09 1.00 0.98 

T27–26 1.0413 1.1000 0.9000 1.09 1.10 0.90 

T28–26 0.9894 0.9563 1.1000 0.93 0.90 1.10 

T31–30 1.0012 0.9772 0.9822 1.03 0.98 0.97 

T48–47 1.0118 0.9843 0.9577 1.09 0.98 0.98 

T74–76 0.9527 1.1000 0.9187 1.09 1.10 1.10 

QC56 0.1159 0.2500 0.2500 0.15 0.25 0.25 

QC63 0.2068 0.0000 0.2005 0.17 0.25 0.25 

QC66 0.0844 0.2500 0.2088 0.01 0.25 0.25 

QC73 0.2467 0.2500 0.2500 0.15 0.25 0.25 

QC89 0.1613 0.2500 0.2500 0.19 0.10 0.25 

QC91 0.2084 0.2500 0.0440 0.20 0.25 0.25 

PLoss (MW) 76.1048 61.1138 59.9319 75.0614 61.4602 60.4422 

Red (%) 1.514 20.913 22.443 2.864 20.465 21.783 
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discrete variables. Figure 4.28 shows the superiority of PSO-TS over the other two algorithms. 

The evolution of active power losses over the iterations is shown in Figure 4.29, where we 

observe convergence of PSO-TS for continuous variables at the 102nd iteration and 

convergence at the 164th iteration for discrete variables. The performance of the proposed 

method for 20 independent runs is shown in Figure 4.30 with the minimum and maximum active 

losses obtained. The mean of the results obtained (60.9770) and their standard deviation 

(0.6092) show that the solution is relatively stable. 

 

 

Figure 4.28. Comparative graph of active power losses (Algerian 114-bus system) 

 

Figure 4.29. Convergence characteristic of Algerian 114-bus system for PLoss minimization 
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Figure 4.30. Performance of 24 particles for 20 runs (Ploss minimization) 

b. Simulation results for total of  voltage deviation minimization 

In this case, the proposed algorithm is also applied to minimize the total voltage deviation. 

Table 4.23 shows the simulation results obtained by the three algorithms with discrete and 

continuous variables. The TVD value obtained by the PSO-TS algorithm is better than that 

obtained by the TS and PSO algorithms for both types of variables. Indeed, the PSO-TS reduced 

the total of voltage deviation from 3.7650 pu (initial TVD) to 1.6834 pu, i.e. a reduction of 

55.288% in the case of continuous variables and from 3.7650 pu to 1.6753 pu in the case of 

discrete variables with a reduction rate of 55.503%. The proposed algorithm is therefore 

effective in giving solutions that are close to optimality (Figures 4.31). The convergence curves 

of this method are presented in Figure 4.32, we note that the PSO-TS converges for continuous 

variables at the 180th iteration and for the case of discrete variables, it converges at the 139th 

iteration. An overview of the voltage profile is given in Figures 4.34. We note that the voltages 

at each busbar respect the limits set and are close to the reference voltage (1 p.u). Figure 4.33 

shows several tests carried out, with the minimum and maximum TVD obtained. The mean of 

the results obtained (1.80588) and their standard deviation (0.0990) show that the solution is 

relatively stable. 
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Table 4.23. Simulation results of TS, PSO and PSO-TS for the TVD (Algerian 114-bus system) 

Control variables 
Continuous variables Discrete variables 

TS PSO PSO-TS TS PSO PSO-TS 

V4 1.0657 1.0033 1.0402 1.0498 1.0051 1.0046 

V5 1.0968 1.1000 0.9000 0.9023 1.0914 1.1000 

V11 1.0446 0.9149 0.9000 1.0050 0.9000 0.9000 

V15 1.0089 0.9169 0.9194 1.0540 0.9000 0.9000 

V17 0.9912 0.9927 0.9924 1.0469 1.0090 1.1000 

V19 1.0254 1.0139 0.9979 1.0466 1.0191 0.9996 

V22 1.0822 1.1000 1.1000 0.9019 0.9815 0.9010 

V52 0.9069 1.1000 1.1000 1.0711 1.1000 1.1000 

V80 1.0673 0.9691 0.9000 0.9480 1.1000 0.9000 

V83 0.9863 1.1000 1.1000 1.0064 1.1000 1.0534 

V98 1.0120 0.9000 1.1000 1.0662 0.9526 1.1000 

V100 1.0259 1.0442 1.0617 1.0737 1.0942 1.0985 

V101 1.0040 1.1000 0.9615 0.9903 1.0553 0.9466 

V109 1.0156 1.1000 1.0029 1.0052 1.0091 1.0375 

V111 1.0106 0.9810 1.0371 0.9477 0.9000 1.0134 

T80–88 0.9555 0.9308 0.9251 0.95 1.10 0.90 

T81–90 0.9212 0.9000 0.9000 1.01 0.90 0.99 

T86–93 0.9836 1.0004 0.9917 0.95 0.99 0.99 

T42–41 1.0079 0.9229 0.9686 1.08 0.90 0.92 

T58–57 0.9486 0.9275 0.9176 0.99 0.97 0.99 

T44–43 0.9213 0.9645 0.9000 0.97 0.90 0.90 

T60–59 1.0776 0.9005 0.9226 0.95 0.90 1.01 

T64–63 0.9292 0.9744 0.9225 0.96 0.97 1.00 

T72–71 0.9822 0.9000 0.9074 1.05 0.90 0.96 

T17–18 0.9945 1.0304 1.1000 1.06 1.10 1.02 

T21–20 0.9951 1.1000 1.1000 0.93 1.02 1.05 

T27–26 1.0818 0.9333 0.9016 0.96 1.10 0.92 

T28–26 1.0308 1.1000 0.9000 1.02 1.10 0.91 

T31–30 0.9881 0.9000 0.9681 1.06 0.98 1.00 

T48–47 1.0150 0.9593 0.9620 1.06 0.97 1.04 

T74–76 1.0575 0.9796 0.9000 0.91 0.97 0.96 

QC56 0.1850 0.0000 0.0456 0.18 0.24 0.25 

QC63 0.2493 0.2500 0.0000 0.11 0.25 0.25 

QC66 0.1654 0.2500 0.2500 0.23 0.00 0.21 

QC73 0.0472 0.2500 0.0728 0.19 0.25 0.23 

QC89 0.1414 0.2500 0.0212 0.20 0.00 0.25 

QC91 0.1558 0.2500 0.2248 0.09 0.15 0.20 

TVD (pu) 3.1207 1.7059 1.6834 3.3029 1.7684 1.6753 

Red (%) 17.113 54.691 55.288 12.274 53.031 55.503 
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Figure 4.31. Comparative graph of TVD (Algerian 114-bus system) 

 

 

 

Figure 4.32. Convergence characteristic of Algerian 114-bus system for TVD minimization 
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Figure 4.33. Performance of 24 particles for 20 trial runs (TVD minimization) 

 

 

Figure 4.34. Voltage profile of the Algerian 114-bus system 

4.5. Conclusion 

The importance of hybridization algorithms lies in their ability to enhance performance, adapt 

to different problem characteristics, and provide effective solutions in a wide range of domains. 

They offer a flexible and powerful approach to optimization and problem-solving challenges. 

___ Initial state 

___ PSO-TS  
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These algorithms combine different optimization techniques or problem-solving methods to 

exploit their strengths and mitigate their weaknesses. In this chapter an efficient hybrid PSO 

with TS techniques called PSO-TS is implemented to solve the ORPD problem. The 

combination of these two metaheuristic methods can outperform the algorithms when used 

individually in solving power system optimization problems. First, the proposed PSO-TS 

algorithm based ORPD is implemented considering continuous control variables. In the second 

part, a new approach to identify the sensitive buses was presented. Afterwards, the proposed 

hybrid algorithm based sensitive approach is implemented to solve the ORPD problem with 

two distinct objective functions, namely, active power losses and voltage deviation. In the third 

part, the PSO-TS method based ORPD considering discrete control variables is presented. The 

proposed optimization approach was tested on IEEE 14-bus, IEEE 30-bus, IEEE 57-bus and 

the practical Algerian electric 114-bus power system. To demonstrate the effectiveness of the 

proposed PSO-TS algorithm, the obtained results were compared with TS, PSO and with 

several methods published in the literature.
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Chapter  5 

ORPD PROBLEM CONSIDERING FACTS DEVICES 

5.1. Introduction 

FACTS (Flexible Alternating Current Transmission Systems) are a set of innovative 

technologies and devices designed to improve the management, control and transmission of 

alternating current (AC) electricity on power grids. They have been developed to solve a 

number of major challenges facing power system operators around the world. These challenges 

include voltage regulation, reactive power management, improving system stability, increasing 

transmission capacity and improving the quality of electricity supplied to consumers. FACTS 

use advanced electronic technologies such as thyristors, power converters, filters and sensors 

to dynamically control and adjust AC parameters on the network. They offer network operators 

unprecedented flexibility to respond to variations in demand, network disturbances and power 

quality problems. With their ability to reduce power losses, improve energy efficiency and 

enhance grid stability, FACTS play a crucial role in improving the reliability of electricity 

supply and in the transition to more sustainable and resilient power systems.  

Transmission lines are an important part of the network. They are made up of series and 

shunt impedances. The series impedance can affect the maximum power transited through the 

line and the shunt impedance is predominantly capacitive, and has an influence on the voltage 

along the transmission line. The series impedance of the line, the sending-end and receiving-

end voltages and the phase shift between the voltages, determine the power transited. FACTS 

are used to change the series and shunt parameters as well as the phase shift voltages in order 

to control power flow.  

Because the progress of power electronics, FACTS devices have taken more attention 

in transmission power systems. Based on the use of reliable high-speed power electronics, 

powerful analytical tools, advanced control and microcomputer technologies, FACTS represent 

a new concept for the operation of power transmission systems. They have the capability to 

change the network parameters with a rapid response and enhanced flexibility, such as, 

improving voltage profile and minimizing system losses [154]. Generally speaking, FACTS 

devices act by supplying or absorbing reactive power, increasing or reducing busbar voltage, 

controlling line impedance or modifying voltage phases. Furthermore, FACTS controllers, in 
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comparison with mechanical devices such as transformer tap changers or shunt capacitor 

switches that have enabled the AC power system to be controlled so far are not subject to 

mechanical wear and offer them an important advantage to FACTS devices in addition to high 

flexibility and speed [155]. 

In order to observe the effects of FACTS devices on electrical systems, it is necessary 

to model them. FACTS modelling is based on the elements used in power flow calculations. 

These are, in particular, the generators, the loads, the shunts, the lines and the transformers. 

FACTS devices are considered as ideal elements and their active losses are not taken into 

account. 

Since the FACTS devices can significantly improve power systems performance by 

controlling power flows without generation rescheduling or topological changes, two FACTS 

devices named Static Var Compensator (SVC) and Thyristor Controlled Series Capacitor 

(TCSC) are used in this work. In this thesis, the settings of FACTS devices are considered as 

additional control parameters in the ORPD formulation and studied the impact on active power 

losses minimization. The above FACTS device power flow models are briefly described below 

[156]. 

