
  ةـالشعـبᘭ ـةالدᘌمقـراطᗫ ᘭــةة الجزائـᖁ ورᗫـالجمهـ
People's Democratic Republic of Algeria 

ـــــ ـــــوزارة التعلᘭـ ـــ ــــــــم العــ ـــــث العـلــ ــالᘘحــــاᢝᣠ و ـ   ــᢝᣥ ــ
Ministry of Higher Education and Scientific Research 

 

Ferhat Abbas University, Setif 1 
Faculty of Sciences 
Department of Mathematics  

 ــ   1فرحات عباس، سطيف ـة ــــــجامع
  ـــوم العـلــــــــــ  كـليــــة

 قســـــــــــم الريـاضيــــــــــــــــــات 

 

Doctoral thesis 
Field : Mathematics and Computer Science 

Option : Mathematics 

Specialty : Mathematics Applied to Biological and Medical Sciences 
 
 

Theme : 
 
 

MODELING AND MATHEMATICAL ANALYSIS OF 
SOME REACTION-DIFFUSION SYSTEMS DRIVEN 

FROM BIOLOGY AND MEDICINE 
 

 
Presented by : 

Melle. Khaoula Imane SAFFIDINE 

Supervisor : Pr. Salim MESBAHI 

 
Thesis defended on November 13th, 2021, in front of the jury composed of : 

Mr. Abdelouahab KADEM Prof Ferhat Abbas University, Setif 1 President  
Mr. Salim MESBAHI Prof Ferhat Abbas University, Setif 1 Supervisor 
Mr. Nasserdine KECHKAR Prof Mentouri University, Constantine 1 Examiner 
Mr. Abdellatif BOUREGHDA Prof Ferhat Abbas University, Setif 1 Examiner 

Mme. Ahleme BOUAKKAZ MCA 20 August 1955 University, Skikda Examiner 
 

November 2021 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODELING AND MATHEMATICAL ANALYSIS OF SOME REACTION-
DIFFUSION SYSTEMS DRIVEN FROM BIOLOGY AND MEDICINE 

Doctoral thesis 
Presented by : 

Melle. Khaoula Imane SAFFIDINE 

Supervisor : Pr. Salim Mesbahi 

Co- Supervisor : Pr. Noureddine Alaa 



 

 

 

 

 

 

 

 

 



If logic is the hygiene of the mathematician,
it is not logic that provides him with his food;

the daily bread on which he lives,
these are the great problems.

André Weil.
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GENERAL INTRODUCTION

The applied mathematics is involved in research that utilizes and invents a variety
of mathematical methods associated with asymptotic analysis, bifurcation theory,
graph theory, numerical analysis, optimal control, ordinary and partial differential

equations, probability and statistics, singular perturbations, stability theory, and stochas-
tic processes. Much of the modern science is based on it. It is central to modern society,
underpins scientific and industrial research, and is key to our economy. Mathematics is
the engine of science and engineering. It also has an elegance and beauty that fascinates
and inspires those who understand it.

Mathematics provides the theoretical framework for biosciences, for statistics and
data analysis, for as well as computer science. New discoveries within mathematics affect
not only science, but also our general understanding of the world, we live in. Problems
in biological sciences, in physics, chemistry, engineering, biomechanics, fluid mechanics,
geophysics, interfacial phenomena, molecular biology, neuroscience, solid mechanics,
statistical mechanics, transport theory, and wave phenomena are using increasingly
sophisticated mathematical techniques. For this strong reason, the bridge between the
mathematical sciences and other disciplines is heavily traveled.

Biosciences are some of the most fascinating of all scientific disciplines and is an area
of applied sciences we use to explore and try to explain the uncertain world in which we
live. It is no surprise, then, that at the heart of a professional in this field is a fascination
with, and a desire to understand, the ”how and why” of the material world around us.

Theoretical biology is an old subject, tracing back centuries. At times, theoretical
developments have represented little more than mathematical exercises, making scant
contact with reality. At the other extreme have been those works, such as the writings
of Charles Darwin, or the models of Watson and Crick, in which theory and fact are
intertwined, mutually nourishing one another in inseparable symbiosis. Indeed, one of
the most exciting developments in biology within the last quarter-century has been the
integration of mathematical and theoretical reasoning into all branches of biology, from
the molecule to the ecosystem. It is such a unified theoretical biology, blending theory
and empiricism seamlessly, that has inspired the development of this series.

The biochemical and biophysical parameters that determine the behavior of biological
systems aren’t universal they differ vastly during the course of development and across
organisms and yet there are qualitative features that biological systems share with each
other. How do we describe these systems if not in terms of quantitative measurements
of parameters and piecemeal construction of high-dimensional models for individual
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GENERAL INTRODUCTION

phenomena of interest? While advances in microscopy, genetic engineering, and single-
cell sequencing provides an abundance of data, tailor-made models that "fit the data"
are rarely transferable to other systems and fail to provide an explanation for the unity
that we observe in the biological world. This is the challenge facing modern quantitative
biology and the study of truly complex systems. This is what gives great importance
to mathematical modeling (appeared in the half of twentieth century) using kind of
differential equations needed for EDO/PDE/DDE or even stochastic and their qualitative
study. especially reaction-diffusion equations.

The reaction-diffusion models that are partial differential equations which describe
how population densities in space change over time. Since they describe the way that
things change over time, it is natural to think of them as dynamical systems; were
introduced in the 1930s by Ficher (1937) and Kolmogorov, Petrovsky and Piskounov
(1938), for population genetics models. In 1952 Turing became interested in population
dynamics and, from the reaction-diffusion equation, devised a biomathematics model
of animal morphogenesis. In the 1990s, experiments in the chemistry of oscillating
reactions will experimentally confirm the theoretical model. The theory of reaction-
diffusion equations is based on three elephants: technology, ecology and public health.

It should be noted that diffusion and other transport processes can occur in various
spaces. First of all, it is the usual physical space mostly used in chemical and physical
applications. However, it can also be the spaces of different parameters which character-
ize biological populations. For example, intracellular concentrations p of some proteins.
In this case the cell population can be characterized by the distribution u (p, t) of cells as
a function of the concentration p and of time t. The second property, which characterizes
reaction-diffusion processes, is production. In the case of chemical reactions, it is pro-
duction of chemical compounds or heat production. They are described by equations of
chemical kinetics, often based on the mass action law, though other models also exist. Cell
division and birth of biological individuals determine production in biological populations
Their simplest description is based on the same assumption as for chemical reaction,
that the rate of production is proportional to the population density. In more detailed
models, time delay and various specific mechanisms are taken into account. In the case of
biological cells, it can be cell cycle and various intracellular and extracellular regulatory
mechanisms.

The recent development of reaction diffusion systems and properties of biosciences,
nonlinear reaction and diffusion systems (RDSs) became equations governing many
very important nonlinear models used to describe various processes in it which has
lead to extensive study in it various aspects of nonlinear parabolic and elliptic partial
differential equations.

However, as noted, the state space for a reaction-diffusion model will be a set of
functions representing the possible spatial densities of a spatially distributed population,
Thus, to formulate reaction-diffusion models as dynamical systems we need to define
appropriate state spaces of functions and determine how the models act on them. In
general we will not be able to solve reaction-diffusion models explicitly, but that is also
the case with many nonlinear systems of ordinary differential equations. What we can
do in many cases is determine when a model predicts persistence and when it predicts

xiv



GENERAL INTRODUCTION

extinction, and perhaps describe some features of its dynamics, by using methods from
the theory of dynamical systems.

The purpose of this thesis is to meet the current and future needs of the interaction
between mathematics and various biosciences, especially the reaction-diffusion systems
through the publication of significant monographs, textbooks, examples of models syn-
thetic compendia in mathematical and computational biology. and encouraging the ways
that mathematics may be applied in traditional areas such as biology, chemistry, or
genetics, as well as pointing towards new and innovative areas of applications. And
the importance objective is to encourage other scientific disciplines (mainly oriented to
natural sciences) to engage in a dialog with mathematicians, outlining their problems to
both access new methods and suggest innovative developments within mathematics it
self.

The motivation of this Ph.D. thesis is to study some models using the reaction-
diffusion systems applied in biology and medicine.

This thesis is part of a multidisciplinary theme, it is divided into 6 chapters, it is
preceded by this general introduction which highlights the art of the subject and the
problems addressed.

• In the first chapter, we give some results used in the theory of reaction-diffusion
systems. We want to start with some basic functional analysis tools. Then we present
the classic framework for elliptic and parabolic equations. Finally we summarize the
necessary notations and analysis methods concerned of reaction-diffusion systems.

• In the second chapter, we present definitions on mathematical modeling, some
concepts and examples, the link between mathematics, biology and medicine. We also
devote a large part of this chapter to the mathematical modeling of diffusion phenomena
by reaction-diffusion systems.

• In the third chapter, we present several models involving reaction diffusion systems
in biology, medicine, ecology, biochemistry and engineering. The models were collected
from published articles and specialist books. Most of them are similar to the models
studied in the last three chapters of this thesis.

• The aim of fourth chapter is to prove the existence of positive maximal and minimal
solutions for a class of degenerate elliptic reaction-diffusion systems, including the
uniqueness of the positive solution. To answer these questions, we use a technique
described by Pao based on the method of upper and lower solutions, its associated
monotone interactions and various comparison principles. The work constituting this
chapter is the subject of an article published in an international journal specialized
in Mathematics (Nonlinear Dynamics and Systems Theory), in collaboration with S.
Mesbahi.

• The objective of the fifth chapter is to study the existence and uniqueness of positive
solutions for a class of quasi-linear degenerate parabolic reaction-diffusion problems
defined in a bounded domain, which have many applications in various applied sciences.
Its specificity lies in the introduction of degenerate diffusion. Our approach to our goal is
mainly based on the upper and lower solution method. The result obtained is applied to
the Lotka-Volterra model. Several partial results were obtained justifying two papers, one
published in an international journal specialized in Mathematics (IEEE International
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GENERAL INTRODUCTION

Conference on Recent Advances in Mathematics and Informatics) in collaboration with S.
Mesbahi, and another paper submitted for publication in an international journal.

• In the sixth chapter, we are interested in the study of a quasilinear parabolic
problem with an arbitrary growth nonlinearity in gradient and nonlinear boundary
conditions. This model appears in the modeling of many diffusion phenomena in various
sciences. Using techniques of functional analysis based on Schauder’s fixed point theorem;
we prove an existence result of weak periodic solutions. Several partial results were
obtained with additional hypotheses justifying a paper accepted for publication in an
international journal specialized in Mathematics (Journal of Applied Mathematics and
Computational Mechanics) in collaboration with S. Mesbahi and N. Alaa.

• The thesis ends with a conclusion and some perspectives and a list of bibliographic
references which adequately cover the subject studied.
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1
DEFINITIONS, NOTATIONS AND BASIC CONCEPTS

In this chapter, we give some results used in the theory of reaction-diffusion systems.