5.2.  FACTS devices. 

5.2.1. Definition  

Flexible Alternating Current Transmission Systems, commonly known as FACTS, are a set of 

advanced power system technologies and devices designed to enhance the controllability and 

flexibility of AC (alternating current) power systems. FACTS devices are static power-

electronic devices installed in AC transmission networks to increase power transfer capability, 

stability, and controllability of the networks through series and/or shunt compensation. These 

devices are also employed for congestion management and power losses optimization. The 

static synchronous series compensator (SSSC) and thyristor-controlled series capacitor (TCSC) 

are some of the FACTS control devices which provide series compensation to reactance of the 

lines to which they are connected, while the static synchronous compensator (STATCOM) and 

static VAR compensator (SVC) (where VAR stands for volt–ampere reactive) are FACTS 

devices which provide shunt compensation to transmission lines [157]. FACTS technologies 

are used to optimize the operation and performance of power systems, improve voltage stability, 

increase power transfer capacity, and enhance the overall reliability of electricity transmission 

and distribution. FACTS devices are crucial components in modern power systems, helping 



CHAPTER 5 ORPD PROBLEM CONSIDERING FACTS DEVICES 

Page | 133  

 

utilities manage complex grid operations more efficiently.  

5.2.2.  Technology Overview 

The principle behind FACTS can be explained by formula (5.1) that states (neglecting active 

and reactive losses) that the power flow between two nodes (substation 1 and substation 2) 

along an AC transmission line (see Figure. 5.1) can be expressed as:  

 
𝑺𝟏,𝟐 =

𝑽𝟏𝑽𝟐 𝐬𝐢𝐧(𝜹𝟏,𝟐)

𝑿
− 𝒋(

𝑽𝟏𝑽𝟐 𝐜𝐨𝐬 ( 𝜹𝟏,𝟐)

𝑿
−
𝑽𝟏

𝟐

𝑿
) (5. 1) 

Being the real part of Eq. 5.1, the active power flow, therefore, 

 

Figure 5.1. Simplified connection diagram between two substations 

 
𝑷𝟏,𝟐 =

𝑽𝟏𝑽𝟐 𝐬𝐢𝐧(𝜹𝟏,𝟐)

𝑿
 (5. 2) 

where 𝑃1,2 is the active power flow between the two nodes along the line, V1 and V2 represent 

the respective nodal voltage magnitudes at both ends of the line, X expresses the line reactance 

and  𝛿1,2 represents the voltage angular difference between the two nodes. By improving the 

control of one or more of the above-mentioned parameters (voltage, line reactance or phase 

angle), it becomes possible to increase the flexibility of any line or any part of an electrical 

system, in particular increasing or decreasing the power flow on a given line or part of the 

system. This control enhancement leads to a corresponding improvement in operation of the 

power transmission system. In this case, FACTS devices enable the controllability and power 

transmission capability of electrical systems to be enhanced in term of both flexibility [155]. 

5.2.3.  General classification of FACTS devices 

FACTS devices can be classified into several categories based on their functionality, the control 

they provide and the way they are connected to the power system (shunt or series). Here are 

some common classifications of FACTS devices (figure 5.2) [158]: 
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Figure 5.2. General classification of FACTS devices 

5.2.3.1. Shunt compensators 

Shunt compensators have long been used in electrical networks, their main objectives are to 

control voltages at the desired levels when there is a change in system conditions and to increase 

the transmissible power in the lines. Shunt controllers are connected in shunt with the line to 

inject current into the system at the point of connection. They can also be variable impedance, 

variable source or a combination of the two. If the injected line current is in quadrature with the 

line voltage, variable reactive power supply or consumption could be achieved. However, any 

other phase relationship could also involve real power handling. This category includes 

STATCOM (Static Synchronous Compensator) and SVC (Static Var Compensator). The most 

common Static VAR Compensators (SVC) are: TCR (Thyristor controlled reactor), TSR 

(Thyristor switched reactor) and TSC (Thyristor switched capacitor). 

5.2.3.2. Series compensators 

Series compensators are being connected in series with the line as they are meant for injecting 

voltage in series with the line. These devices could be variable impedances like capacitor, 

reactor or power electronics based variable source of main frequency, sub synchronous or 

harmonic frequency, or can be a combination of these, to meet the requirements. If the injected 

voltage is in phase quadrature with the line current, then only supply or consumption of variable 

reactive power is possible. These types of controllers include: 

➢ SSSC: Static synchronous series compensator 

➢ TCSC:  Thyristor controlled series capacitor 

➢ TCSR:  Thyristor controlled series reactor 

FACTS 

Shunt 

Compensators 

Series/Shut 

Compensators 
Series 

Compensators 

TCSC TSSR SSSC TSSC SVC TCSR STATCOM UPFC 
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➢ TSSC:  Thyristor switched series capacitor  

➢ TSSR:  Thyristor switched series reactor. 

5.2.3.3. Combined Series-Shunt compensators 

The FACTS devices described above can only act on one of the three parameters determining 

the power transmitted in a line (voltage, impedance and angle). By combining the two types of 

devices (shunt and series), it is possible to obtain hybrid devices capable of simultaneously 

controlling the different variables mentioned above. Hence, they are capable of injecting current 

into the line using the shunt part and injecting series voltage with the series part of the respective 

controller. If they are unified, there can be real power exchange between the shunt and series 

controllers via the common DC power link, as in the case of Unified Power Flow Controllers 

(UPFC). 

5.2.4.  FACTS devices modeling 

Modeling FACTS devices is essential for understanding their operation, simulating their impact 

on power systems, and optimizing their control. The modeling process involves representing 

the behavior of FACTS devices mathematically or through simulation tools. The developed 

models are integrated into calculation programs so that they can simulate their effects 

throughout the system. FACTS device modeling is a critical aspect of power system analysis 

and control. Accurate models help power system engineers and operators assess the impact of 

FACTS devices, design control strategies, and ensure grid stability and efficiency. The 

complexity and level of detail in the models will depend on the specific analysis or simulation 

objectives.  

Below are some key aspects of how FACTS devices are modelled: 

▪ Mathematical Models: FACTS devices are typically modeled using mathematical equations 

that describe their electrical and control characteristics. The level of detail in the model can 

vary depending on the simulation objectives. 

▪ Device-Specific Models: Different FACTS devices require specific models to capture their 

unique features. Here are common models for some FACTS devices: 

- SVC (Static VAR Compensator): SVC models include control characteristics and can 

be described as a set of voltage and current equations. A simple SVC model may include 

equations representing its susceptance (B) and voltage setpoints. 

- STATCOM (Static Synchronous Compensator): STATCOM models include the 

voltage-source inverter and its control algorithms. These models describe the 
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relationship between the inverter's control signals, the injected reactive power, and the 

grid voltage. 

- TCSC (Thyristor-Controlled Series Capacitor): TCSC models incorporate the switching 

action of thyristors and describe how the capacitive reactance can be controlled. The 

model accounts for the voltage and current across the TCSC. 

- SSSC (Static Synchronous Series Compensator): SSSC models typically include 

synchronous generator models and power electronics for voltage control. These models 

describe the device's control capabilities, including real and reactive power injection. 

- UPFC (Unified Power Flow Controller): UPFC models combine the functionalities of 

various FACTS devices and include detailed power electronics and control algorithms. 

They encompass voltage source converters and are often more complex than single-

device models. 

The methods used to integrate FACTS into the load flow are mainly different. The three most 

common methods in the literature are: injection of equivalent power, creation of a fictitious 

node or modification of the admittance matrix. In general, FACTS devices can be inserted either 

at the nodes of the network, or in series with the lines. In practice, devices whether shunt or 

series are often inserted at existing stations. This thesis focuses only on series devices (TCSC) 

and shunt devices (SVC).  

5.2.4.1.  Static VAR Compensator (SVC) 

a. Definition  

SVC is one of the most important shunt controllers in FACTS technology used in electric power 

systems to regulate voltage and manage reactive power. SVCs are shunt-connected devices that 

can rapidly control the flow of reactive power into or out of the power system, helping to 

stabilize voltage levels and improve system performance. SVCs are typically connected in 

parallel with the transmission lines or at specific buses in the power system. They are primarily 

used for voltage regulation and can quickly adjust the reactive power output to maintain the 

desired voltage levels within the power system. When the system voltage is too low, the SVC 

injects reactive power to raise it, and when the voltage is too high, it absorbs reactive power to 

lower it. SVCs have a fast response time which makes them suitable for dealing with rapid 

voltage fluctuations caused by sudden load changes or system disturbances. SVCs help in 

preventing voltage instability and voltage collapse during contingencies. By maintaining 

voltage stability, SVCs can increase the power transfer capacity of transmission lines. SVCs 

are equipped with sophisticated control systems that monitor the voltage levels and adjust the 
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reactive power output accordingly. In some cases, SVCs are used in conjunction with other 

FACTS devices to optimize voltage and power flow control. Coordinated operation with other 

FACTS devices like series compensators can lead to more comprehensive grid control. 

b. Modeling of  Static VAR Compensator (SVC) 

The Static VAR Controller (SVC) is one of the shunt FACTS devices widely installed in the 

world. As well shown in Figure. 5.3., the basic structure of SVC consists of connected anti-

parallel thyristors to provide controllability. The SVC has the ability to control dynamically the 

voltage at critical buses by exchanging dynamically capacitive or inductive reactive power with 

the network [120]. 

Figure 5.3. Basic circuit and operation principle of SVC 

The static reactive power compensator is modeled by 𝑌𝑆𝑉𝐶  as shunt variable admittance as 

shown in Figure 5.4. Since the power loss of SVC is negligible, its admittance is assumed to be 

purely imaginary: 

 𝒀𝑺𝑽𝑪 = 𝒋𝒃𝑺𝑽𝑪 (5. 3) 

Were 𝒃𝑺𝑽𝑪 is the susceptance of the SVC device 

 

          

(a)                                                                 (b) 

Figure 5.4. Basic structure of SVC 
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SVC can be utilized for both inductive and capacitive compensation Figure 5.5. In power 

flow study, the SVC is modeled as a device for reactive power injection on the bus to which it 

is connected to as: 

 𝑸𝑺𝑽𝑪 = 𝑼𝒊
𝟐𝒃𝑺𝑽𝑪 (5. 4) 

where 𝑈𝑖 is the amplitude of bus voltage where the compensator is installed. 

 

Figure 5.5. Equivalent circuit representation of SVC 

5.2.4.2. Thyristor-Controlled Series Capacitor (TCSC)  

a. Definition 

A Thyristor-Controlled Series Capacitor (TCSC) is a type of FACTS device used in electrical 

power systems to control power flow and enhance system stability. TCSCs are series-connected 

devices that consist of a series capacitor in conjunction with thyristor-controlled reactors. These 

devices can adjust the impedance and phase angle of the transmission line, allowing power flow 

control and voltage stability improvement. TCSCs are primarily used to control power flow on 

transmission lines by dynamically changing the line impedance. They can be used in 

coordination with other FACTS devices like Static VAR Compensators (SVCs) and Unified 

Power Flow Controllers (UPFCs) to provide comprehensive power system control and 

optimization. 

b.  Modeling of  the Thyristor series compensator 

The TCSC is a series compensation component which consists of a series capacitor bank 

shunted by Thyristor controlled reactor as presented in Figure 5.6. It can vary the series 

impedance continuously to levels below and above the line’s natural impedance. This is a 

powerful means of increasing and controlling power transfer. TCSCs can respond rapidly to 

control signals to increase or decrease the capacitance or inductance [155]. The static model of 

TCSC inserted particular line is shown in Figure 5.7. Since the devices are considered ideal, 

only the reactive part of the impedance is taken into account. The basic idea behind power flow 
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control with the TCSC is to decrease or increase the overall lines effective series transmission 

impedance, by adding a capacitive or inductive reactance to the line impedance. The TCSC is 

modelled as variable reactance. After installing TCSC, the new reactance of TCSC is presented 

by: 

 𝑿𝑻𝑪𝑺𝑪 = (𝟏 − 𝒌𝑻𝑪𝑺𝑪). 𝑿𝒍𝒊𝒈𝒏𝒆  (5. 5) 

Where 𝑋𝑙𝑖𝑔𝑛𝑒 is the transmission line reactance and 𝒌𝑻𝑪𝑺𝑪 is the level of reactance 

compensation. The level of the applied compensation of the TCSC varies generally between 

20% in inductive mode and 80% in capacitive mode [159].  

 −𝟎. 𝟖 ≤ 𝒌𝑻𝑪𝑺𝑪 ≤ 𝟎. 𝟐  (5. 6) 

 

 

Figure 5.6. Basic circuit structure of TCSC 

 

 

Figure 5.7. The basic model of TCSC device 

5.3. Formulation of ORPD problem considering FACTS devices 

Optimal Reactive Power Dispatch is a crucial aspect of power system operation aiming to 

optimize the allocation of reactive power resources to enhance voltage profile of the power 

system, reduce line losses, and improve system performance. When considering FACTS 

devices in ORPD formulation, it involves incorporating these devices into the optimization 

process to achieve better control over system parameters. Integrating FACTS devices into 

ORPD formulation enhances the system's efficiency and reliability. In this study, the objective 

of the optimal reactive power dispatch considering FACTS is same as that of conventional 
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ORPD that is to minimize the active power losses (𝑃𝐿𝑜𝑠𝑠) which is described in Equation (2.2). 

Like in conventional ORPD, we take into account power balance constraints to ensure that the 

total power injected is equal to the total power consumed at each bus, maintain voltages within 

specified limits at all buses, constraints on the reactive power generated by each generator and 

the capacity constraints of the FACTS devices. SVC and TCSC are the two FACTS controllers 

considered along with conventional OPRD for further active power losses reduction of the 

power system. The settings of the FACTS devices are the additional control variable in ORPD 

in addition with generator voltages, tap ratio of tap changing transformers and amount of VAR 

injection by shunt capacitors.  

The SVC device is modeled by 𝑌𝑆𝑉𝐶  as shunt variable admittance. When SVC is connected at 

the bus i (Figure 5.4 (b)), only the element 𝑌𝑖𝑖 of the nodal admittance matrix is modified 

(Equations 5.7 and 5.8). 

 𝒀′𝒊𝒊 = 𝒀𝒊𝒊 + 𝒚𝑺𝑽𝑪 (5. 7) 

 

𝒀′ = (
𝒚𝒊𝒌 +

𝒚𝒊𝒌𝟎
𝟐

+ 𝒚𝑺𝑽𝑪 −𝒚𝒊𝒌

−𝒚𝒊𝒌 𝒚𝒊𝒌 +
𝒚𝒊𝒌𝟎
𝟐

) (5. 8) 

When a TCSC is inserted in a line connecting the bus i and the bus k (Figure 5.8), the new 

reactance of this line becomes: 

 𝒙′𝒊𝒌 = 𝒙𝒊𝒌 + 𝒙𝑻𝑪𝑺𝑪  (5. 9) 

The matrix admittance of the line is modified as follows: 

 

 𝒀′ = (
𝒚′𝒊𝒌 +

𝒚𝒊𝒌𝟎
𝟐

−𝒚′𝒊𝒌

−𝒚′𝒊𝒌 𝒚′𝒊𝒌 +
𝒚𝒊𝒌𝟎
𝟐

) (5. 10) 

 
𝒚′𝒊𝒌 =

𝟏

𝒓𝒊𝒌 + 𝒋(𝒙𝒊𝒌 + 𝒙𝑻𝑪𝑺𝑪)
 (5. 11) 

 

 

Figure 5.8. TCSC connected in a line 
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To incorporate SVC and TCSC devices with ORPD, the following constraints are added with 

conventional ORPD problem constraints. 

5.3.1. SVC VAr limits 

SVC reactance values are restricted within the limits as follows 

 𝑸𝑺𝑽𝑪𝒎𝒊𝒏 ≤ 𝑸𝑺𝑽𝑪 ≤ 𝑸𝑺𝑽𝑪𝒎𝒂𝒙 (5. 12) 

𝑄𝑆𝑉𝐶 is the VAR rating of SVC and 𝑄𝑆𝑉𝐶𝑚𝑖𝑛 and 𝑄𝑆𝑉𝐶𝑚𝑎𝑥 are the minimum and maximum 

VAr limits of SVC. 

5.3.2. TCSC Reactance limits 

TCSC reactance values are restricted within the limits as follows 

 −𝟎. 𝟖𝑿𝒍𝒊𝒏𝒆 ≤ 𝑿𝑻𝑪𝑺𝑪 ≤  𝟎. 𝟐𝑿𝒍𝒊𝒏𝒆 (5. 13) 

𝑋𝑙𝑖𝑛𝑒 is the reactance of the line where TCSC is connected. 𝑋𝑇𝐶𝑆𝐶 is the reactance of the TCSC.  

5.4. Simulation Results and Discussions  

For investigating the effect of optimal setting of FACTS devices in minimizing the total active 

power losses and in order to demonstrate the applicability and the validity of the proposed PSO-

TS algorithm for ORPD problem with FACTS devices, studies are conducted on the standard 

IEEE 30-bus and on practical Algerian power test system with 114 buses.  

5.4.1. IEEE 30 bus test system 

This network consists of 41 branches, 6 generator buses, and 24 load buses. Four branches are 

under tap setting transformer branches. In addition, buses 10 and 24 have been selected as shunt 

VAR compensation buses. Bus 1 is selected as the slack bus, and buses 2, 5, 8, 11, and 13 are 

the generator buses. The others are load buses. A total of 12 optimal control variables are 

utilized for this ORPD problem. The branch parameters and loads are taken from [160]. The 

voltage magnitudes limits of all buses are [0.9 p.u, 1.1 p.u.]. The tap settings limits of regulating 

transformers are [0.9 p.u., 1.1 p.u.]. The VAR injection of the shunt capacitors is within the 

interval of [0 MVAr, 30 MVAr]. This study has considered the setting of the FACTS devices 

as additional control parameters in the ORPD formulation and studied the impact on active 

power losses minimization. Static models of the two types of FACTS devices consisting of 

SVC and TCSC have been included in the ORPD formulation. The SVC device is considered 

as a generator (or an absorber) of reactive power which varies continuously between −0.3 p.u 

and 0.3 p.u. The number of FACTS and their limits are chosen at the beginning.  The reactance 

of TCSC is considered as continuous variable which varies between 20% inductive and 80% 

capacitive of the line reactance. Table 5.1 shows the limits of the control variables of IEEE 30-
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bus system considering FACTS devices [161]. In the present work, several cases in terms of 

use of FACTS devices are considered namely: 

Case 1. 𝑃𝐿𝑜𝑠𝑠 minimization considering one SVC device. 

Case 2. 𝑃𝐿𝑜𝑠𝑠 minimization considering two SVC devices. 

Case 3. 𝑃𝐿𝑜𝑠𝑠 minimization considering one TCSC device. 

Case 4. 𝑃𝐿𝑜𝑠𝑠 minimization considering two types of FACTS devices (one SVC and one TCSC).  

For each case, we will study the impact of the FACTS when installed with and without shunt 

capacitors on the quality of the solution. The locations of shunt capacitors, SVC and TCSC 

devices are as bellow fixed: 

The locations of the shunt capacitors are as given by reference [147] for this test network. The 

SVC location is identified using the bus sensitivity approach (developed in section 4.4.2) 

whereas the TCSC location is as indicated in reference [162]. 

Table 5.1. Limits of the control variable considering FACTS devices (IEEE 30-bus) 

𝑽𝑮
𝒎𝒂𝒙 𝑽𝑮

𝒎𝒊𝒏 𝑻𝒌
𝒎𝒂𝒙 𝑻𝒌

𝒎𝒊𝒏 𝑸𝒄
𝒎𝒂𝒙 𝑸𝒄

𝒎𝒊𝒏 𝑸𝑺𝑽𝑪
𝒎𝒂𝒙 𝑸𝑺𝑽𝑪

𝒎𝒊𝒏 𝑿𝑻𝑪𝑺𝑪
𝒎𝒂𝒙  𝑿𝑻𝑪𝑺𝑪

𝒎𝒊𝒏  

1.1 0.9 1.1 0.9 0.3 0.0 0.3 -0.3 0.2𝑿𝒊𝒋 -0.8𝑿𝒊𝒋 

5.4.1.1. Case 1: ORPD using one SVC device 

In this case, we aim to use the proposed PSO-TS algorithm to find the optimal SVC MVAR 

rating in addition to the other control variables, namely the generator voltages and the tap setting 

transformers, which minimize active power losses. The SVC location is determined based on 

the buses sensitivities developed in section 4.4.2. The most sensitive bus is, for the studied 

network, that numbered 21. The simulation results obtained by the proposed PSO-TS method 

for the three cases listed below are presented in Table 5.2.  

Case 1a: 𝑃𝐿𝑜𝑠𝑠 minimization with shunt capacitors (bus 10 and 24). 

Case 1b: 𝑃𝐿𝑜𝑠𝑠 minimization with only SVC device (bus 21). 

Case 1c: 𝑃𝐿𝑜𝑠𝑠 minimization with shunt capacitors and SVC device. 

From this table, it can be seen that the proposed PSO-TS algorithm based ORPD optimization 

implemented with the combination of capacitor banks and one SVC device reduced the total 

active power losses from 5.2783 MW to 4.3327 MW, which represents a reduction of 17.915%. 

Whereas, these losses were reduced by 12.745% if the SVC device is used without the capacitor 

banks. While capacitor banks without FACTS devices reduce power losses by only 12,27% 

(Figure 5.9). Also, the evolution of power losses versus the iterations number, given by Figure 

5.10,  shows  that  after  57  iterations, the  power  losses  value, i.e. 4.296 MW, remains  stable 



CHAPTER 5 ORPD PROBLEM CONSIDERING FACTS DEVICES 

Page | 143  

 

 until reaching the 176th iteration where the power losses become equal to 4.332 MW. 

Table 5.2. Simulation results considering SVC device (case 1) 

Control variables Initial state PSO-TS (case 1a) PSO-TS (case 1b) PSO-TS (case 1c) 

V1 1.0600 1.0992 1.1000 1.1000 

V2 1.0450 1.0948 1.1000 1.0890 

V5 1.0100 1.0766 1.1000 1.1000 

V8 1.0100 1.0977 1.1000 1.1000 

V11 1.0820 1.0837 1.1000 1.1000 

V13 1.0710 1.0754 1.0215 1.1000 

T6–9 0.9780 0.9257 1.0361 0.9504 

T6–10 0.9690 1.0291 1.1000 0.9701 

T4–12 0.9320 0.9265 1.1000 1.1000 

T27–28 0.9680 0.9422 1.0346 0.9578 

QSh10 0.0000 0.2864 - 0.3000 

QSh24 0.0000 0.1363 - 0.0714 

SVC (21) - - 0.3000 0.1317 

Ploss (MW) 5.2783 4.6304 4.6056 4.3327 

 

 

Figure 5.9. Reduction of active power losses (case 1) 
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Figure 5.10. Convergence characteristic of IEEE 30-bus system for case 1c 

5.4.1.2. Case 2: ORPD using two SVC devices 

In this case, two SVC devices are inserted at buses 21 and 24. The optimal setting of control 

variables (voltage of generator buses, tap settings of the regulating transformers, VAR 

injections of the shunt capacitors, and VAr setting of SVC devices) and active power losses that 

are obtained by the proposed method for the three cases namely:  

Case 2a: 𝑃𝐿𝑜𝑠𝑠 minimization with only shunt capacitors. 