We want to start with some basic functional analysis tools. Then we present the

classic framework for elliptic and parabolic equations. Finally we summarize the

necessary notations and analysis methods concerned of reaction-diffusion systems.

1.1 Basic tools

1.1.1 Integration results

In this paragraph, we mention some important results, but without proof. The reader

may refer to Kavian [53] and Rudin [100]. In what follows, Ω is a bounded open set of RN

and we will use the Lebesgue measure, but these results remain true in a more general

framework.

Lemma 1.1 (of Fatou). If ( fn) be a sequence of positive measurable functions on Ω. Then∫
Ω

(
lim

n→∞ fn

)
dx ≤ lim

n→∞

∫
Ω

fndx

Theorem 1.1 (Lebesgue dominated convergence). Let ( fn) be a sequence of functions of

L1(Ω) converges almost everywhere to a measurable function f . It is assumed that there

1
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is g ∈ L1(Ω) such as for all n ≥ 1, we have | fn(x)| ≤ g(x) almost everywhere on Ω. Then

f ∈ L1(Ω), and

lim
n→∞

∣∣∣∣∫
Ω

fn − f
∣∣∣∣dx = 0, lim

n→∞

∫
Ω

fndx =
∫
Ω

f dx

Theorem 1.2 (Partial Reciprocal of the Dominated convergence). Let 1 ≤ p <∞, f ∈
Lp(Ω) and ( fn) be a sequence of functions of Lp(Ω) such that limn→∞ ‖ fn− f ‖p = 0. So

there is a function g ∈ Lp(Ω) and a sub-suite
(
fnk

)
such that

| fn| ≤ g and fn → f p.p.

Definition 1.1 (of equi-integrability). We say that a sequence ( fn) of functions of L1(Ω)

is equi-integrable if: for all ε > 0, there exists δ > 0 such that ∀E ⊂ Ω measurable

with meas(E)< δ we have ∫
Ω
| fn|dx < ε

Theorem 1.3 (of Vitali). Let ( fn) be a sequence of functions of L1 (Ω) converging almost

everywhere towards a measurable function f . Then ( fn) tends to f in L1 (Ω), if and only if,

the sequence ( fn) is equi-integrable.

Corollary 1.1. If (un) is bounded in W1,p (Ω) with p > 1 (and therefore converging in

W1,p (Ω) weak except for a subsequence) and if (∇un) converges almost everywhere, then

(un) converge (at a sub-sequence near) in W1,q (Ω) (strong) ∀q < p.

Indeed, according to Vitali’s theorem, it suffices to show that (|∇un|p) is equi-integrable

or for E borelian ∫
E
|∇un|q ≤

(∫
Ω
|∇un|p

) q
p
(∫

E
1
)1− q

p ≤ C.mes (E)1− q
p

1.1.2 Basic definitions

Let X ,Y be two normalized vector spaces.

Definition 1.2. The operator (A,DA) is said to be closed, if its graph G(A)= {(x, Ax), x ∈ DA}

is a closed part of X ×Y . In other words G (xn, Axn)→ (x, y) then x ∈ DA and y= Ax.

2
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Definition 1.3. We say that an operator A : X →Y is bounded, if the image by A of all

bounded of X is bounded of Y .

Definition 1.4. We say that an operator A : X → X ′ is semi-continuous, if for all (x, y, z)

de X3, the map R→R, λ 7→ 〈A(x+λy), z〉 is continuous.

Definition 1.5. We say that an operator A : X → X ′ is coercive, if

lim
‖x‖→∞

〈A(x), x〉
‖x‖ =+∞

Definition 1.6. We say that an operator A : X → X ′ is monotonic if

∀(x, y) ∈ X2 ⇒〈A(x)− A(y), x− y〉 ≥ 0

Definition 1.7. We say that an operator A : X → X is maximal monotonic, if it is

monotonic and if there is no monotonic operator A′ such that G(A) is strictly included

in G
(
A′). Another way of expressing the maximality of a monotonic operatorA is as

follows

∀(x, y) ∈G(A),
〈

y− y′, x− x′
〉≥ 0⇒ (

x′, y′
) ∈G(A)

Remark 1.1. We say that A is monotonous if

(Au,u)≥ 0, ∀u ∈ D(A)

So A is maximal monotonic, if moreover R(I + A)= X , i.e.,

∀ f ∈ X , ∃u ∈ D(A) such as u+ Au = f

1.1.3 Weak topology

Let E be a Banach space and let f ∈ X ′. We denote by ϕ f : X →R the linear functional

ϕ f (x)= 〈 f , x〉. As f runs through X ′ we obtain a collection
(
ϕ f

)
f ∈X of maps from X into

R. We now ignore the usual topology on X (associated to ‖‖ ) and define a new topology

on the set X as follows:

3
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Definition 1.8. The weak topology σ
(
X , X ′) on E is the coarsest topology associated to

the collection
(
ϕ f

)
f ∈X ′

Note that every map ϕ f is continuous for the usual topology and therefore the weak

topology is weaker than the usual topology.

Proposition 1.1. The weak topology σ
(
X , X ′) is Hausdorff.

So far, we have two topologies on X ′:

(a) The usual (strong) topology associated to the norm of X ′,

(b) the weak topology σ
(
X ′, X ′′).

We are now going to define a third topology on X ′ called the weak ? topology and

denoted by σ
(
X ′, X

)
(the ? is here to remind us that this topology is defined only on

dual spaces). For every x ∈ X consider the linear functional ϕx : X ′ → R defined by

f 7→ϕx ( f )= 〈 f , x〉. As x runs through X we obtain a collection
(
ϕx

)
x∈X of maps from X ′

into R.

Definition 1.9. The weak ? topology, σ
(
X ′, X

)
, is the coarsest topology on X ′ associated

to the collection
(
ϕx

)
x∈X .

Since X ⊂ X ′′, it is clear that the topology σ
(
X ′, X

)
is coarser than the topology

σ
(
X ′, X ′′); i.e., the topology σ

(
X ′, X

)
has fewer open sets (resp. closed sets) than the

topology σ
(
X ′, X ′′), which in turn has fewer open sets (resp. closed sets) than the strong

topology.

Proposition 1.2. Let ( fn) be a sequence in X ′. Then

(i) fn
?→ f in σ

(
X ′, X

)⇔〈 fn, x〉→ 〈 f , x〉 ,∀x ∈ E.

(ii) If fn → f strongly, then fn → f in σ
(
X ′, X ′′). If fn → f in σ

(
X ′, X ′′), then fn

?→ f in

σ
(
X ′, X

)
(iii) If fn

?→ f in σ
(
X ′, X

)
then (‖ fn‖) is bounded and ‖ f ‖ ≤ liminf‖ fn‖.

(iv) If fn
?→ f in σ

(
X ′, X

)
and if xn → x strongly in E, then 〈 fn, xn〉→ 〈 f , x〉.

4
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Theorem 1.4 (Weak compactness theorem of the closed unit ball of Hilbert spaces).

If X is a Hilbert space, then any bounded sequence in X admits a weakly convergent

subsequence.

1.1.4 Functional spaces useful in the resolution of RDS

Let us now recall some definitions on Sobolev and Hölder spaces. We can find more

specific details in Adams [2], Brezis [20], Kavian [53], Lions [65] and Pao [94].

1.1.4.1 Sobolev spaces

Let Ω is a bounded open of RN .

• We denote by LP(Ω), 1≤ p <∞, the space of functions (or more exactly classes of

equivalence of functions, in the sense of equality almost everywhere) u measurable on Ω

such that ∫
Ω
|u|p dx <∞

equipped with the norm
‖u‖p

LP (Ω)
=

∫
Ω
|u|p dx

• The spaces Lp (Ω) endowed with this norm are Banach spaces. In particular L2 (Ω)
is a Hilbert space endowed with the scalar product

(u,v)=
∫
Ω

u (x)v (x)dx

• We divide by L∞(Ω) the space of measurable and essentially bounded functions

u on Ω, i.e.,

L∞ (Ω)= {u :Ω−→R measurable, ∃c > 0, |u| ≤ c a.e. on Ω} ,

it is a complete vector space for the norm

‖u‖L∞(Ω) = sup
x∈Ω

ess |u(x)| = inf {c > 0 , |u| ≤ c a.e. on Ω }

• We define the spaces Lp(0,T, X ), 1≤ p <∞, and L∞(0,T, X ) as follows:

Lp(0,T, X )=
{

u : [0,T]−→ X measurable,
∫ T

0
‖u‖p

X dt <∞
}

equipped with the norm

‖u‖p
Lp(0,T,X ) =

∫ T

0
‖u‖p

X dt

5
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L∞(0,T, X )= {u : [0,T]−→ X measurable, sup
t∈(0,T)

ess‖u‖X <∞}

equipped with the norm

‖u‖L∞(0,T,X ) = sup
t∈(0,T)

ess‖u‖X

Of course, we have

Lp(0,T,Lp(Ω))≡ Lp((0,T)×Ω), 1≤ p ≤∞

• C (Ω) denotes the space of continuous functions with compact support in Ω, provided

with the norm
‖u‖C(Ω) =max

x∈Ω
|u (x)|

• C k (Ω) (k positive integer), denote the space of functions k-times continuously

differentiable on Ω, and we write

C∞ (Ω)= ∩
k≥0

C k (Ω)

• D (Ω) is the space of functions C ∞ with compact support.

• H1(Ω) is the Sobolev space defined by

H1(Ω)= {u ∈ L2(Ω) :
∂u
∂xi

∈ L2(Ω), 1≤ i ≤ n}

equipped with the norm

‖u‖2
H1(Ω) =

∫
Ω
|u|2 dx+

∫
Ω

n∑
i=1

∣∣∣∣ ∂u
∂xi

∣∣∣∣2 dx

=
∫
Ω
|u|2 dx+

∫
Ω
|∇u|2 dx

In general, for m ∈ N∗ and 1 ≤ p <∞, the Sobolev spaces Hm(Ω) and wm,p(Ω) are

defined as follows

Hm(Ω)= {
u ∈ L2(Ω) : Dαu ∈ L2(Ω), α ∈Nn, |α| ≤ m

}
equipped with the norm

‖u‖2
Hm(Ω) =

∑
|α|≤m

∫
Ω

∣∣Dαu
∣∣2 dx = ∑

|α|≤m

∥∥Dαu
∥∥2

L2(Ω)

and

Wm,p(Ω)= {
u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ m

}
6
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equipped with the norm
‖u‖p

m,p = ∑
|α|≤m

∥∥Dαu
∥∥p

Lp(Ω)

or

Dα = ∂α1+α2+...+αn

∂xα1
1 ∂xα2

2 ...∂xαn
n

, |α| =
n∑

i=1
αi

is the derivative in the sense of distributions.