Case 2b: 𝑃𝐿𝑜𝑠𝑠 minimization with two SVC devices. 

Case 2c: 𝑃𝐿𝑜𝑠𝑠 minimization with shunt capacitors and SVC devices. 

The Cases 2a, 2b and 2c are presented in Table 5.3. From this table and Figure 5.11, the results 

clearly show that the active power loss has improved from 5.2783 MW to 4.6510 MW in the 

case 2a, from 5.2783 MW to 4.5360 MW in the case 2b and from 5.2783 MW to 4.2645 MW 

in the case 2c. It may be noticed that the objective function value obtained in case 2c is better 

than those of the other cases. In fact, the installation of two SVCs in the presence of shunt 

capacitors reduced the power losses by 19.207% compared with the power losses reduction 

observed in the case where the shunt capacitors are installed alone (11.884%) and the case 

where the SVCs are installed alone (14.063%) (Figure 5.11). Figure 5.12 illustrates the 

convergence characteristic of power loss minimization in case 2c which indicates a much better 

solution for the proposed hybrid algorithm. 
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Table 5.3. Simulation results considering SVC devices (case 2) 

Control variables Initial state PSO-TS (case 2a) PSO-TS (case 2b) PSO-TS (case 2c) 

V1 1.0600 1.1000 1.1000 1.1000 

V2 1.0450 1.1000 1.1000 1.1000 

V5 1.0100 1.1000 1.1000 1.0795 

V8 1.0100 1.1000 1.1000 1.1000 

V11 1.0820 1.0968 0.9500 1.1000 

V13 1.0710 1.1000 1.1000 1.1000 

T6–9 0.9780 0.9671 1.0359 0.9329 

T6–10 0.9690 1.1000 1.1000 1.0484 

T4–12 0.9320 0.9000 0.9000 0.9000 

T27–28 0.9680 0.9564 0.9919 0.9370 

QSh10 - 0.3000 - 0.2632 

SVC (21) - - 0.3000 0.0648 

SVC (24) - - -0.3000 0.1202 

Ploss (MW) 5.2783 4.6510 4.5360 4.2645 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Reduction of active power losses (case 2) 
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Figure 5.12. Convergence characteristic of IEEE 30-bus system for case 1c 

5.4.1.3. Case 3: ORPD using TCSC device  

In this case, we are going to install another type of FACTS which is the TCSC. The proposed 

algorithm tries to find, in addition to the usual control variables, the TCSC reactance setting 

which minimize the active power losses. The best results of 𝑃𝐿𝑜𝑠𝑠 minimization achieved by 

PSO-TS are tabulated in Table 5.4 for the different cases cited bellow: 

Case 3a: 𝑃𝐿𝑜𝑠𝑠 minimization with only shunt capacitors. 

Case 3b: 𝑃𝐿𝑜𝑠𝑠 minimization with TCSC device (line (2-5)) 

Case 3c: 𝑃𝐿𝑜𝑠𝑠 minimization with shunt capacitors and TCSC device. 

It can be pointed from table 5.4 and figure 5.13, that PSO-TS in cases 3a, 3b and 3c is able to 

reduce power losses from 5.2783 MW to 4.6304 MW, 4.5631 MW and 4.3703 MW 

respectively, which represents a reduction of 12.275%, 13.550%, and 17.203%. Comparing 

these results, we can notice that the minimum active power losses is obtained in case 3c where 

TCSC is combined with shunt capacitors. In the case where shunt capacitors are installed alone, 

the result is not as good as with TCSC taken alone. However, when we took into account both 

shunt capacitors and the TCSC device, the result became better. Figure 5.14 shows the power 

loss reduction process for PSO-TS for the case 3c. From this figure it can be seen that the best 

result can be achieved after about 40 iterations, which reflects the good search capability of this 

proposed hybrid algorithm. 
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Table 5.4. Simulation results considering TCSC device (case 3) 

Control variables Initial state PSO-TS (case 3a) PSO-TS (case 3b) PSO-TS (case 3c) 

V1 1.0600 1.0992 1.1000 1.1000 

V2 1.0450 1.0948 1.1000 1.1000 

V5 1.0100 1.0766 1.0796 1.1000 

V8 1.0100 1.0977 1.1000 1.1000 

V11 1.0820 1.0837 1.1000 1.1000 

V13 1.0710 1.0754 1.1000 1.1000 

T6–9 0.9780 0.9257 1.1000 0.9766 

T6–10 0.9690 1.0291 1.0357 0.9669 

T4–12 0.9320 0.9265 0.9856 1.1000 

T27–28 0.9680 0.9422 1.0138 0.9673 

QSh10 - 0.2864 - 0.3000 

QSh24 - 0.1363 - 0.0938 

TCSC (2-5) - - -0.2388 -0.1944 

Ploss (MW) 5.2783 4.6304 4.5631 4.3703 

 

 

 

 
Figure 5.13. Reduction of active power losses (case 3) 
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Figure 5.14. Convergence characteristic of IEEE 30-bus system (case 3c) 

5.4.1.4. Case 4: ORPD using two types of FACTS devices 

In this case, two type of FACTS devices were integrated, namely SVC and TCSC in order to 

optimize the active power losses. Table 5.5 shows the detailed results of the control variables 

including the optimal sizes of the SVC and TCSC as well as the active power losses obtained 

by the proposed algorithm for the different following cases:  

Case 4a: 𝑃𝐿𝑜𝑠𝑠 minimization with shunt capacitors. 

Case 4b: 𝑃𝐿𝑜𝑠𝑠 minimization with TCSC and SVC devices (one SVC and one TCSC) 

Case 4c: 𝑃𝐿𝑜𝑠𝑠 minimization with shunt capacitors and FACTS devices (SVC and TCSC). 

The SVC has been connected at bus 21, the TCSC at line (2-5) and the shunt capacitor at bus 

10. Table 5.4 shows that the power losses obtained by PSO-TS algorithm in case 4b is 4.435 

MW and in case 4c is 4.2437 MW. Table 5.5 and Figure 5.15 present the results and a 

comparison of reduction in active power losses for different cases. According to this Table and 

Figure, ORPD considering FACTS devices and shunt capacitors significantly decrease the 

active power losses (case 4c). To conclude, we can say that the installation of single type 

FACTS device (one SVC) brings the active power loss to 4.6056 MW and the installation of 

two SVC devices brings the power loss to 4.5360 MW. Similarly, the use of a single TCSC 

lowers power losses to 4.5631 MW. For the cases mentioned above, i.e. either SVC or TCSC, 
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adding shunt capacitors to the facts devices, further enhances results. On the other hand, 

simultaneous installation of the two type FACTS devices (SVC and TCSC) reduce better the 

power loss in comparison to the results obtained by FACTS devices installed separately (Table 

5.6). 

Table 5.5. Simulation results considering SVC and TCSC devices (case 4) 

Control variables Initial state PSO-TS (case 4a) PSO-TS (case 4b) PSO-TS (case 4c) 

V1 1.0600 1.0992 1.1000 1.1000 

V2 1.0450 1.0948 1.1000 1.1000 

V5 1.0100 1.0766 1.1000 1.0940 

V8 1.0100 1.0977 1.1000 1.1000 

V11 1.0820 1.0837 1.1000 1.0965 

V13 1.0710 1.0754 1.1000 1.1000 

T6–9 0.9780 0.9257 0.9848 0.9184 

T6–10 0.9690 1.0291 1.0932 0.9515 

T4–12 0.9320 0.9265 0.9000 1.0349 

T27–28 0.9680 0.9422 0.9706 0.9288 

QSh10 0.0000 0.2864 - 0.2997 

QSh24 - 0.1363 - 0.0628 

SVC (21) - - 0.3000 0.1191 

TCSC (2-5) -  -0.1913 -0.2528 

Ploss (MW) 5.2783 4.6304 4.4358 4.2437 

 

Figure 5.15. Reduction of active power losses (case 4) 
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Figure 5.16. Convergence characteristic of IEEE 30-bus system for case 4c 

Table 5.6. comparison of reduction in Ploss considering SVC and TCSC devices 

 Ploss reduction (%) 

 Without shunt capacitors With shunt capacitors 

Installation of SVC device  12.74 17.91 

Installation of TCSC device 13.55 17.20 

Installation of SVC and TCSC devices 15.96 19.60 

   

5.4.2. Practical Algerian electric power system 

The effectiveness of the proposed PSO-TS algorithm in solving large scale nonlinear problems 

is validated by the ORPD problem carried out on a practical large scale Algerian electrical 

network having 114 buses, using FACTS devices. This problem has 38 decision variables 

namely, 15 generator voltages, 16 tap changer transformers and 7 reactive compensation 

devices which are installed at buses 50, 55, 66, 67, 77, 89 and 93 [152]. The total load demand 

is (37.27+ j 20.70) p.u at 100 MVA base. This study has considered the setting of the SVC 

devices as additional control parameters in the ORPD formulation and studied the impact on 
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active power losses minimization. The SVC device is modeled as shunt variable admittance 

(YSVC) as already explained in section 5.4.1. The upper and the lower operating limits of the 

control variables are given in Table 5.7. For this network, the impact of installing shunt 

capacitors and SVC devices on power losses is examined. Firstly, the power losses are 

calculated without shunt capacitors, which corresponds to case 1. Case 2 is devoted to 

minimizing power losses in the presence of shunt capacitors in the initial state [152]. Case 3 is 

the minimization of power losses in the presence of shunt capacitors, but this time installed on 

sensitive buses (already identified in section 4.4.3.4). Case 4 is the optimization of power losses 

in the presence of shunt capacitors and SVC devices (shunt capacitors are installed as in the 

initial state and the SVC devices are installed on the sensitive buses). The above cases are 

summarized as follows: 

Case 1. 𝑃𝐿𝑜𝑠𝑠 without shunt capacitors. 

Case 2. 𝑃𝐿𝑜𝑠𝑠 minimization considering shunt capacitors (Initial state). 

Case 3. 𝑃𝐿𝑜𝑠𝑠 minimization considering shunt capacitors (Sensitivite bus approach). 

Case 4. 𝑃𝐿𝑜𝑠𝑠 minimization considering shunt capacitors and SVC devices.  

Table 5.8 summarizes the optimal control variables of Algerian 114-buses, obtained by PSO-

TS for the four cases (case1, 2, 3 and 4). These results show that the most degraded active power 

losses are obtained in the first case since no reactive compensation have been used. After 

installation of the shunt capacitors at buses 50, 55, 66, 67, 77, 89 and 93 (initial state), the power 

losses are reduced from 77.2746 MW to 70.7003 MW, i.e. a reduction in power losses of 8.51%. 

The 3rd case is the case where the shunt capacitors are installed on the most sensitive buses (56, 

63, 66, 73, 89 and 91). In this case the power losses are reduced to 59.9319 MW, i.e. a reduction 

of 22.442%. This reduction is better than that found in the 2nd case, which again shows that the 

sensitive bus approach is effective and gives better results. The 4th case shows the usefulness 

of installing FACTS devices in addition to shunt capacitors. It can be seen from Table 5.8 and 

Figure 5.17 that after integration the SVC devices in addition to the shunt capacitors, the losses 

were reduced to 55.0110, i.e. a reduction in losses of 28.8109% which is improved compared 

to case 2 (initial state). This electrical energy saving shows the considerable advantages offered 

by the FACTS devices in electrical networks. The objective function, i.e. active power losses, 

convergence characteristics for the three cases (2, 3 and 4) are shown in Figure 5.18. This figure 
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indicates a much better solution in other words, a better minimum and faster convergence, for 

the proposed hybrid algorithm considering SVC devices. 

Table 5.7. Control variable limits 

Variables Lower limits (p.u) Upper limits (p.u) 

Generator buses voltage 0.9 1.1 

Load buses voltage 0.9 1.1 

Transformers tap setting 0.9 1.1 

shunt compensators 0 0.25 

SVC device -0.25 0.25 

 

 

Figure 5.17. Reduction of active power losses (case 4) 
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Table 5.8. Simulation results of PSO-TS considering SVC devices (Algerian 114-bus system) 

 

Control variables Case 1 Case 2 Case 3 Case 4 

V4 1.0700 1.1000 1.1000 1.0498 

V5 1.0500 1.1000 1.1000 1.0753 

V11 1.0500 1.1000 1.1000 1.1000 

V15 1.0400 1.1000 1.0995 1.0199 

V17 1.0800 1.1000 1.1000 1.0382 

V19 1.0300 1.1000 1.1000 0.9000 

V22 1.0400 1.1000 1.1000 0.9000 

V52 1.0500 1.1000 1.1000 0.9000 

V80 1.0800 1.1000 1.1000 1.0936 

V83 1.0500 1.1000 1.1000 1.1000 

V98 1.0500 1.1000 1.1000 1.1000 

V100 1.0800 1.1000 1.1000 1.1000 

V101 1.0800 1.1000 1.1000 1.1000 

V109 1.0500 1.1000 1.1000 1.1000 

V111 1.0200 1.1000 1.1000 1.1000 

T80–88 1.0300 0.9000 0.9000 0.9000 

T81–90 1.0300 0.9000 0.9000 1.1000 

T86–93 1.0300 0.9000 0.9000 1.1000 

T42–41 1.0300 0.9821 0.9449 1.1000 

T58–57 1.0300 1.0083 0.9472 1.1000 

T44–43 1.0300 1.1000 0.9517 1.1000 

T60–59 1.0300 0.9966 0.9905 0.9900 

T64–63 1.0300 1.1000 0.9535 0.9000 

T72–71 1.0300 0.9000 0.9002 0.9000 

T17–18 1.0300 0.9000 1.0403 1.1000 

T21–20 1.0300 1.0166 1.0079 1.1000 

T27–26 1.0300 0.9000 0.9000 1.1000 

T28–26 1.0300 0.9000 1.1000 0.9308 

T31–30 1.0300 1.1000 0.9822 1.1000 

T48–47 1.0300 1.1000 0.9577 1.1000 

T74–76 1.0300 0.9000 0.9187 1.1000 

QC50 - 0.2500 - 0.2496 

QC55 - 0.2500 - 0.2500 

QC56  - - 0.2500 - 

QC63 - - 0.2005 - 

QC66 / QC66 - 0.2500 0.2088 - 

QC67 - 0.2500 - 0.2323 

QC73 - - 0.2500 - 

QC77 - 0.0371 - 0.2500 

QC89 / QC89 - 0 0.2500 - 

QC91 - - 0.0440 - 

QC93 - 0 - 0.2500 

SVC56  - - - 0.2500 

SVC63 - - - 0.2500 

SVC66 - - - -0.2500 

SVC73 - - - 0.1875 

SVC89 - - - 0.2500 

SVC91 - - - 0.1292 

PLoss (MW) 77.2746 70.7003 59.9319 55.0110 

Reduction (%) - 8.510 22.443 28.8109 
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Figure 5.18. Convergence characteristic of Algerian electric power system (case 2, 3 and 4) 

5.5. Conclusion 

Flexible AC Transmission Systems (FACTS) can provide benefits in increasing system 

transmission capacity and power flow control flexibility and speed. The FACTS have the 

capability to control various electrical parameters in electrical transmission network. These 

devices include Thyristor Controlled Series Compensator (TCSC), Static Var Compensator 

(SVC), Unified Power Flow Controller (UPFC), Static Compensator (STATCOM), and others. 

The SVC and the TCSC are the most widely used FACTS devices in power networks. In this 

chapter, a brief introduction to the FACTS is presented. Afterwards the proposed PSO-TS 

method was applied to the ORPD problem considering SVC and TCSC devices. The setting of 

FACTS devices is taken as additional control variable along with generator voltages, tap ratio 

of transformer and shunt capacitors. The performance evaluation of the proposed algorithms on 

ORPD problem in presence of FACTS devices is carried out and the results obtained are 

discussed. The first time only one type of FACTS was considered. Then the two type of FACTS, 

SVC and TCSC were installed simultaneously. The results indicate that the ORPD considering 

FACTS devices significantly decrease the active power losses. The results show also that the 

simultaneous application of these two type FACTS devices with shunt capacitors reduces better 

the system active power losses in comparison to the results obtained by FACTS devices when 

each type is installed separately. 
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Chapter  6 

MONITORING AND CONTROL OF FACTS DEVICES IN POWER NETWORK 

6.1. Introduction 

FACTS (Flexible Alternating Current Transmission Systems) remote monitoring in a power 

transmission network is crucial to ensure efficient and reliable transmission of electricity over 

long distances. FACTS devices are used to control and optimize power flow, reduce energy 

losses and improve power system stability. These devices can include equipment such as 

STATCOMs (Static Synchronous Compensators), SVCs (Static Var Compensators), TCSCs 

(Thyristor-Controlled Series Compensators) and other similar technologies. More specifically, 

SVCs (Static Var Compensators) are FACTS devices used to regulate the voltage and flow of 

reactive power in an electrical network. They can rapidly adjust the voltage on a transmission 

line by injecting or absorbing reactive power, keeping voltage levels within safe limits and 

improving the quality of the electricity transmitted. Remote monitoring of these FACTS devices 

is essential for several reasons: 

• Network management and control: Monitoring the real-time performance of SVCs and 

other FACTS equipment enables effective network control and preventive action to be 

taken in the event of problems or unexpected variations. 

• Proactive maintenance: Remote monitoring can detect signs of potential failure or 

performance problems before they cause outages, facilitating maintenance planning and 

reducing service interruptions. 

• System optimization: By analyzing remotely collected data, operators can adjust and 

optimize the parameters of SVCs and other FACTS devices to improve energy 

efficiency and system stability. 

• Remote monitoring systems often use sensors, communication devices and data analysis 

software to collect real-time information on the performance of SVCs and other FACTS 

equipment. This enables network operators to have an overview and precise control of 

the power system, which is essential for efficient and reliable transmission of electrical 

energy over long distances. 
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In this chapter, we propose a method for monitoring and controlling FACTS. We have 

simulated one type of FACTS which is the SVC. Each SVC device will be automatically 

connected or disconnected to the most sensitive bus already identified. The SVC device will be 

connected according to the size optimized by the metaheuristic method executed in MATLAB. 

This control will be done directly between MATLAB and the SVC device via a microcontroller. 

Communication between the SVC device and MATLAB will be via an interface created by 

GUI MATLAB which will be described in more detail later. This interface was chosen to avoid 

programming the microcontroller. We can monitor the status (connected or disconnected) of 

the SVC device using an application that runs on different operating systems (Windows, 

Android, IOS). 

6.2. Monitoring and control of electrical transmission network  

6.2.1. Monitoring of electrical power system 

Electrical transmission monitoring is crucial for ensuring the efficient and reliable operation of 

power systems. It involves the continuous observation, analysis, and management of various 

parameters within the transmission network to prevent failures, optimize performance, and 

enhance overall grid resilience.  

Remote monitoring is capable of analyzing and synthesizing the information received to 

automatically and continuously provide all the information needed to operate the network in 

real time. It brings together all the signals from the network, such as the triggering or possible 

switching on of equipment, the measurement of instantaneous or weighted consumption in the 

various parts of the electricity network, and any other information that provides information on 

the actual state of the network. The monitoring part continuously collects all the signals from 

the process and the control, reconstructs the real state of the controlled system, and makes all 

the necessary inferences to produce the data used to draw up operating histories. The objectives 

of the monitoring part of a supervisor are: 

-  Detect abnormal operation. 

- Identify the causes and consequences of unexpected or uncontrolled operation. 

- Modifying the models used during planned operation to return to this operation: changing 

the control, resetting, .... etc.  

- In particular, the synoptic images are created according to the actual installation and the 

needs of the operator. They are also animated in real time. The operator can therefore view:  

o operating diagrams (electrical network, substation, etc.). 

o installation status (equipment positions, etc.).  
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o values of operating parameters (currents, voltages, power, etc.).  

6.2.1.1. Different aspects of monitoring in electrical transmission 

- Voltage and Current Monitoring: Continuous measurement of voltage and current levels at 

different points in the transmission system to ensure they are within safe operating limits. 

- Line Loading and Congestion Management: Monitoring the load on transmission lines to 

prevent overloading, which can lead to equipment damage or system failures.  

- Fault Detection and Diagnosis: Detecting faults (like short circuits or equipment failures) 

promptly and accurately is essential for minimizing downtime and ensuring grid reliability. 

- Temperature and Thermal Monitoring: Monitoring equipment temperatures to prevent 

overheating, which can damage components and lead to failures. 

- Remote Sensing and Control: Using remote sensing technologies and control systems to 

monitor and manage the transmission network from a centralized location. 

- Data Analytics and Predictive Maintenance: Utilizing data analytics and machine learning 

algorithms to analyze collected data, predict potential failures, and schedule maintenance 

proactively to prevent unplanned outages. 

6.2.2. Control of electrical power system 

The control of an electrical transmission network involves managing the flow of electricity, 

maintaining system stability, and responding to various operational conditions to ensure a 

reliable and secure power supply. The Continuous monitoring, advanced control algorithms, 

and effective communication are essential for the successful control of an electrical 

transmission network. These measures collectively contribute to the reliability, stability, and 

efficiency of the power grid. 

6.2.2.1. Different aspects of controlling in electrical transmission network. 

- Load Balancing: Ensure a balance between electricity generation and consumption to 

maintain stable grid conditions. 

- Frequency Control: Maintain a stable frequency within acceptable limits.  

- Voltage Control: Regulate voltage levels within specified limits to ensure the safe and 

efficient operation of the network. Use devices like tap-changing transformers, shunt 

reactors, and FACTS devices for voltage control. 

- Generator Control: Control the operation of power generators to meet the demand and 

maintain grid stability. 
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- HVDC (High Voltage Direct Current) Control: Manage the power flow and voltage levels 

on HVDC transmission links. Utilize control systems to regulate the converters and 

maintain the desired DC voltage levels. 

- Contingency Management: Implement automatic remedial actions during contingencies or 

disturbances. 

- Grid Synchronization: Coordinate the connection and disconnection of power plants or 

substations to the grid. 

- Communication Systems: Establish reliable communication between control centers and 

field devices. Enable fast and accurate exchange of information for timely decision-

making. 

- Emergency Response: Develop and implement emergency response plans to address severe 

disturbances or unforeseen events. 

- Demand Response: Implement strategies to manage and control electricity demand. 

Engage with demand-side resources to adjust consumption during peak periods or 

emergency situations. 

- Predictive Maintenance: Use data analytics and predictive maintenance models to 

anticipate equipment failures. 

6.3. Monitoring applications  

Monitoring applications allow remote access and exchange of electrical information in order to 

assess the state of the electrical network (see example in figure 6.1). 