Of course, we have

w1,2(Ω)≡ H1(Ω) , wm,2(Ω)≡ Hm(Ω)

1.1.4.2 Hölder spaces

Let (0,T]×∂Ω. Denote by Cm (Ω) the set of all continuous functions whose partial deriva-

tives up to the m-th order are continuous in Ω, and by Cl,m (QT) the set of functions

whose l-times derivatives in t and m-times derivatives in x are continuous in DT . In

particular, the set C1,2 (QT) consists of all functions that are once continuously differen-

tiable in t and twice continuously differentiable in x for all (t, x) ∈ DT . Similar notations

are used for Cm (
Ω̄

)
and Cl,m

(
QT

)
, where Ω,QT are the respective closures of Ω and

DT . When m = 0 we denote by C (Ω), C
(
Ω

)
, C (QT), and C

(
QT

)
the set of continuous

functions in Ω, Ω, DT , and QT , respectively. The norms in C (Ω) and C (QT) are defined

by
|u|Ω0 = sup

x∈Ω
|u(x)| , |u|QT

0 = sup
x∈QT

|u(t, x)|

(It is understood that all the norms are finite.). Similar norms with respect to Ω, QT

are defined for C(Ω) and C
(
QT

)
. When no confusion arises we omit the superscripts Ω,

QT , etc.

A function u ∈ C (Ω) is said to be Hölder continuous of order α ∈ (0,1), if

Hα ≡ sup
{|u(x)−u(ξ)| / |x−ξ|α ; x,ξ ∈Ω and x 6= ξ}<∞

The Hölder norm of u is defined by

|u|α ≡ |u|0 +Hα

and the set of all Hölder continuous functions in Ω with finite norm is denoted by Cα (Ω) .

Let Dm
x be any partial derivative of order m with respect to the variables x1, . . . , xn and

7
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define

|u|m = |u|0 +
∑ |Dxu|0 + ...+∑∣∣Dm

x u
∣∣
0

|u|1+α = |u|0 +
∑ |Dxu|α

|u|1+α = |u|0 +
∑ |Dxu|α+

∑∣∣Dm
x u

∣∣
α

where the sums are taken over all partial derivatives of the indicated order. The sets of

all functions u for which |u|m <∞, |u|1+α <∞, and |u|2+α <∞ are denoted, respectively,

by Cm (Ω), C1+α (Ω), and C2+α (Ω). It is well known that Cm (Ω), Cm+α (Ω), m = 0,1,2, are

all Banach spaces. Similar function spaces on ∂Ω are denoted by Cm+α (∂Ω) for m = 0,1,2.

When the domain Ω is replaced by DT we define the Hölder constant by

Hα ≡ sup
{
|u (t, x)−u (τ,ξ)| /(|t−τ|+ |x−ξ|2)α/2

; (t, x) , (τ,ξ) ∈QT

}
The Hölder norm of u is given by

|u|α ≡ |u|0 +Hα ≡ sup
(t,x)∈QT

|u(t, x)|+Hα

The set of all Hölder-continuous functions in DT with finite Hölder norm is denoted

by Cα (QT). Similarly, the sets of functions in Cα (QT) with the finite norms

|u|1+α = |u|0 +
∑ |Dxu|α+|ut|α

|u|1+α = |u|0 +
∑ |Dxu|α+

∑∣∣Dm
x u

∣∣
α+|ut|α

are denoted, respectively, by C1+α (QT) and C2+α (QT). The function spaces Cm+α (QT) ,m =
0,1,2, are all Banach spaces.

1.1.4.3 Basic theorems about Sobolev spaces

Theorem 1.5 (of density). Let Ω be an open bounded with Lipschitzian border and

1≤ p ≤+∞ then:

I if p < +∞, the set C∞ (
Ω̄

)
of restrictions to Ω of functions C∞

c
(
RN)

is dense in

W1,p (Ω).

I it exists a continuous linear map P : W1,p (Ω)→W1,p (
RN)

such that

∀u ∈W1,p (Ω) , P (u)= u p.p. in Ω

8



CHAPTER 1. DEFINITIONS, NOTATIONS AND BASIC CONCEPTS

Similar results are true with Wm,p (Ω), m > 1, instead of W1,p(Ω) but require more

regularity on Ω (see [2]). We can also show that C∞
c

(
RN)

is dense in Wm,p (
RN)

if N ≥ 1,

m ∈ N and 1≤ p <+∞. But, this is false if we replace RN by Ω, with Ω an open bounded

and m > 0. For example, if Ω is a bounded open, the space C∞
c (Ω) is not dense in H1 (Ω).

Its adhesion is a strict subspace of H1 (Ω), which we denote by H1
0 (Ω).

Theorem 1.6 (of trace). Let Ω be a bounded open with a Lipschitzian border and 1 ≤
p <+∞. Then, there exists a unique map γ (continuous linear) defined from W1,p (Ω) in

Lp (∂Ω) and such that

γu = u p.p. on ∂Ω if u ∈W1,p (Ω)∩C
(
Ω̄

)
The following theorems are a consequence of Kolmogorov’s theorem (see [40], theorem 8.5).

Theorem 1.7 (of Rellich). Let Ω be a bounded open set of RN (N ≥ 1) and 1 ≤ p < +∞.

Any bounded part of W1,p
0 (Ω) is relatively compact in Lp (Ω) . This amounts to saying that

from any bounded sequence of W1,p
0 (Ω), we can extract a subsequence which converges in

Lp (Ω). The previous theorem remains true with W1,p (Ω) on condition of assuming the

Lipschitz border.

Theorem 1.8. Let Ω a bounded open set of RN (N ≥ 1), with Lipschitzian border, and

1≤ p <+∞. Any bounded part of W1,p (Ω) is relatively compact in Lp (Ω). This amounts

to saying that from any bounded sequence of W1,p (Ω), we can extract a subsequence which

converges in Lp (Ω).

Proposition 1.3 (of separability). Let Ω be an open set of RN (N ≥ 1) ,m ∈N and 1≤ p <
+∞; the space Wm,p (Ω) is separable space (i.e., a normed vector space which contains a

dense countable part).

Proposition 1.4 (of reflexivity). Let Ω be an open set of RN , N ≥ 1, and m ∈ N. For all

p ∈ ]1,+∞[, the space Wm,p (Ω) is a reflexive space.

Theorem 1.9. Let E be a separable Banach space and let ( fn) be a bounded sequence in

E′. Then there exists a subsequence
(
fnk

)
which converges for the weak topology ∗ of E′.

9
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This theorem is often used for E = L1(Ω), which is well separable (but not reflexive), as

E′ = L∞(Ω), we can therefore extract from a bounded sequence in L∞(Ω), a subsequence

which converges in L∞(Ω) weak ∗.

Theorem 1.10. Let X be a reflexive Banach space and let ( fn) be a bounded sequence in

X . Then there exists a subsequence
(
fnk

)
which converges for the weak topology of E.

1.2 Classic framework for elliptic and parabolic

equations

Let be Ω a bounded open set of RN with N ≥ 2, we study elliptic and parabolic problems

whose models are: for the linear elliptic{
−∆u = f in Ω

u = 0 on ∂Ω

and for the linear parabolic 
ut −∆u = f in ]0,T[×Ω
u = 0 on ]0,T[×∂Ω
u (0)= 0 on Ω

Model problems for nonlinear equations involve the p-Laplacian ∆p(u)=div
(|∇u|p−2∇u

)
{

−∆pu = f in Ω

u = 0 on ∂Ω

and 
ut −∆pu = f in ]0,T[×Ω
u = 0 on ]0,T[×∂Ω
u (0)= u0 on Ω

1.2.1 Linear elliptic and parabolic operators

Let the elliptic Dirichlet problem{
−div (A∇u)= f in Ω

u = 0 on ∂Ω

10
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where A is a matrix of size N. If we note ai j the coefficients of A, the equation is written

−∂xi

(
ai j∂x j u

)= f . We suppose that ai j ∈ L∞(Ω) and satisfies the condition of ellipticity

(or coercivity): there exists α> 0 such that

∀ (ξi) ∈RN ,
∑
i, j
ξiai jξ j ≥α

∑
i, j
ξiξ j

This problem then admits, for f ∈ H−1 (Ω), a unique variational solution, who belongs

to H1
0 (Ω) and verified

∀v ∈ H1
0(Ω),

∫
Ω

(A∇u)∇v = 〈 f ,v〉H−1,H1
0

The solution is obtained thanks to the theorem of Lax-Milgram [61].

Under the same assumptions on A (bounded and coercive matrix), the parabolic

problem 
ut −div (A∇u)= f in ]0,T[×Ω
u = 0 on ]0,T[×∂Ω
u (0)= u0 on Ω

admits, for f ∈ L2 (
0,T;H−1(Ω)

)
and u0 ∈ L2(Ω), a unique variational solution u (see

Lions-Magenes [66]) belong to L2 (
0,T;H1

0(Ω)
)

and verifies ut ∈ L2 (
0,T;H−1(Ω)

)
∀v ∈ L2 (

0,T;H1
0(Ω)

)
,

∫ T

0
〈ut,v〉+

∫ T

0

∫
Ω

(A∇u)∇v =
∫ T

0
〈 f ,v〉

and

u(0)= u0 in L2(Ω)

which makes sense because u ∈ L2 (
0,T;H1

0(Ω)
)

and ut ∈ L2 (
0,T;H−1(Ω)

)
implied u ∈

C
(
[0,T],L2(Ω)

)
.

1.2.2 Nonlinear elliptic Leray-Lions operators

We first recall the definition of Carathéodory function.

Definition 1.10. Let N, p, q ∈N? and Ω be an open set of RN . Let a be a mapping from

Ω×Rp to Rq. We say that a is a function of Carathéodory if a (·, s) is Borelian for all s ∈Rp

and a (x, ·) is continuous for almost all x ∈Ω

11
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For the elliptic problem {
−div (a (x,u,∇u))= f inΩ

u = 0 on ∂Ω

with p > 1 and f in W−1,p′
(Ω);

(
p′ = p

p−1

)
, where Ω is a bounded open of RN and a a

Carathéodory function satisfying conditions, data below, coercivity, strict monotony and

growth of the type of Leray-Lions, and defining an operator on W1,p
0 (Ω). The solution u,

whose existence is given by [63], verified u ∈W1,p
0 (Ω) and

∀ϕ ∈W1,p
0 (Ω),

∫
Ω

a(x,u,∇u)∇ϕ= 〈 f ,ϕ〉

The solution is obtained by a Galerkin method, i.e., as a limit of solutions belonging to

spaces of finite dimensions.

In fact A(u) = −div(a(x,u,∇u)) defines a Leray-Lions operator, i.e., it satisfies the

following general hypotheses:

• u 7−→ A (u) is an operator of V , Banach separable and reflexive, in V ′ its dual.