Monitoring applications in the context of electrical transmission encompass various software, 

tools, and systems designed to observe, analyze, and manage different aspects of the power 

grid. These applications serve to ensure the smooth functioning, reliability, and efficiency of 

the transmission network. Here are some monitoring applications: 

SCADA (Supervisory Control and Data Acquisition): SCADA systems collect real-time data 

from remote locations within the power grid. They monitor and control equipment, such as 

substations, transformers, and switches, allowing operators to visualize the system, detect 

issues, and make informed decisions. 

EMS (Energy Management System): EMS applications optimize the generation, transmission, 

and distribution of electrical power. They provide tools for monitoring grid conditions, 

managing generation and load, and ensuring grid stability. 
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PMU (Phasor Measurement Unit) Applications: PMUs measure the electrical waves' phasors 

(amplitude and phase angle) across the grid in real-time. Applications utilizing PMU data help 

in monitoring grid stability, detecting disturbances, and enabling faster corrective actions. 

 

Figure 6.1. Example of Monitoring of SVC 

6.4. Monitoring and control of SVC devices in electrical transmission system. 

Monitoring and control of Static Voltage Compensators (SVCs) in a power transmission 

network is essential to ensure their efficient operation and to maintain voltage stability and 

power quality. SVCs are power electronics-based devices used to regulate voltage, control 

reactive power and improve network performance. The various steps followed to supervise and 

control the SVC devices in our case are described below: 

1. Execution of the program in MATLAB for optimizing the size of SVCs 

2. Once the sizes are optimized the MATLAB program calls the relevant functions (connected 

function or disconnected function) of each SVC generated by MATLAB GUI. 

 3. The GUI MATLAB functions called by the programs are sent to the microcontroller. 

4. The microcontroller, via the relays, connects or disconnects the SVC devices according to 

the information sent by GUI MATLAB. 

5. The microcontroller also sends information on the status of each SVC device (connected or 

disconnected) to an application (Windows or Mobile). 
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6. The application will also be used to see the different types of networks used as well as the 

different simulations found by the proposed methods namely GWO, ALO, AHA and MFO. 

6.5. Monitoring and control of SVC devices block diagram  

Our developed monitoring and control system comprises the following blocks (Figure 6.2): 

1. MATLAB program to optimize the size of the SVC device.  

2. Communication block to send the results found to the microcontroller via WIFI, GSM 

network or wired connection. 

3. A Relay Module that receives the command from the microcontroller to connect or 

disconnect the SVC to the sensitive bus in the transmission network. 

4. Power restoration and interruption equipment 

5. Mobile phone: When the microcontroller instructs the relay module to connect or 

disconnect the SVC device in the transmission network, information will also be sent to 

a mobile application to monitor the status of the SVC in real time. 

 

Figure 6.2. Block diagram of SVC device monitoring 

6.6. The GUI MATLAB interface 

6.6.1. Definition 

A GUI (Graphical User Interface) is a type of user interface that allows users to interact with 

software or applications through graphical elements, as opposed to a command-line interface. 

GUI typically includes visual components like buttons, sliders, text boxes, and menus, making 

it easier for users to interact with and control the software. 
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6.6.2. GUI in MATLAB 

When people refer to a GUI in MATLAB, they are usually talking about creating a graphical 

user interface for a MATLAB application. MATLAB provides a guide (Graphical User 

Interface Development Environment) for designing and creating GUIs. This environment 

allows users to design the layout and appearance of the GUI and link it to MATLAB code for 

functionality. 

6.7. Control of SVC devices with GUI MATLAB 

To control SVC devices with GUI MATLAB, we First need to install the MATLAB support 

package for the microcontroller. Once the package has been installed, all we need to do is to 

connect the relay module to the microcontroller and then connect it to the computer. Figure 6.3 

illustrates how the GUI MATLAB interface can control the fact device directly via a 

microcontroller. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Control with MATLAB GUI interface 

 

6.7.1. Creation of the GUI application 

To create a new GUI application, select the file menu and then click on new GUI application 

(Figure 6.4) 
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Figure 6.4. Menu to create a new GUI application 

Once a new GUI application has been chosen (figure 6.5), we get a new window that lets us 

add buttons, images and text to create our remote control and monitoring interface. 

 

 

 

 

 

 

 

 

Figure 6.5. GUI application selection window 

 

The GUI window appears (figure 6.6) and we're now going to create two buttons that will be 

used to connect or disconnect the SVC device. So, we're going to click on the push button and 

drag it to the size we want. 
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Figure 6.6. Window for creating the control and monitoring application 

The window in figure 6.7 shows how to create the two buttons for connecting and disconnecting 

the SVC device from the electrical system 

 

Figure 6.7. Window to create the SVC control button 
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Now, to add a label, we click on the "static text" label and click on the graphical interface, then 

resize the label and write the text we want to display. In our case, we'll start with the text "SVC 

device control". 

 

Figure 6.8. Window to add text title 

6.7.2. Programming the two control buttons 

Now we have to declare all the functions that we are going to use. Before that, we need to 

declare some variables. 

The pseudo-code below gives the function where we declare the variables 

 

 

 

 

 

 

 

 

 

 

function varargout = SVC_control_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 % Get default command line output from handles structure 

varargout{1} = handles.output; 
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A function called Communication, to establish communication between MATLAB and the 

microcontroller. 

 

 

 

We will declare the function, when we press the button "SVC device connect" the relay module 

connects the SVC device to the power grid. for this, we need to write a function called 

“Connect_SVC”. 

 

 

 

 

 

 

When we click on the "Disconnect SVC device" button, the SVC disconnects from the electrical 

network. 

 

 

 

 

 

 

6.8. The main application of visualization and control 

In order to be able to add and visualize the simulations carried out in this thesis and at the same 

time be able to control the SVC devices through the same menu, a main application has been 

designed to avoid having several separate applications. 

6.8.1. Application login window 

Creating a login window for an application is a common design element that provides a secure 

function Communication  

global a; 

a = microcontroller; 

 

function Connect_SVC(hObject, eventdata, handles) 

% hObject    handle to on (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global a; 

Pin(a,'D3',1); 

 

1 

2 

3 

4 

5 

6 

function Disconnect_SVC(hObject, eventdata, handles) 

% hObject    handle to off (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global a; 

lPin(a,'D3',0); 
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way for users to access the application. Figure 6.9 represents the application connection window 

for our application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Application login Window 

6.8.2. The main menu 

The main menu of the application (Figure 6.10) has the following icons: 

✓  Add a new electrical network; 

✓  Add line data; 

✓  Add bus data; 

✓ Add new algorithm 

✓  Add simulation; 

✓ View simulation; 

✓ Monitoring of SVC devices; 

✓ Administrator settings to add or modify access rights to the application. 
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Figure 6.10. The main window 

6.8.3. Simulation Results window 

A simulation results window generally refers to a graphical interface or display that presents 

the results and analysis of a simulation. It is in this window that users can view and interpret 

the results of their simulated experiments. The specifics of a simulation results window may 

vary depending on the simulation tool or software used. The Simulation Results Window is a 

central component in simulation software, providing users with a visual and interactive platform 

to explore, analyze, and understand the outcomes of their simulated experiments. Figure 6.11 

shows the Simulation results widow of our application.  
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Figure 6.11. Simulation results widow 

6.8.4. Interface for monitoring and controlling SVC devices 

This figure shows the interface for monitoring and controlling SVC devices. We can connect 

or disconnect either all the SVCs or each SVC on its own. 

 

Figure 6.12. Interface for monitoring and controlling SVC devices 
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6.9. Practical implementation  

we built a mock-up to test the control and command of the SVC devices via a human-machine 

interface running under Windows and Android. The SVC devices in our handling has been 

replaced by lamps. We controlled the relay modules, which can in turn connect or disconnect 

the lamps. 

Figure 6.13. Practical implementation for controlling SVC devices 

6.10. Conclusion 

Monitoring and control are critical aspects of managing electrical transmission power networks. 

These activities involve real-time observation, analysis, and manipulation of various parameters 

within the power network. The Operators interact with the power system through Human-

Machine Interface (HMI) which provide a user-friendly interface for monitoring and controlling 

the network. In this chapter, we have presented the various components used for the remote 

monitoring and control of SVC devices. An Android and Windows applications were developed 

to simulate monitoring of SVC devices connected to the electrical network. We have built a 

mock-up to test the control and command of the SVC devices via a human-machine interface 

running under Windows and Android. We controlled the relay modules, which can in turn 

connect or disconnect the SVC devices to or from the electrical network. An application has 

been designed to visualize all the curves obtained during the simulations carried out in this 

thesis.
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Chapter  7 

GENERAL CONCLUSION 

7.1. General conclusion 

Optimal Reactive Power Dispatch (ORPD) is one of the most classical and difficult 

problems among researchers' community of electrical power engineering. In addition to the size 

of the variables involved, its multi-objective aspect and the number of constraints constitute a 

real challenge for conventional optimization methods. These methods often using advanced 

mathematical analyses are not successful in realizing the global optimal results for ORPD 

problem. Therefore, in the last decade, there has been intense research activity proposing new 

algorithms that are inspired by the nature and called bio-inspired algorithms to solve 

optimization problems.  

In the first part of this research work, four different bio-inspired methods are applied to 

evaluate ORPD problem. The first one is MFO, a metaheuristic optimization algorithm inspired 

by the behavior of moths which are a flying insect. The second one is ALO algorithm modeled 

on the hunting mechanism of Antlions (crawling insects). The third one is AHA algorithm 

which is based on the behavior of hummingbirds (a bird species). The last one is GWO 

algorithm inspired from the real life of an organized group of Grey Wolf (kind of animals) by 

analyzing their behavior and communication for hunting in nature. Usefulness and efficiency 

of the proposed techniques are evaluated on small, medium and large-scale power systems 

(IEEE 14-bus, IEEE-30 bus, IEEE-57 bus, IEEE-118 bus). Several tests were carried out 

throughout this work in order to conduct statistical studies and confirm the effectiveness of the 

proposed bio-inspired methods. The statistical analysis achieved in this study are: Box-and-

whisker plot and One-way ANOVA. The software we have used to create box plots is R-

software, which offers solid capabilities for creating, visualizing and analyzing data using box-

plots.  

In the second part of this study, a new efficient hybrid algorithm for ORPD has been 

proposed. It is based on the combination of the well-known metaheuristic algorithms, PSO 

(Particle Swarm Optimization) and TS (Tabu Search) algorithms to form a hybrid one called 

PSO-TS algorithm. The latter is a power tool that outperform the two algorithms alone for 

solving  power system optimization problems. This hybridization has proved its effectiveness 
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in solving the optimal reactive power dispatch problem considering continues and discrete 

variables across four test networks, i.e. the IEEE 14-bus, the IEEE 30-bus, the IEEE 57-bus and 

the practical Algerian 114-bus network. Simulation results have shown that the obtained results 

by the PSO-TS were very satisfactory and better than the other algorithms. The ORPD problem 

based PSO-TS using Sensitive Bus approach is also presented. The bus locations of the shunt 

capacitors are identified according to this approach. To identify this type of buses and their 

location, we have studied three cases. The two first cases are based on the active power losses 

and the third one is based on the total voltage deviation. To show the effectiveness of the 

proposed method based sensitive approach, the IEEE 14-bus, IEEE 30-bus, IEEE 57-bus and 

the practical Algerian 114-bus electrical systems have been considered and the results compared 

with those given by PSO, TS and some other  published approaches.  