• A (u) is a bounded operator, in the sense that it transforms the bounded ones of V
into bounded ones of V ′.

• A (u) is continuous from any subspace of V of finite dimension in V ′ weak.

• A is coercive in the following sense

lim
|v|→∞

〈A (v) ,v〉
|v| = +∞

• A is monotonic, i.e., 〈A (u)− A (v) ,u−v〉 ≥ 0 for all u and v ∈V .

These assumptions are sufficient to show that A is surjective [63], so A (u)= f admits

a solution for all f ∈ V ′. They are verified, in particular, under the following hypothe-

ses, with V = W1,p
0 (Ω) and V ′ = W−1,p′

(Ω). We assume that a satisfies the following

assumptions (which make A (u) a Leray-Lions operator): a is a Carathéodory function,

i.e.,

• a(x, s,ξ) : RN ×R×RN → RN is measurable in x ∈ RN for all s ∈ R and ξ ∈ RN and

continue in ξ ∈RN and s ∈R for almost everything x ∈RN . We will note a(x,u,∇u)=
a(x,u(x),∇u(x)).

12
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and a also verified the conditions of coercivity, strict monotony and growth: it exists

p verify 1< p ≤ N

• It exists α> 0 such that for all s and ξ and almost all x we are

a(x, s,ξ)ξ≥α|ξ|p

• For all s,ξ and η and almost all x we have

[a(x, s,ξ)−a(x, s,η)](ξ−η)> 0, for ξ 6= η

• It exists b(x) ∈ Lp′
(Ω)

(
p′ = p

p−1

)
, and β> 0 such that for all s and ξ and almost all

x we have

|a(x, s,ξ)| ≤β(
b(x)+|s|p−1 +|ξ|p−1)

These assumptions are classic for the study of nonlinear operators in divergent

form.

1.2.3 Nonlinear parabolic operators

It is about solving the parabolic equation
ut −div (a (x,u,∇u))= f in ]0,T[×Ω
u = 0 on ]0,T[×∂Ω
u (0)= u0 on Ω

with u0 ∈ L2(Ω) and f ∈ Lp
(
]0,T[ ;W−1,p′

(Ω)
)

where a is a Carathéodory function satisfy-

ing the conditions of coercivity, of strict monotony and growth of the type of Leray-Lions,

defining an operator on Lp
(
]0,T[ ;W1,p

0 (Ω)
)
. The solution u, obtained by Lions [65] (here

too thanks to a Galerkin method), verified

u ∈ Lp
(
]0,T[ ;W1,p

0 (Ω)
)

and ut ∈ Lp′ (
]0,T[ ;W−1,p′

(Ω)
)

∀ϕ ∈ Lp
(
]0,T[ ;W1,p

0 (Ω)
)
,

∫ T

0

〈
ut,ϕ

〉+∫ T

0

∫
Ω

a(t, x,u,∇u)∇ϕ=
∫ T

0
〈 f ,ϕ〉

u(0)= u0

Here too this last equality does have a meaning because u ∈ C
(
[0,T];L2(Ω)

)
, which is

a consequence of the regularity of u and ut.

Let us give the hypotheses on a, which make A(u)=−div(a(t, x,u,∇u)) a Leray-Lions

operator:

13
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• a is a function of Carathéodory, which means.

• a(t, x, s,ξ) : R×RN ×RN → RN is measurable in t ∈ R, x ∈ RN for all s ∈ R, ξ ∈ RN

and continue in s ∈ R and ξ ∈ RN , for almost all t ∈ R and x ∈ RN . We will note

a(t, x,u,∇u)= a(t, x,u(t, x),∇u(t, x)) and a also verifies the conditions of coercivity,

strict monotony and growth: it exists p verified 1< p ≤ N.

• It exists α> 0 such that for all s and ξ and almost all t and x, we have

a(t, x, s,ξ)ξ≥α|ξ|p

• For all s, ξ and η and almost all t and x, we have

[a(t, x, s,ξ)−a(t, x, s,η)](ξ−η)> 0 for ξ 6= η

• It exists b(t, x) ∈ Lp′
(]0,T[×Ω), (where p′ = p

p−1 ) and β> 0 such that for all s and ξ

and almost all t and x, we have

|a(t, x, s,ξ)| ≤β(
b(t, x)+|s|p−1 +|ξ|p−1)

These assumptions are classic for the study of nonlinear operators in divergent form.

1.3 A degenerate elliptic and parabolic problems

In the last few decades, many researchers have been concerned with the study of degen-

erate elliptic or parabolic problems. We start with the following example

(1.1)

{
−div (a (x,u,∇u))= f in Ω

u = 0 on∂Ω

where Ω is an arbitrary domain in RN (N ≥ 1), and a is a nonnegative function that

may have “essential” zeros at some points or even may be unbounded. The continuous

function f satisfies f (0)= 0 and t f (t) behaves like |t|p as |t|→∞, with 2< p < 2∗, where

2∗ denotes the critical Sobolev exponent. Notice that equations of this type come from the

consideration of standing waves in anisotropic Schrödinger equations (see [24, 57, 109]).

Equations like (1.1) are also introduced as models for several physical phenomena related

to equilibrium of anisotropic media which possibly are somewhere “perfect” insulators

or “perfect” conductors (see [27], p. 79). Problem (1.1) has also some interest in the

framework of optimization and G-convergence (see, e.g., [38] and the references therein).

14
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Classical results (see [10, 11]) ensure the existence and the multiplicity of posi-

tive or nodal solutions for problem (1.1), provided that the differential operator Tu =
div (a (x)∇u) is uniformly elliptic. Several difficulties occur both in the degenerate case

(if infa = 0) and in the singular case (if supa =+∞). In these situations the classical

methods fail to be applied directly so that the existence and the multiplicity results

(which hold in the nondegenerate case) may become a delicate matter that is closely

related to some phenomena due to the degenerate character of the differential equation.

These problems have been intensively studied starting with the pioneering paper by

Murthy and Stampacchia [84] (see also [25], as well as the monograph [110]).

A natural question that arises in concrete applications is to see what happens if these

elliptic (degenerate or nondegenerate) problems are affected by a certain perturbation. It

is worth pointing out here that the idea of using perturbation methods in the treatment

of nonlinear boundary value problems was introduced by Struwe [111].

The problems which were studied in the fourth and fifth chapter (see [104]) based on

the upper and lower solution method are good examples of this type of problems, and

they have been the subject of two published scientific papers and two papers submitted

for publication in renowned scientific journals specializing in mathematics and its

applications. In the fourth and fifth chapter, we will find the results obtained, and we

will also find the areas of their application.

1.4 Reaction-diffusion systems

In this section, we will rely mainly on the book of Mesbahi, but for a better understanding,

we refer to the works of Alaa and Mesbahi et al. Alaa and Mesbahi et al. [4]-[5], [16],

[50], [52], [70]-[74], [97], [102]-[104], Murray [78]-[81], Pao [91, 92, 94, 95], Volpert [116]

Reaction-diffusion systems have enjoyed a considerable amount of scientific interest.

The reason for the large amount of work put into studying these equations is not only

their practical relevance, but also interesting phenomena that can arise from such

equations, such as multiple steady states and spatial patterns and oscillating solutions,

just to mention a few. The study of these phenomena require a variety of different

methods from many areas of mathematics for example bifurcation and stability theory,

semigroup theory, singular perturbations, numerical analysis and many others.

From a qualitatively point of view, a reaction-diffusion system is a mathematical

model describing how the concentration of one or more substances vary over time

and space under the influence of two terms: Reaction term or source term, in which
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concentration is generated or degenerated by local interaction, diffusion term which

causes the substances to spread out in space. A reaction-diffusion system (RDS) is

therefore an equation heuristically like

Change in concentration = Diffusion of concentration + Source term

or algebraically reaction-diffusion systems are coupled systems of partial differential

equations. The general form of these systems is

(1.2)
∂u
∂t

=div (D (t, x,u,∇u) .∇u)+ f (t, x,u,∇u) , x ∈Ω, t ≥ 0

where u = u (t, x)= (u1, . . . ,um) :R+×Ω→Rm is a vector of variables. f is a linear or nonlin-

ear vector function, which is called the reaction terms, it is a regular application (at least

locally Lipschitzian). D :R+×Ω×Rm×RmN →Rm is a regular function. When D = (
D i j

)
is

a square matrix it is called the diffusion matrix, in this case div (D (t, x,u,∇u) .∇u)= D∆u
are the broadcast terms. D i j characterize the diffusion of ui in u j. In this case we have

what is called diffusion crossing between the densities ui (cross diffusion).

It should be noted here that:

(i) Diffusion coefficients can represent molecular diffusions or a few random movements

of individuals in a population.and they are not always positive. The positivity of

these coefficients means that the flow of matter is from the more concentrated

media to the less concentrated. It is possible that the organisms attract themselves

towards their species and the movement is then in the direction of the concentration

gradient, that is to say from the least concentrated to the most concentrated; and

in this case, the diffusion coefficient is negative.

(ii) The reaction terms are the result of any interaction between the components of

u; u can be a vector of chemical concentrations, and f is the effect of chemical

reactions of these concentrations, or the components of u can be densities of plant

or animal populations, and f represents the effect of relationships (of competition

or symbiosis) between predators and prey. If the reaction term f i > 0, there is a

source or mass production for the i-th species. Otherwise f i < 0, there is mass

annihilation.

(iii) The diffusion coefficient D either constant if the regionΩ is a homogeneous medium,

and be regionalized (depends on the position x) if the region Ω is a heterogeneous

medium.
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The equation (1.2) is placed on an open domain Ω ⊂ RN , with some appropriate

boundary conditions and initial conditions. may be bounded or unbounded.

1.4.1 Emergence of the theory of reaction-diffusion equations

The theory of reaction-diffusion equations appeared in the first half of the XXth century

under the influence of various applications, such as heat explosion, propagation of

chemical and biological waves or pattern formation. It brought together the theories of

heat conduction and mass diffusion, on the one hand, and equations of chemical and

biological kinetics, on the other.

Mathematical models of heat explosion were introduced by Semenov and Frank-

Kamenetskii in the 1930s. In order to describe temperature evolution in a closed vessel

with a reacting gas, Semenov used an ordinary differential equation which took into

account heat production due to a chemical reaction and heat loss through the boundaries

of the vessel. It was assumed that the gas inside the vessel was well mixed and the

temperature was uniformly distributed in space. Frank-Kamenetskii suggested a more

complete model where the temperature distribution in space was taken into account:

(1.3)
∂u
∂t

=∆u+ eu

This is a reaction-diffusion equation for the dimensionless temperature u. The first

term in the right-hand side describes heat conduction and the second term heat pro-

duction due to a chemical reaction. This equation is considered in a bounded domain Ω

with the zero boundary condition, u |∂Ω= 0. If there exists a stationary solution of this

problem, then the temperature distribution can converge to it, and it remains bounded.

If it does not exist, the temperature becomes unbounded. This situation corresponds to

heat explosion. Obviously, temperature remains bounded in real physical situations. Its

unbounded growth in the model is a mathematical approximation. Thus, the problem of

heat explosion is related to the existence of solutions of elliptic equations.

The theory of combustion waves began in the end of the XIXth century with the works

by Mikhelson. He determined the flame structure and suggested an approximate formula

for the speed of propagation. In the late 1930s, reaction-diffusion waves were introduced

and investigated by Kolmogorov–Petrovskii–Piskunov (KPP) and Fisher in relation with

the problem of propagation of the dominant gene; Zeldovich and Frank-Kamenetskii

studied them in the framework of combustion theory and Semenov for branching chain
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reactions. In this case, the reaction-diffusion equation

(1.4)
∂u
∂t

= ∂2u
∂x2 +F (u)

was considered on the whole axis, −∞< x <+∞. The variable u here can be the tempera-

ture, the concentration of some chemical substance or the density of some population.

The form of the function F (u) depends on the applications.

Travelling waves are solutions of the form u (x, t)= w (x− ct), where c is a constant,

the wave speed. Solutions of this type, which propagate with a constant speed and profile,

describe not only flame propagation and propagation of dominant genes studied in the

first works, but also many other applications, such as tumor growth, atherosclerosis

development or propagation of nerve pulses. Though these are solutions of a particular

form, they describe the asymptotic behavior of solutions of the Cauchy problem for wide

classes of initial conditions. In other words, solutions of equation (1.4) can converge to a

travelling wave solution as t →∞.

Another application, which had an important influence on the development of the

theory of reaction-diffusion equations, was related to pattern formation. In 1952, Turing

published a paper in which he studied a reaction-diffusion system of equations

(1.5)
∂u
∂t

= du
∂2u
∂x2 +F (u,v)

(1.6)
∂v
∂t

= dv
∂2v
∂x2 +G (u,v)

If F0 (u0,v0)=G0 (u0,v0)= 0 for some u0 and v0, then this is a stationary point of the

ordinary differential system of equations

∂u
∂t

= F (u,v) ,
∂v
∂t

=G (u,v)

Let us consider system (1.5), (1.6) in a bounded interval with the homogeneous

Neumann boundary condition. Then (u0,v0) is also a stationary solution of system (1.5),

(1.6). It appears that diffusion can destabilize the homogeneous-in-space solution which

is stable without diffusion. This instability results in the emergence of inhomogeneous-

in-space solutions, called Turing or dissipative structures. They play important role in

mathematical biology, in particular for modelling morphogenesis.
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1.4.2 Primary applications

The main fields of applications of reaction-diffusion equations are chemical physics,

population dynamics and biomedical processes. Models in chemical physics were strongly

developed in the XXth century under the influence of many technological applications,

such as combustion engines and chemical reactors.

Population dynamics, though started at approximately the same time, had more

gradual development. But it takes a more and more important part in the theory of

reaction-diffusion equations, in particular, due to ecological modelling which has become

one of the major issues of modern society. Models in chemical kinetics and in population

dynamics have many features in common. However, the latter brings new and very

important aspects related to the “struggle for life”: intraspecific competition, emergence

of biological species, biological evolution.

Mathematical modelling in physiology is younger than the other two areas of ap-

plication, and has developed slower because of the extreme complexity of physiological

processes. However, during the last ten years we have observed a bursting development

of biomedical modelling, especially for cancer. Modelling in physiology brings together

chemical kinetics (intracellular and extracellular regulation) and cell population dy-

namics creating a new approach, multi-scale modelling in biology. We can expect an

important development of this area of applications motivated by modelling of treatment

of various diseases.

Thus, the theory of reaction-diffusion equations is based on three elephants: technol-

ogy, ecology and public health. In Murray’s books, we find many diverse models in biology,

ecology, medicine, and other natural sciences, modeled by reaction-diffusion systems.

1.4.3 Derivation of reaction-diffusion equations

One of the basic theories in the formulation of governing equations for physical problems

is the principle of conservation. When the problem under consideration involves a reac-

tion process accompanied by diffusion, this principle leads to a set of partial differential

equations for the unknown quantities of the system. These quantities may be mass

concentrations in chemical reaction processes, temperature in heat conduction, neutron

flux in nuclear reactors, population density in population dynamics, and many others.

In certain problems such as nonisothermal chemical reactions, a combination of these

quantities is involved in the same set of equations. To give a description of the deriva-

tion of the governing equations let us first consider a single quantity u(t, x), called the
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density function, at time t and position x in a diffusion medium Ω in Rn. The principle of

conservation states that "for any subdomain R of Ω with boundary surface S the rate of

change of mass density is equal to the rate of flux across S plus the rate of generation

within R." This statement is a balance relation in which the flux, denoted by the vector

J, is the density flow per unit surface area per unit time. Let ν be the outward normal

vector on S and qo the rate of generation per unit volume per unit time in R. Assume

that u, J, and qo are continuous in x, J has a continuous partial derivatives with respect

to the components of x, and u has a continuous derivative in t. Then the balance relation

may be expressed as

(1.7)
d
dt

∫
R

aoudx =−
∫

S
J ·νds+

∫
R

qodx

where ao is a proportionality constant, which depends on the type of problem under

consideration. For example, in chemical reaction processes, ao is the Lewis number, and

in heat-conduction problems it is the product of density and specific heat. The negative

sign in the surface integral in (1.7) represents the density flow into the region R through

the boundary surface S. Since by the divergence theorem∫
S

J ·νds =
∫

R
∇· Jdx

Equation (1.7) is reduced to∫
R

(aout +∇· J− qo)dx = 0

The continuity assumption on ut and ∇· J and the arbitrariness of the subdomain R
imply that

(1.8) aout +∇· J− qo = 0 in Ω

This equation is often referred to as the equation of the principle of conservation. To

relate the diffusion flux J to the density function u some physical principle is needed.

This principle has different names in different contexts. It is called Fick’s law in chemical

reaction processes, Fourier law in heat conduction problems, and Darcy’s law in porous-

medium equations. In each case the law states that in the absence of convection, the flux

is proportional to the negative gradient of density

(1.9) J =−D∗∇u

where D∗ is a strictly positive function in Ω. Substitution of this relation in (1.8) yields

the equation

(1.10) ut =∇· (D∇u)+ q
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where D = D∗

ao
, q = qo

ao
. The function D is called the diffusion coefficient in chemical

diffusion processes or the thermal diffusivity in heat conduction problems. The term

∇·(D∇u) represents the rate of change due to diffusion, and q is the rate of change due to

reaction. The reaction term q is the density per unit volume per unit time formed through

the process of reaction or interaction. When q is a prescribed function Equation (1.10) is

the standard linear diffusion equation or heat equation. In many reaction-diffusion-type

problems, q depends on the density function u and possibly on (t, x) explicitly. Writing

q = f (t, x,u) in (1.10) leads to the reaction-diffusion equation

(1.11) ut −∇· (D∇u)= f (t, x,u)

In the derivation of (1.10) it is assumed that there is just one density function in the

problem. When the problem involves two or more density functions, say u1, . . . ,uN , the

same derivation leads to a coupled system of reaction-diffusion equations. Suppose the

law of diffusion

Ji =−D∗
i ∇ui i = 1, . . . , N

holds for each individual density function ui but not for the other densities u j for j 6= i.
Then Equation (1.8) is reduced to

(1.12) (ui)t =∇· (D i∇ui)+ qi i = 1, . . . , N

where D i = D∗
i /ao is the diffusion coefficient of ui. In general the reaction function qi

depends on ui as well as on u j for j 6= i. By writing qi = f i (t, x,u, . . . ,uN), Equation (1.12)
becomes a coupled system of reaction-diffusion equations

(1.13) (ui)t −∇· (D i∇ui)= f i (t, x,u1, . . . ,uN) i = 1, . . . , N

Equations (1.11) and (1.13) are called time-dependent or nonstationary reaction-

diffusion equations in the field of applied science. In the mathematical literature they

are often referred to as semilinear parabolic equations and weakly coupled parabolic

equations, respectively.

In the derivation of (1.11) and (1.13) it is assumed that the balance relation (1.8)
holds without the effect of convection. When this effect is taken into consideration, the

Fick or Fourier law requires that

(1.14) J =−D∗∇u+µou
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where µo is the flow velocity. Using the above relation in (1.2) leads to the reaction-

diffusion-convection equation

(1.15) ut −∇· (D∇u)+µ∗ ·∇u = f (t, x,u)

where µ∗ = µo

ao
is the velocity vector. A similar derivation for the N density functions ui

yields the coupled system

(1.16) (ui)t −∇· (D i∇ui)+µ∗
i ·∇ui = f i (t, x,u1, . . . ,uN) i = 1, . . . , N

when the reaction-diffusion process reaches a steady state, the density function u ≡ u(x)

is independent of t. This implies that ut = 0, and therefore the governing equation for u
without convection becomes

(1.17) −∇· (D∇u)= f (x,u)

The equation with the effect of convection is given by

(1.18) −∇· (D∇u)+µ∗ ·∇u = f (x,u)

In the case of N density functions the corresponding equations with and without the

effect of convection become

(1.19) −∇· (D i∇ui)= f i (x,u1, . . . ,uN) i = 1, . . . , N

and

(1.20) −∇· (D i∇ui)+µ∗
i ·∇ui = f i (x,u1, . . . ,uN) i = 1, . . . , N

respectively. The equations (1.17)-(1.18) and (1.19)-(1.20) are called steady state or

stationary reaction-diffusion equations in the applied sciences. In the mathematical

literature they are referred to as semilinear elliptic equations and weakly coupled elliptic

equations, respectively.

1.4.4 Derivation of some specific models

The reaction-diffusion equations derived in Section previous cover a number of physical

and biological models in various fields of applied science. Here we give a brief description

on some of these models whose density function is governed by (1.11).
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1.4.4.1 Enzyme kinetics

Consider a simple irreversible monoenzyme reaction in a biochemical system. The

reaction scheme for the free enzyme E and substrate concentration S is expressed by

E+S
k1


k−1

ES k2−→ E+P

where ES is the enzyme-substrate complex and P is the reaction product. The constants

k1, k−1 and k2 represent the various rates of reaction. The above reaction scheme states

that the reaction process from the substrate S to the product P takes place in two steps;

the first represents a reversible binding to an enzyme, and the second dissociates the

complex ES into the product with release of the enzyme. Suppose the reaction-diffusion

takes place in an n-dimensional medium n (n = 1,2, or 3). Then the rate of change of the

substrate concentration S = S (t, x) at time t and position x is equal to the sum of the

rates due to reaction and diffusion and is given by (1.10). The reaction term q is called

the initial reaction rate and depends on both S and E. A similar reaction equation can

be written for E. When the Michaelis-Menton hypothesis is applied the initial reaction

rate is approximated by

q(t, x)= k2EoS
(kM +S)

where Eo is the total amount of enzyme and kM ≡ k−1/k1 is the Michaelis constant (cf.