In the third part of this research work, we have studied the effects of FACTS devices since they 

can significantly improve system performance by controlling power flows in power system 

without generation rescheduling or topological changes. Two FACTS devices named Static Var 

Compensator (SVC) and Thyristor Controlled Series Capacitor (TCSC) were used in this work. 

This study has considered the setting FACTS devices as additional control parameters in the 

ORPD formulation and studied their impact on active power loss minimization. The proposed 

PSO-TS algorithm for ORPD problem including FACTS devices such as Static Var 

Compensator (SVC) and Thyristor Controlled Series Capacitor (TCSC) are conducted on IEEE 

30-bus test system. To investigate the effect of optimal setting of FACTS devices in minimizing 

total active power losses, studies were conducted on the IEEE 30-bus test system using the 

proposed algorithm. Several cases in terms of use of FACTS devices are considered namely:  

𝑃𝐿𝑜𝑠𝑠 minimization considering one SVC device,  𝑃𝐿𝑜𝑠𝑠 minimization considering two SVC 

devices, 𝑃𝐿𝑜𝑠𝑠 minimization considering one TCSC device and 𝑃𝐿𝑜𝑠𝑠 minimization considering 

two type FACTS devices (one SVC and one TCSC). For each case, the impact of the FACTS 

when installed with and without shunt capacitors on the quality of the solution is investigated.  

To give a practical aspect to this work, we have tried to get closer to reality by 

controlling and monitoring the connection and disconnection of a type of FACTS called SVCs. 

To do this, we first designed a Windows application to display all the simulations carried out 

during the various test systems. A mock-up to test the control and command of the SVC devices 

via a human-machine interface running under Windows and Android has been developed. The 

relays are controlled to connect or disconnect the SVC devices from the electrical network. To 

control directly the SVCs via MATLAB, a MATLAB package called GUI MATLAB is 
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required. The GUI MATLAB functions called by the programs are sent to the microcontroller. 

The microcontroller, via the relays, connects or disconnects the SVC devices according to the 

information sent by GUI MATLAB.  The microcontroller also sends information on the status 

of each SVC device (connected or disconnected) to an application (Windows or Mobile).  

The optimization topics in modern power systems are vast and varied. In the future, we 

plan to cover more subjects related to power system optimization. Below are the development 

outlooks for the present work.  

7.2. Future Works 

- More objectives can be considered in solving ORPD problem such as maximizing power 

transfer and enhancing system stability. 

- In addition to loss minimization and voltage deviation minimization, cost of reactive 

installation may be considered as another and conflicting objective. 

- The proposed methods to solve the ORPD problem for minimizing the active power losses 

and voltage deviation could be extended to be applied for multi-objectives. 

- The study of performance comparison on various proposed metaheuristic algorithms can be 

done for ORPD problem in deregulated environment. 

- In addition to shunt capacitors and FACTS, we can study the ORPD problem in the presence 

of decentralized energy sources. 

 

 

 

 

 

 

 

 

 

 



   

 
 

Appendix A. The Algerian Electric Power System 114 bus 

Table A.1. Bus DATA. 

Bus Type 
Pd 

(MW) 

Qd 

(MVAr) 
Bus Type 

Pd 

(MW) 

Qd 

(MVAr) 
Bus Type 

Pd 

(MW) 

Qd 

(MVAr) 

1 1 0 0 39 1 20 10 77 1 7 3 

2 1 36 17 40 1 21 10 78 1 13 7 

3 1 64 31 41 1 53 32 79 1 14 7 

4 3 210 150 42 1 0 0 80 2 157 107 

5 2 335 250 43 1 31 18 81 1 0 0 

6 1 78 37 44 1 0 0 82 1 75 36 

7 1 55 26 45 1 12 6 83 2 70 51 

8 1 50 24 46 1 0 0 84 1 46 34 

9 1 40 19 47 1 21 10 85 1 45 22 

10 1 42 21 48 1 0 0 86 1 0 0 

11 2 96 47 49 1 13 6 87 1 32 15 

12 1 31 15 50 1 4 2 88 1 46 22 

13 1 13 6 51 1 1 1 89 1 34 17 

14 1 136 65 52 2 56 27 90 1 18 9 

15 2 0 0 53 1 16 8 91 1 44 21 

16 1 0 0 54 1 21 10 92 1 10 5 

17 2 0 0 55 1 18 9 93 1 0 0 

18 1 0 0 56 1 33 20 94 1 48 23 

19 2 11 5 57 1 35 21 95 1 35 17 

20 1 14 9 58 1 0 0 96 1 0 0 

21 1 70 52 59 1 36 17 97 1 42 20 

22 2 42 25 60 1 0 0 98 2 13 6 

23 1 23 11 61 1 27 13 99 1 105 50 

24 1 60 36 62 1 22 11 100 2 33 16 

25 1 17 8 63 1 49 29 101 2 50 24 

26 1 55 26 64 1 0 0 102 1 34 16 

27 1 0 0 65 1 11 5 103 1 66 32 

28 1 0 0 66 1 35 21 104 1 18 9 

29 1 37 18 67 1 10 5 105 1 0 0 

30 1 30 15 68 1 11 5 106 1 64 31 

31 1 0 0 69 1 20 10 107 1 65 37 

32 1 40 24 70 1 7 3 108 1 22 11 

33 1 29 14 71 1 36 22 109 2 37 18 

34 1 29 14 72 1 0 0 110 1 13 6 

35 1 33 16 73 1 36 22 111 2 94 56 

36 1 17 8 74 1 0 0 112 1 24 12 

37 1 11 5 75 1 0 0 113 1 23 11 

38 1 20 10 76 1 12 6 114 1 24 12 

1: P-Q bus 2: P-V bus 3: V-θ bus. 

Table A.2. Generator DATA. 

Bus 
Pg  

(MW)  

Qg  

(MVAr)  

Qmax  

(MVAr)  

Qmin  

(MVAr)  

Vg  

(pu)  

Pmax  

(MW)  

Pmin  

(MW)  

4  750  0  400  -20  1.07  1200  0  

5  450  0  200  -20  1.05  650  0  

11  100  0  100  -50  1.05  150  0  
15  100  0  100  0  1.04  150  0  

17  450  0  400  0  1.08  600  0  

19  115  0  60  0  1.03  150  0  
52  115  0  50  0  1.04  150  0  

22  115  0  50  0  1.05  150  0  

80  115  0  60  0  1.08  150  0  
83  100  0  200  -50  1.05  150  0  

98  100  0  50  0  1.05  150  0  

100  200  0  270  0  1.08  250  0  
101  200  0  200  -50  1.08  250  0  

109  100  0  100  -50  1.05  150  0  

111  100  0  155  -50  1.02  150  0  

 

 



   

 
 

Table A 3. Branch DATA. 

Fbus Tbus R X B Rate Fbus Tbus R X B Rate 

2 1 0.0085 0.0403 0.0303 250 107 101 0.0334 0.1577 0.1189 250 
6 1 0.0122 0.0578 0.0436 250 64 97 0.0178 0.0654 0.0470 200 

2 6 0.0140 0.0498 0.0355 200 72 96 0.0152 0.0540 0.0386 200 

4 42 0.0274 0.1295 0.0976 250 96 98 0.0203 0.0720 0.0515 200 
4 42 0.0139 0.0122 0.1474 450 96 95 0.0015 0.0070 0.0053 200 

4 3 0.0033 0.0158 0.0482 500 18 22 0.0290 0.1397 0.0017 80 

5 3 0.0028 0.0189 0.0294 450 18 37 0.0256 0.1233 0.0015 80 
5 4 0.0018 0.0126 0.0197 450 37 22 0.0171 0.0822 0.0010 80 

4 7 0.0144 0.0678 0.0512 250 19 26 0.0058 0.0077 0.0017 60 

15 16 0.0038 0.0135 0.0097 200 19 26 0.0058 0.0077 0.0017 60 
16 3 0.0041 0.0144 0.0103 200 19 34 0.0019 0.0126 0.0001 80 

16 14 0.0013 0.0045 0.0032 200 20 18 0.1348 0.2944 0.0013 50 

8 42 0.0171 0.0629 0.0454 200 20 24 0.0376 0.1390 0.0006 40 
8 4 0.0184 0.0870 0.0657 250 20 24 0.0368 0.1361 0.0006 40 

10 7 0.0150 0.0709 0.0535 250 20 29 0.0319 0.1178 0.0005 40 

10 11 0.0228 0.1076 0.0811 250 20 35 0.0428 0.1528 0.0006 40 
7 6 0.0157 0.0740 0.0558 250 35 29 0.0458 0.1639 0.0007 40 

11 42 0.0170 0.0806 0.0608 250 20 32 0.0708 0.2365 0.0010 60 

6 3 0.0288 0.1012 0.0730 200 22 32 0.0342 0.1142 0.0005 60 
9 2 0.0042 0.0284 0.0442 450 22 24 0.0239 0.0799 0.0003 60 

9 3 0.0088 0.0600 0.0933 450 22 24 0.0239 0.0799 0.0003 60 

13 12 0.0501 0.2365 0.1784 250 23 30 0.0239 0.0799 0.0003 60 
10 13 0.0464 0.2190 0.1652 250 23 36 0.0136 0.0457 0.0002 60 

17 21 0.0065 0.0244 0.0176 200 36 30 0.0273 0.0913 0.0004 60 

17 21 0.0073 0.0278 0.0202 200 33 18 0.0205 0.0685 0.0003 60 
17 72 0.0197 0.0732 0.0530 200 32 33 0.0239 0.0799 0.0003 60 

17 27 0.0046 0.0237 0.1003 300 26 25 0.0139 0.0517 0.0002 30 

17 31 0.0061 0.0311 0.0617 350 24 25 0.0164 0.0608 0.0003 60 
31 28 0.0017 0.0088 0.0746 300 26 34 0.0049 0.0318 0.0002 60 

17 64 0.0198 0.0727 0.0525 200 29 26 0.0119 0.0158 0.0034 60 

21 44 0.0240 0.0861 0.0615 200 29 39 0.0126 0.0820 0.0004 80 
60 31 0.0037 0.0253 0.0393 450 38 34 0.0047 0.0307 0.0002 80 

21 60 0.0056 0.0263 0.0198 250 18 73 0.1557 0.3427 0.0015 50 

60 44 0.0122 0.0578 0.0436 250 18 73 0.0854 0.3028 0.0012 60 
58 44 0.0121 0.0569 0.0429 250 62 18 0.0508 0.1941 0.0008 60 

72 101 0.0213 0.1007 0.0760 250 20 52 0.0873 0.2162 0.0011 50 

72 58 0.0183 0.0863 0.0651 250 20 52 0.0875 0.2167 0.0011 50 

58 75 0.0148 0.0701 0.0528 250 54 59 0.1188 0.3063 0.0015 50 

75 107 0.0185 0.0876 0.0660 250 52 59 0.0360 0.1014 0.0005 50 

75 74 0.0006 0.0026 0.0026 250 57 51 0.1227 0.4098 0.0018 60 
44 42 0.0248 0.0903 0.0649 200 57 77 0.1366 0.4566 0.0020 60 

44 42 0.0183 0.0864 0.0651 250 52 53 0.0937 0.1788 0.0007 35 

42 48 0.0074 0.0506 0.0786 450 53 54 0.0937 0.1788 0.0007 35 
48 44 0.0025 0.0158 0.0245 450 52 30 0.0722 0.1789 0.0009 50 

71 70 0.1599 0.3148 0.0013 35 98 97 0.0121 0.0448 0.0325 200 

40 41 0.0586 0.1623 0.0008 50 99 100 0.0231 0.1089 0.0821 250 
40 50 0.1343 0.3645 0.0016 35 87 100 0.0102 0.0694 0.0105 450 

71 69 0.1093 0.3653 0.0016 60 100 84 0.0065 0.0442 0.0687 450 

70 68 0.1204 0.2180 0.0009 35 84 80 0.0074 0.0506 0.0786 450 
43 46 0.1025 0.3425 0.0015 60 86 81 0.0055 0.0379 0.0589 450 

51 43 0.2067 0.3556 0.0015 35 98 99 0.0163 0.0580 0.0414 200 
54 55 0.1196 0.3996 0.0018 60 101 102 0.0116 0.0547 0.0413 250 

55 43 0.1708 0.5708 0.0025 60 99 102 0.0116 0.0547 0.0413 250 

73 62 0.0410 0.1370 0.0006 60 99 101 0.0111 0.0759 0.1179 450 
73 67 0.3347 0.7007 0.0031 40 98 94 0.0357 0.1275 0.0918 200 

68 67 0.1648 0.3569 0.0015 40 94 82 0.0056 0.0263 0.0198 250 

29 26 0.0119 0.0158 0.0034 60 92 93 0.1624 0.4088 0.0099 60 
73 66 0.1623 0.5752 0.0023 60 93 91 0.0304 0.1074 0.0021 60 

63 66 0.0683 0.2283 0.0010 60 93 91 0.0379 0.1342 0.0027 60 

63 65 0.0557 0.1861 0.0008 60 90 89 0.0776 0.2400 0.0052 60 
63 65 0.0557 0.1861 0.0008 60 88 89 0.1354 0.4100 0.0089 60 

56 54 0.1025 0.3425 0.0015 60 90 93 0.1852 0.3189 0.0068 60 

57 56 0.1196 0.3996 0.0018 60 103 110 0.0185 0.0876 0.0660 250 
57 56 0.1196 0.3996 0.0018 60 110 112 0.0185 0.0876 0.0660 250 

47 50 0.1196 0.3996 0.0018 60 103 114 0.0419 0.1979 0.1493 250 

47 46 0.0342 0.1142 0.0005 60 109 108 0.0148 0.0701 0.0528 250 
67 66 0.1128 0.2794 0.0014 50 109 107 0.0388 0.1833 0.1382 250 

49 41 0.1265 0.4225 0.0019 50 112 114 0.0190 0.0896 0.0675 250 

19 78 0.0042 0.0055 0.0012 60 112 111 0.0297 0.1402 0.1057 250 
19 79 0.0105 0.0139 0.0030 60 113 111 0.0167 0.0787 0.0608 250 

59 61 0.0513 0.1816 0.0007 60 80 88 0.0123 0.3140 0.0000 400 

45 46 0.0171 0.0605 0.0002 60 81 90 0.0062 0.1452 0.0000 240 
85 87 0.0158 0.0745 0.0562 250 86 93 0.0012 0.0742 0.0000 240 



   

 
 

Fbus Tbus R X B Rate Fbus Tbus R X B Rate 

85 86 0.0139 0.0657 0.0495 250 42 41 0.0012 0.0742 0.0000 240 

85 81 0.0099 0.0467 0.0352 250 58 57 0.0012 0.0742 0.0000 240 

87 106 0.0105 0.0495 0.0373 250 44 43 0.0029 0.1053 0.0000 120 

87 82 0.0056 0.0266 0.0200 250 60 59 0.0014 0.0516 0.0000 360 
87 99 0.0322 0.1249 0.0909 200 64 63 0.0019 0.0700 0.0000 180 

103 105 0.0130 0.0613 0.0462 250 72 71 0.0012 0.0742 0.0000 240 

105 101 0.0171 0.0806 0.0608 250 17 18 0.0014 0.0516 0.0000 360 
105 104 0.0015 0.0070 0.0053 250 21 20 0.0016 0.0525 0.0000 240 

103 106 0.0208 0.0983 0.0741 250 27 26 0.0024 0.1484 0.0000 120 

81 82 0.0303 0.1075 0.0768 200 28 26 0.0024 0.1484 0.0000 120 
80 82 0.0319 0.1129 0.0807 200 31 30 0.0007 0.0495 0.0000 360 

80 84 0.0191 0.0676 0.0483 200 48 47 0.0012 0.0742 0.0000 240 

84 83 0.0051 0.0180 0.0129 200 74 76 0.0089 0.3340 0.0000 40 
82  83  0.0191  0.0676  0.0483  200        

100  98  0.0102  0.0598  0.0754  250        

100  97  0.0111  0.0759  0.1179  450        
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 : ملـخـص

ساهم بشكل مباشر في استهلاك الطاقة،  الطاقة التفاعلية هي أحد مكونات الطاقة الكهربائية التي تتأرجح بين المصدر والحمل دون القيام بأي عمل مفيد. على الرغم من أنه لا ي

( إلى إدارة OPRDالموثوقية العامة لشبكة الطاقة. يهدف إرسال الطاقة التفاعلية الأمثل )إلا أن توزيعه المناسب يساعد على تقليل خسائر النقل وتحسين ملف الجهد وتعزيز 

صعوبات مرتبطة بالطبيعة المعقدة وغير الخطية والمقيدة للغاية للشبكات    ORPDموارد الطاقة التفاعلية للنظام بشكل صحيح. غالباً ما تواجه الطرق التقليدية لحل مشكلة  

لأطروحة، أولاً، تم تطوير وتنفيذ  الكهربائية. في هذا السياق، ظهرت خوارزميات ما بعد الماهرة كأدوات فعالة لإيجاد حلول شبه مثالية لمشاكل التحسين المعقدة. في هذه ا

جديدة تتكون من الطريقة السكانية )طريقة    . بعد ذلك، اقترحنا طريقة ميتايورستية هجينةORPDة المستوحاة من البيولوجيا لمعالجة مشكلة  العديد من تقنيات التحسين الوصفي

المقترح للعثور على معلمات متغيرات التحكم )أي جهد المولد    PSO-TS. يتم استخدام نهج  PSO-TSسرب الجسيمات( وطريقة بحث محلية )بحث التبو( تسمى تقنية  

قع مكثفات التحويل باستخدام طريقة  وصنابير المحولات وأحجام مكثفات التحويل( التي تقلل من فقد الطاقة النشطة وتحسن ملف تعريف الجهد للشبكة الكهربائية. يتم تحديد موا

. تمتد عمليات المحاكاة لتشمل بعض نماذج أنظمة الطاقة واسعة FACTSمن خلال مراعاة أجهزة    ORPDيضًا بحل مشكلة  قضيب التوصيل الحساس. في هذا العمل، قمنا أ

قضبان التوصيل. وأخيرًا، تم بناء نموذج لاختبار المراقبة والتحكم  114والشبكة الجزائرية العملية  IEEE 118وخطوط التوصيل  IEEE 57النطاق مثل قضبان التوصيل 

. كما تم تصميم تطبيق لتصور جميع عمليات المحاكاة التي أجريت في هذه Androidو Windowsعبر واجهة الإنسان والآلة التي تعمل بنظامي التشغيل  SVCفي أجهزة 

 الرسالة 

  FACTS أجهزة ;تقليل انحراف الجهد ; التقليل من فقدان الطاقة ; خوارزميات مستوحاة من الحيوية ; ميتاهيروستيك  ; التوزيع الأمثل للقدرة التفاعلية :مفتاحية كلمات

Abstract: 

Reactive power is the component of electrical power that oscillates between the source and load without performing any useful work. 

While it does not contribute directly to energy consumption, Its Proper dispatch helps of minimizing transmission losses, improving 

voltage profile and enhance the overall reliability of the electrical grid. The optimal reactive power dispatch (OPRD) Seeks to 

properly manage the reactive power resources of the system. Traditional methods for solving the ORPD problem often face 

challenges in handling the complex, non-linear, and highly constrained nature of power systems. In this context, metaheuristic 

algorithms have emerged as effective tools for finding near-optimal solutions to complex optimization problems. In this thesis, 

firstly, various bio-inspired meta-heuristic optimization techniques have been developed and implemented to deal with the ORPD 

problem. Then, we have proposed a new hybrid metaheuristic method composed of a population method (Particle Swarm 

Optimization) and a local search method (Tabu Search) named PSO-TS technique. The proposed PSO-TS approach is used to find 

the settings of the control variables (i.e. generation bus voltages, transformer taps, and shunt capacitor sizes) which minimize 

transmission active power losses and improve voltage profile of the electrical network. The bus locations of the shunt capacitors are 

identified according to sensitive buses approach. In this work, we have also solved the of ORPD problem considering FACTS 

devices. Simulations is extended to some large-scale power system models like IEEE 57-bus, IEEE 118-bus and a practical Algerian 

114-bus power test system. Finally, a mock-up has been built to test the control and command of the SVC devices via a human-

machine interface running under windows and android. An application has been designed to visualize all the simulations carried out 

in this thesis. 

Keywords: optimal reactive power dispatch (ORPD); metaheuristic techniques; bio-inspired algorithms; power loss minimization; 

voltage deviation minimization; FACTS devices. 

Résumé: 

 La puissance réactive est la composante de la puissance électrique qui oscille entre la source et la charge sans effectuer de travail 

utile. Bien qu'elle ne contribue pas directement à la consommation d'énergie, sa répartition appropriée permet de minimiser les pertes 

de transmission, d'améliorer le profil de tension et de renforcer la fiabilité globale du réseau électrique. La répartition optimale de la 

puissance réactive (OPRD) vise à gérer correctement les ressources de puissance réactive du système. Les méthodes traditionnelles 

de résolution du problème de l’ORPD se heurtent souvent à des difficultés liées à la nature complexe, non linéaire et très 

contraignante des réseaux électriques. Dans ce contexte, les algorithmes métaheuristiques sont apparus comme des outils efficaces 

pour trouver des solutions quasi-optimales à des problèmes d'optimisation complexes. Dans cette thèse, tout d'abord, diverses 

techniques d'optimisation méta-heuristiques bio-inspirées ont été développées et mises en œuvre pour traiter le problème de l’ORPD. 

Ensuite, nous avons proposé une nouvelle méthode métaheuristique hybride composée d'une méthode de population (la méthode des 

essaims de particules) et d'une méthode de recherche locale (la recherche tabou) appelée la technique du PSO-TS. L'approche PSO-

TS proposée est utilisée pour trouver les paramètres des variables de contrôle (c'est-à-dire les tensions des générateurs, les prises des 

transformateurs et les tailles des condensateurs shunt) qui minimisent les pertes de puissance active et améliorent le profil de tension 

du réseau électrique. Les emplacements des condensateurs shunt sont identifiés selon l'approche des jeux de barres sensibles. Dans 

ce travail, nous avons également résolu le problème de l’ORPD en tenant en compte les dispositifs FACTS. Les simulations sont 

étendues à certains modèles de systèmes électriques à grande échelle tels que IEEE 57 jeux de barres, IEEE 118 jeux de barres et le 

réseau algérien pratique à 114 jeux de barres. Enfin, une maquette a été construite pour tester le contrôle et la commande des 

dispositifs SVC via une interface homme-machine fonctionnant sous Windows et Android. Une application a été conçue aussi pour 

visualiser toutes les simulations réalisées dans cette thèse. 

Mots clés : répartition optimale de la puissance réactive (ORPD); techniques métaheuristiques; algorithmes bio-inspirés; 

minimisation des pertes de puissance; minimisation des déviations des tensions; dispositifs FACTS.   

 