[15]). In case the Briggs-Haldane approximation is used the same formula for q holds

except that kM = (k−1 +k2) /k1. In each case the substrate concentration is governed by

(1.11) with u = S and

f (u)= −σu
(1+au)

where σ= k2Eok−1
M and a = k−1

M . If a competitive inhibitor, the so-called substrate inhibi-

tion, is present a different reaction rate leads to the reaction function

f (u)= −σu(
1+au+bu2

)
where σ,a, and b are positive constants.

1.4.4.2 Population genetics

Consider a population of diploid individuals. If the gene occurs in two forms a and A,

called alleles, then the population is divided into the three genotypes aa, aA, and AA,

depending on the alleles each member carries. Let the population be distributed in a

habitat Ω and let ui ≡ ui(t, x), i = 1,2,3, be the respective population densities of aa,aA,
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and AA. Assume that the population mates at random with a birth rate r∗ and diffuses

through the habitat with a diffusion constant D. Assume further that the death rates

depend only on the genotypes with respect to the alleles a, A and are denoted respectively

by τi, i = 1,2,3. Under these conditions the population densities ui satisfy a system of

coupled equations of the form (1.13) with N = 3. It was shown in [14] that if the quantity

τo = |τ1 −τ2|+ |τ3 −τ2| is sufficiently small and r∗ is very large then for initial data with

small derivatives the relative density u ≡ (u3 +u2/2) / (u1 +u2 +u3) satisfies (1.11) with

(1.21) f (u)=σu(u−θ)(1−u) (0< θ < 1)

where σ,θ are positive constants, which depend on the relative death rate τi. Equation

(1.11) with f given by (1.21) is often called Fisher’s model and is an idealized model

for the genetic process (see [14]). It turns out that this model also describes bistable

transmission lines in electric circuit theory (see [86]).

In order to know how derived the model of reaction-diffusion in Thermal explosions,

Chemical reactors and combustions, Nuclear reactor dynamics and heat conduction come

back to [94].

1.4.5 Solve reaction-diffusion equations

There are no general solutions to reaction-diffusion systems. Because these systems

model real-world phenomena, the important mathematical questions that concern them

are:

(i) Existence and uniqueness of the solution.

(ii) Global nature of the solution.

(iii) Positivity of the solution.

(iv) Asymptotic behavior of the solution.

(v) Continued dependence on the original data solution.
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1.5 Mathematical analysis of reaction-diffusion

problems

For the mathematical analysis of RDS, see, for example, the works of Pao [91, 94], Alaa

and Mesbahi et al. [4]-[5], [16], [50], [52], [70]-[74], [97], [102]-[104], Lions [65] where we

find also many models studied by different techniques.

1.5.1 The upper and lower method

The method of upper and lower solutions and the construction of monotone sequences

for proving the existence of maximal and minimal solutions of elliptic boundary-value

problems were used as early as the 1920s by Müller [76] for ordinary differential equa-

tions and later by Nagumo [85] for both ordinary and partial differential equations. In

the late 1950s Kalaba [51] constructed monotone sequences for elliptic equations, and

in the early 1960s Ako [3] showed the existence of maximal and minimal solutions in

the sector between upper and lower solutions for Dirichlet boundary-value problems.

In the early 1970s, Amman [12] and Sattinger [106] formalized the properties of upper

and lower solutions and obtained a more systematic approach for the construction of

monotone sequences.

The method of upper and lower solutions and its associated monotone iteration are

introduced for both the time-dependent and the steady-state reaction-diffusion equations.

Based on the principle of conservation a derivation of the equations, including nonlinear

boundary conditions, is given in the general framework of reaction-diffusion systems.

This derivation formulates either a scalar equation or a coupled system of equations.

1.5.1.1 The Monotone method for time-dependent problems

To illustrate the method, consider the time-dependent problem

(1.22)
ut −∇2u = f (x,u) Ω in [0,T]×Ω
Bu = h(x) on [0,T]×∂Ω
u (0, x)= u0 (x) in Ω

To establish an existence theorem for the time-dependent equation (1.22) we use the

method of upper and lower solutions and its associated monotone iteration. Not only

is this method useful in establishing an existence-comparison theorem for the present
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problem, but the same approach can be applied to systems of coupled equations and

to equations with nonlinear boundary conditions. Moreover, the underlying monotone

iterative scheme can be used for the computation of numerical solutions when these

equations are replaced by suitable finite difference equations. In fact, the definition of

upper and lower solutions and the techniques of monotone iterations can be carried

over analogously to finite difference systems. The basic idea of this method is that by

using an upper solution or a lower solution as the initial iteration in a suitable iterative

process the resulting sequence of iterations is monotone and converges to a solution of

the problem. We note that Monotone Method for Steady-State Problems is the same

approach used for the time-dependent problem (1.22) it is possible to construct two

monotone sequences using a similar iteration process.

Definition 1.11. A function ũ ∈ C
(
D̄T

)∩C1,2 (DT) is called an upper solution of (1.22) if

it satisfies the inequalities

(1.23)

ũt −D∇2ũ ≥ f (x, ũ) in DT

Bũ ≥ h(t, x) on ST

ũ(0, x)≥ uo(x) in Ω

Similarly, û ∈ C
(
D̄T

)∩C1,2 (DT) is called a lower solution if it satisfies all the reversed

inequalities in (1.23).

The functions ũ, û are called ordered upper and lower solutions if ũ ≥ û in D̄T . Note

that in some literature upper and lower solutions are called super solution and sub

solution or super function and sub function, respectively. For any ordered upper and

lower solutions ũ, û, we define the sector 〈û, ũ〉 as the functional interval

〈û, ũ〉 ≡ {
u ∈ C

(
D̄T

)
; û ≤ u ≤ ũ

}
1.5.1.2 Monotone Method for Steady-State Problems

The steady-state density function u(x) is governed by the boundary-value problem

(1.24)
−∇2u = f (x,u) in Ω

Bu = h(x) on ∂Ω

Following the same approach used for the time-dependent problem (1.24) it is possible

to construct two monotone sequences using a similar iteration process. Here the initial
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iteration is taken as either an upper solution or a lower solution of (1.24), defined as

follows.

Definition 1.12. A function ũ ∈ C(Ω̄)∩C2(Ω) is called an upper solution of (1.24) if

(1.25)
−∇2ũ ≥ f (x, ũ) in Ω

Bũ ≥ h(x) on ∂Ω

Similarly û ∈ C(Ω̄)∩C2(Ω) is called a lower solution if it satisfies the reversed inequalities

in (1.25).

1.5.1.3 The Method of Upper and Lower Solutions for Elliptic

Boundary-Value Problems

When the time-dependent solution of the parabolic problem approaches a steady state as

t →∞ the limit function is governed by the corresponding steady-state problem. This

leads to the consideration of the elliptic boundary-value problem

(1.26)
−Lu = f (x,u) in Ω

Bu = h (x) on ∂Ω

where L and B are the operators given by (1.26). We assume that Ω is of class C2+α, f is

Hölder continuous in (x,u), and h and the coefficients of L, B satisfy the same conditions

given in Section 3.1 of [94] for the linear problem (1.26) . To develop a similar monotone

iterative scheme for problem (1.26) it is necessary to choose a suitable initial iteration.

This function may be taken as either an upper solution or a lower solution defined as

follows:

Definition 1.13. A function ũ ∈ Cα(Ω̄)∩C2(Ω) is called an upper solution of (1.26) if

(1.27)
−Lũ ≥ f (x, ũ) in Ω

Bũ ≥ h(x) on ∂Ω

Similarly, û ∈ Cα(Ω̄)∩C2(Ω) is called a lower solution if it satisfies the reversed inequali-

ties in (1.27).
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1.5.2 Compact method

We work in this section with the following hypotheses:

(H1) N ≥ 1,Ω is a bounded open of RN .

(H2) a :Ω×R→R is a Carathéodory function.

(H3) there exists α> 0 and β> 0 such that α≤ a (·, s)≤β a.e., and for all s ∈R,

f ∈ L∞ (Ω×R)

Under hypotheses H1− H3,we try to show the existence of u, solution of the

following problem:

(1.28){
u ∈ H1

0 (Ω)∫
Ωa (x,u (x))∇u (x) ·∇v (x)dx = ∫

Ω f (x,u (x))v (x)dx, for everything v ∈ H1
0 (Ω)

Theorem 1.11. Under the assumptions (H1)− (H3), there exists u solution of (1.28).

1.5.3 Monotonous method

For problem (1.28), in the case where f (the second member) depends on ∇u, we still

know how to prove the existence of a solution with Schauder’s theorem. The question is

more difficult in the case where a depends on ∇u. We place ourselves under the following

assumptions: 
Ω open bounded by RN

a ∈ C
(
RN ,R

)
,

∃α,β ∈R∗+;α≤ a (ξ)≤β,∀ξ ∈RN

f ∈ L2 (Ω)

We try to show the existence of a solution to the following problem:{
u ∈ H1

0 (Ω)∫
Ωa (∇u)∇u ·∇v dx = ∫

Ω f v dx,∀v ∈ H1
0 (Ω)

Can we apply Schauder’s theorem? To apply it, it must be used in H1
0 (Ω) so that a

a (∇u) has a meaning. Let ũ ∈ H1
0 (Ω), by Lax-Milgram’s lemma, there exists a unique

u ∈ H1
0 (Ω) solution of

(1.29)

{
u ∈ H1

0 (Ω)∫
Ωa (∇ũ)∇u ·∇v dx = ∫

Ω f v dx,∀v ∈ H1
0 (Ω)
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Let T solution of H1
0 (Ω) in H1

0 (Ω) defined by T (ũ)= u solution of (1.29). The operator

T is indeed from H1
0 (Ω) in H1

0 (Ω), and

(1) there exists R > 0 such that ‖u‖H1
0(Ω) ≤ R for all ũ ∈ H1

0 (Ω),

(2) the map T is continuous from H1
0 (Ω) in H1

0 (Ω). Indeed, if ũn → ũ in H1
0(Ω), we

have ∇ũn →∇ũ in L2(Ω)Nand it is not very difficult to show that T (ũn)→ T (ũ) in

H1
0 (Ω).

But, the map T is (in general) not compact (from H1
0 (Ω) in H1

0 (Ω) ). If we were in

finite dimension, points (1) and (2) would suffice to show the existence of a solution. The

idea is therefore to consider problems approximated in finite dimension and to go to the

limit by using the monotony of the operator (which is true under the assumptions given

on a below).

Leray-Lions operator
We consider here a some what simplified case of Leray-Lions operators. We consider

the following hypotheses:

(a) Ω open bounded by RN , N ≥ 1,1< p <+∞,

(b) a :RN →RN keep on going,

(c) (coercivity) ∃α> 0; a (ξ) ·ξ≥α |ξ|p, ∀ξ ∈RN ,

(d) (growth) ∃C ∈R; |a (ξ)| ≤ C
(
1+|ξ|p−1), ∀ξ ∈RN ,

(e) (monotony)
(
a (ξ)−a

(
η
)) · (ξ−η)≥ 0, ∀(

ξ,η
) ∈ (

RN)2,

( f ) σ ∈ L∞ (Ω) ; ∃σ0 > 0;σ≥σ0 a.e.,

(g) f ∈ L
p

p−1 (Ω)

We also recall that if f ∈ Lp′
(Ω), the map v 7→ ∫

Ω f (x)v (x)dx is continuous linear from

W1,p
0 (Ω) in R. It is therefore an element of the (topological) dual of W1,p

0 (Ω) (this dual is

denoted W−1,p′
(Ω) ). By abuse of language, we again denote by f this element of f this

element of W−1,p′
(Ω), that is to say that for f ∈ Lp′

(Ω), on a

(1.30) 〈 f ,v〉W−1,p′ (Ω),W1,p
0 (Ω) =

∫
Ω

f (x)v (x)dx for all v ∈W1,p
0 (Ω)

The weak form of (1.30) that we consider is therefore

(1.31)

 u ∈W1,p
0 (Ω)∫

Ωσa (∇u) ·∇vdx = 〈 f ,v〉W−1,p′ (Ω),W1,p
0 (Ω) ,∀v ∈W1,p

0 (Ω)
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Theorem 1.12 (of existence and uniqueness). Under the assumptions (a)− (g), there

exists u ∈W1,p
0 (Ω) solution of (1.31). If moreover a is strictly monotonic, i.e.,

(
a (ξ)−a

(
η
)) ·(

ξ−η)> 0 for all
(
ξ,η

) ∈ (
RN)2 ,ξ 6= η, then there exists a unique solution u of (1.31).

1.5.4 Compact and monotonous method

Proposition 1.5. Let A be a monotonic maximal operator. Then

i D(A) is dense in H,

ii A is closed,

iii For all λ, (I +λA) is bijective from D(A) over H, (I +λA)−1is a bounded operator and∥∥(I +λA)−1
∥∥≤ 1.

Definition 1.14. We say that an operator A : X → X ′ is pseudo-monotonic if

i A is bounded,

ii when u j → u in X weak and limsup
(
A

(
u j

)
,u j −u

)≤ 0, then

liminf
(
A

(
u j

)
,u j −v

)≥ (A(u),u−v),∀v ∈ X

Theorem 1.13 (Monotonic maximal theorem). Let L be a linear closed, densely defined

operator from the reflexive space V to V∗, L maximal monotone and let A be a bounded

hemicontinuous monotone mapping from V to V∗, then L+ A is maximal monotone in

V ×V∗, Moreover, if L+ A is coercive, then Rang(L+ A)=V∗.

Theorem 1.14. The existence of weak periodic solutions to systems will be based on the

research of fixed points for the nonlinear mapping

Φ : V →V

defined by

Φ(w)= u
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2
MATHEMATICAL MODELING AND REACTION-DIFFUSION

SYSTEMS IN BIOLOGY AND MEDICINE

In this chapter, we present definitions on mathematical modeling, some concepts

and examples, the link between mathematics, biology and medicine. We also devote

a large part of this chapter to the mathematical modeling of diffusion phenomena

by reaction-diffusion systems.

2.1 Modeling and mathematical models

2.1.1 What is mathematical modelling ?

� A mathematical model is a mathematical description of a real life situation. So, if

a mathematical model can reflect or mimic the behavior of a real life situation, then

we can get a better understanding of the system through proper analysis of the model

using appropriate mathematical tools. Moreover, in the process of building the model, we

discover various factors which govern the system, factors which are most important to

the system and that reveal how different aspects of the system are related.

� Models describe our beliefs about how the world functions. In mathematical

modelling, we translate those beliefs into the language of mathematics. This has many

advantages
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• Mathematics is a very precise language. This helps us to formulate ideas and

identify underlying assumptions.

• Mathematics is a concise language, with well-defined rules for manipulations.

• All the results that mathematicians have proved over hundreds of years are at our

disposal.

• Computers can be used to perform numerical calculations.

� There is a large element of compromise in mathematical modelling. The majority

of interacting systems in the real world are far too complicated to model in their entirety.

Hence the first level of compromise is to identify the most important parts of the system.

These will be included in the model, the rest will be excluded. The second level of

compromise concerns the amount of mathematical manipulation which is worthwhile.

Although mathematics has the potential to prove general results, these results depend

critically on the form of equations used. Small changes in the structure of equations may

require enormous changes in the mathematical methods. Using computers to handle the

model equations may never lead to elegant results, but it is much more robust against

alterations.

�Modeling is a process that uses mathematics to make, analyze, make predictions, or

provide insight into real-world phenomena such as “What is the best climate conservation

program for my city Setif, my country Algeria, or the world?” "How will the outbreak

of the Corona virus affect Algeria or the world?", or any other question related to

climate, weather, pollution, environment, epidemics or other. After defining the problem

statement, designers must make assumptions to reduce the number of factors affecting

the model. Defining variables tells designers exactly which units they are looking for. This

creates the basis for the next part of the process - getting a solution to your mathematical

model. Here’s where you’ll first find out if you’ve really answered your original problem

in the real world.

2.1.2 Why study modeling ?

The importance of mathematical modeling in physics, chemistry, economics, even industry,

and the various natural sciences, especially biology, ecology and medicine, cannot be

ignored. Mathematical modeling in basic sciences is gaining popularity, especially in

biological and medical sciences, and this is what we are witnessing in recently published

research on the spread of infectious diseases (Corona, Hepatitis, AIDS, Malaria, Ebola,...),

the spread of pollution in the world, global warming. , climate, weather, industry, economy,
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and others.

2.1.3 Modeling steps

i. Make assumptions about the phenomenon studied.

ii. The assumptions are translated mathematically into a model.

iii. We study the mathematical model; we draw qualitative or quantitative consequences

and we make forecasts.

iv. Predictions are compared to experimental realities.

v. We eventually come back to the assumptions to modify the model, and the cycle

continues.

2.2 About the mathematical modeling in

Epidemiology

The study of infectious disease data began with the work of John Graunt (1620–1674) in

his 1662 book “Natural and Political Observations made upon the Bills of Mortality.” The

Bills of Mortality were weekly records of numbers and causes of death in London parishes.

The records, beginning in 1592 and kept continuously from 1603 on, provided the data

that Graunt used to begin to understand or identify possible causes of observed mortality

patterns. He analyzed the various causes of death and gave a method of estimating the

comparative risks of dying from various diseases, giving the first approach to a theory of

competing risks.

In the eighteenth century smallpox was endemic and, perhaps not surprisingly, the

first model in mathematical epidemiology was tied in to the work that Daniel Bernoulli

(1700–1782) carried out on estimating the impact of inoculation against smallpox. Vario-

lation, essentially inoculation with a mild strain, was introduced as a way to produce

lifelong immunity against smallpox, but with a small risk of infection and death. There

was heated debate about variolation, and Bernoulli was led to study the question of

whether variolation was beneficial. His approach was to calculate the increase in life

expectancy if smallpox were to be eliminated as a cause of death. His approach to the

question of competing risks led to the publication of a brief outline in 1760 [19] followed
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in 1766 by a more complete exposition [18]. His work received a mainly favorable re-

ception; research that has become known in the actuarial literature rather than in the

epidemiological literature. More recently his approach has been generalized [30].

Another valuable contribution to the understanding of infectious diseases prior to

our understanding of disease transmission processes was gained from the study of the

temporal and spatial pattern of cholera cases during the 1855 epidemic in London carried

out by John Snow. He was able to pinpoint the Broad Street water pump as the source of

the infection [49, 108]. In 1873,William Budd was able to gain a similar understanding

of the spread of typhoid [22]. Statistical theory also moved forward with William Farr’s

study of statistical returns in 1840, a study that had as its goal the discovery of the laws

that underlie the rise and fall of epidemics [35].

Many of the early developments in the mathematical modeling of communicable

diseases are due to public health physicians. The first known result in mathematical

epidemiology, as noted before, is a defense of the practice of inoculation against smallpox

in 1760 by Daniel Bernoulli, a member of a famous family of mathematicians (eight

spread over three generations) who had been trained as a physician. The first contri-

butions to modern mathematical epidemiology are due to P.D. En’ko between 1873 and

1894 [34], and the foundations of the entire approach to epidemiology based on compart-

mental models were laid by public health physicians such as Sir R.A. Ross,W.H. Hamer,

A.G. McKendrick, and W.O. Kermack between 1900 and 1935, along with important

contributions from a statistical perspective by J. Brownlee.

2.2.1 Compartmental Models

In order to describe a mathematical model for the spread of a communicable disease,

it is necessary to make some assumptions about the means of spreading infection. The

idea of invisible living creatures as agents of disease goes back at least to the writings

of Aristote (384–322 BC). The existence of microorganisms was demonstrated by van

Leeuwenhoek (1632–1723) with the aid of the first microscopes. The first expression of

the germ theory of disease by Jacob Henle (1809–1885) came in 1840 and was developed

by Robert Koch (1843–1910), Joseph Lister (1827–1912), and Louis Pasteur (1822–1875)

in the late nineteenth and early twentieth centuries. The modern view is that many

diseases are spread by contact through a virus or bacterium. We focus in this work on the

problem of understanding the spread of disease at a population level. Similar modeling

approaches can be used to study the dynamics of infection within a host for diseases
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including HIV. This area is the backbone of the field of mathematical and computational

immunology and viral dynamics. An introduction to immunology may be found in the

book by Nowak and May [88].

In 1906, W.H. Hamer argued that the spread of infection should depend on the

number of susceptible individuals and the number of infective individuals [45]. He

suggested a mass action law for the rate of new infections, and this idea has been basic

in the formulation of compartmental models since that time. It is worth noting that the

foundations of the entire approach to epidemiology based on compartmental models were

laid, not by mathematicians, but primarily by public health physicians such as Sir R.A.

Ross,W.H. Hamer, A.G. McKendrick, and W.O. Kermack between 1900 and 1935.

A particularly instructive example is the work of Ross on malaria. Sir Ronald Ross

was awarded the second Nobel Prize in Medicine in 1902 for his demonstration of the

dynamics of the transmission of malaria between mosquitoes and humans. He discovered

the malarial parasite in the gastrointestinal tract of the Anopheles mosquito from which

he was able to characterize the life cycle of malaria. He concluded that this vector-borne

disease was transmitted by the Anopheles mosquito and in the process he developed a

program for controlling or eliminating it at the population level.

It was generally believed that, so long as mosquitoes were present in a population,

malaria could not be eliminated. Ross introduced a simple compartmental model [98]

that included mosquitoes and humans. He showed that reducing the mosquito population

below a critical level would be sufficient to eliminate malaria. This was the first intro-

duction of the concept of the basic reproduction number, a central idea in mathematical

epidemiology since that time. Field trials supported Ross’ conclusion leading sometimes

to brilliant successes in malaria control.

The basic compartmental models to describe the transmission of communicable dis-

eases are contained in a sequence of three papers by W.O. Kermack and A.G. McKendrick

in 1927, 1932, and 1933 [55, 56]. The first of these papers described epidemic models.

The Kermack–McKendrick epidemic model, included dependence on age of infection,

that is, the time since becoming infected, and can be used to provide a unified approach

to compartmental epidemic models. Various disease outbreaks including the SARS

epidemic of 2002–2003, the concern about a possible H5N1 influenza epidemic in 2005,

the H1N1 influenza pandemic of 2009, and the Ebola outbreak of 2014 have reignited

interest in epidemic models, with the reformulation of the Kermack–McKendrick model

by Diekmann, Heesterbeek, and Metz [29]. In the work of Ross and Kermack and

McKendrick there is a threshold quantity, the basic reproduction number, which is now
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almost universally denoted by R0. Neither Ross nor Kermack and McKendrick identified

this threshold quantity or gave it a name. It appears that the first person to name the

threshold quantity explicitly was MacDonald [67] in his work on malaria.

The basic reproduction number, R0 (referred to as the basic reproductive number by

some authors), is defined as the expected number of disease cases (secondary infections)

produced by a “typical” infected individual in a wholly susceptible population over the

full course of the disease outbreak. In an epidemic situation, in which the time period is

short enough to neglect demographic effects and all infected individuals recover with

full immunity against reinfection, the threshold R0 = 1 is the dividing line between the

infection dying out and the onset of an epidemic. In a situation that includes a flow of

new susceptible individuals, either through demographic effects or recovery without

full immunity against reinfection, the threshold R0 = 1 is the dividing line between an

approach to a disease-free equilibrium and an approach to an endemic equilibrium, in

which the disease is always present.

Since 1933, there has been a great deal of work on compartmental disease trans-

mission models, with generalizations in many directions. In particular, it is assumed in

[55, 56] that stays in compartments are exponentially distributed.

2.2.2 Endemic Disease Models

The analytic approaches to models for endemic diseases and epidemics are quite different.

The analysis of a model for an endemic disease, begins with the search for equilibria,

which are, by definition, constant solutions of the model. Usually there is a disease-free

equilibrium and there are one or more endemic equilibria, with a positive number of

infected individuals. The next step is to linearize about each equilibrium and determine

the stability of each equilibrium. Usually, if the basic reproduction number is less than 1,

the only equilibrium is the disease-free equilibrium and this equilibrium is asymptotically

stable. If the basic reproduction number is greater than 1, the usual situation is that the

disease free equilibrium is unstable and there is a unique endemic equilibrium which

is asymptotically stable. This approach also covers diseases in which there is vertical

transmission, which is direct transmission from mother to offspring at birth [23].

However, more complicated behavior is possible. For example, if there are two strains

of the disease being studied it is common to have regions in the parameter space in

which there is an asymptotically stable equilibrium with only one of the strains present

and a region in which there is an asymptotically stable equilibrium with both strains
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coexisting. Another possibility is that there is a unique endemic equilibrium but it is

unstable. In this situation, there is often a Hopf bifurcation and an asymptotically stable

periodic orbit around the endemic equilibrium. An example of such behavior may be

found in an SIRS model, with a temporary immunity period of fixed length following

recovery [46] and in an SV R model [36]. If there is a periodic orbit with large amplitude

and a long period, data must be gathered over a sufficiently large time interval to give

an accurate picture.

Another possible behavior is a backward bifurcation. As R0 increases through1 there

is an exchange of stability between the disease-free equilibrium, which is asymptotically

stable for R0 < 1 and unstable for R0 > 1, and the endemic equilibrium which exists if

R0 > 1. The usual transition is a forward, or transcritical, bifurcation at R0 = 1, with an

asymptotically stable endemic equilibrium and an equilibrium infective population size

depending continuously on R0.

The behavior at a bifurcation may be described graphically by the bifurcation curve,

which is the graph of the infective population size I at equilibrium as a function of the

basic reproduction number R0. It has been noted [31, 43, 44, 58] that in epidemic models

with multiple groups and asymmetry between groups or multiple interaction mechanisms

it is possible to have a very different bifurcation behavior at R0 = 1. There may be

multiple positive endemic equilibria for values of R0 < 1 and a backward bifurcation at

R0 = 1. The qualitative behavior of a system with a backward bifurcation differs from

that of a system with a forward bifurcation and the nature of these changes has been

described in [7]. Since these behavioral differences are important in planning how to

control a disease, it is important to determine whether a system can have a backward

bifurcation. In the presence of two modes of sexually transmitted HIV, it was shown that

multiple endemic equilibrium could be supported [48].

2.2.3 Diseases Transmitted by Vectors

Many diseases are transmitted from human to human indirectly, through a vector.

Vectors are living organisms that can transmit infectious diseases between humans.

Many vectors are bloodsucking insects that ingest disease-producing microorganisms

during blood meals from an infected (human) host, and then inject it into a new host

during a subsequent blood meal. The best known vectors are mosquitoes for diseases

including malaria, dengue fever, chikungunya, Zika virus, Rift Valley fever, yellow fever,

Japanese encephalitis, lymphatic filariasis, and West Nile fever, but ticks (for Lyme
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disease and tularemia), bugs (for Chagas’ disease), flies (for onchocerciasis), sandflies (for

leishmaniasis), fleas (for plague, transmitted by fleas from rats to humans), and some

freshwater snails (for schistosomiasis) are vectors for some diseases.

Every year there are more than a billion cases of vector-borne diseases and more than

a million deaths. Vector-borne diseases account for over 17% of all infectious diseases

worldwide. Malaria is the most deadly vector-borne diseases, causing an estimated

627,000 deaths in 2012. The most rapidly growing vector-borne disease is dengue, for

which the number of cases has multiplied by 30 in the last 50 years. These diseases are

found more commonly in tropical and sub-tropical regions where mosquitoes flourish,

and in places where access to safe drinking water and sanitation systems is uncertain.

Some vector-borne diseases such as dengue, chikungunya, and West Nile virus are

emerging in countries where they were unknown previously because of globalization of

travel and trade and environmental challenges such as climate change. A troubling new

development is the Zika virus, which has been known since 1952 but has developed a

mutation in the South American outbreak of 2015 [107] which has produced very serious

birth defects in babies born to infected mothers. In addition, the current Zika virus can

be transmitted directly through sexual contact as well as through vectors.

Many of the important underlying ideas of mathematical epidemiology arose in the

study of malaria begun by Sir R.A. Ross [98]. Malaria is one example of a disease with

vector transmission, the infection being transmitted back and forth between vectors

(mosquitoes) and hosts (humans). It kills hundreds of thousands of people annually,

mostly children and mostly in poor countries in Africa. Among communicable diseases,

only tuberculosis causes more deaths. Other vector diseases include West Nile virus,

yellow fever, and dengue fever. Human diseases transmitted heterosexually may also be

viewed as diseases transmitted by vectors, because males and females must be viewed

as separate populations and disease is transmitted from one population to the other.

Vector-transmitted diseases require models that include both vectors and hosts. For

most diseases transmitted by vectors, the vectors are insects, with a much shorter life

span than the hosts, who may be humans as for malaria or animals as for West Nile

virus, although there is malaria (not human malaria) in various animal populations and

West Nile virus has infected humans as far as Arizona in the USA. The compartmental

structure of the disease may be different in host and vector species; for many diseases

with insects as vectors an infected vector remains infected for life so that the disease may

have an SI or SEI structure in structure in the vectors and an SIR or SEIR structure

in the hosts.
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2.3 Reaction-diffusion systems and modeling

I Reaction-diffusion equations describe distributions of temperature, concentrations

or of some other variables in space and in time. These equations are characterized by

the presence of diffusion and production terms. Originally, diffusion was understood as

random motion of atoms and molecules and described by the Laplace operator. Heat

conduction was described by similar differential expressions. This simplest description

of heat and mass transport was later completed by other mechanisms. Among them

cross diffusion, anomalous diffusion, other mechanisms of heat conduction. Next, similar

models were applied to biological processes such as displacement of biological cells or

individuals in biological populations. The mechanisms of motion become more complex.

However, in some cases, this motion is random and it can be described by conventional

diffusion terms. In some other cases, more complex models of motion should be used.

For example, biological cells can move in a random or in a directed way with the whole

spectrum of intermediate patterns between these two limiting cases.

I It should be noted that diffusion and other transport processes can occur in

various spaces. First of all, it is the usual physical space mostly used in chemical

and physical applications. However, it can also be the spaces of different parameters

which characterize biological populations. For example, intracellular concentrations p of

some proteins. In this case the cell population can be characterized by the distribution

u (p, t) of cells as a function of the concentration p and of time t. The second property,

which characterizes reaction-diffusion processes, is production. In the case of chemical

reactions, it is production of chemical compounds or heat production. They are described

by equations of chemical kinetics, often based on the mass action law, though other

models also exist. Cell division and birth of biological individuals determine production

in biological populations Their simplest description is based on the same assumption

as for chemical reaction, that the rate of production is proportional to the population

density. In more detailed models, time delay and various specific mechanisms are taken

into account. In the case of biological cells, it can be cell cycle and various intracellula

and extracellular regulatory mechanisms.

2.3.1 What can reaction-diffusion models tell us ?

Reaction-diffusion models can explain three types of spatial phenomena that are relevant

in ecology: waves of invasion by exotic species, the formation of patterns in homogeneous

space, and the effects of the size, shape, and heterogeneity of the spatial environment
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on the persistence of species and the structure of communities. The idea that reaction-

diffusion models can support traveling waves was introduced by Fisher (1937) in the

context of models for the spatial spread of an advantageous gene. The idea that adding

diffusion to a nonspatial model (with two or more components) can destabilize spatially

homogenous equilibria and lead to the formation of patterns was introduced by Turing

(1952) in the context of models for morphogenesis. The idea that reaction-diffusion

models predict the minimal patch size needed to sustain a population was introduced

by Skellam (1951) and Kierstead and Slobodkin (1953), specifically in the context of

spatial ecology. (Skellam also extended Fisher’s idea of a traveling wave to the spread

of populations, as opposed to genes within a population.) In what follows we focus our

attention almost exclusively. Traveling waves in reaction-diffusion models are discussed

from a mathematical viewpoint by Fife (1979), Smoller (1982), and Grindrod (1996).

They are discussed from the viewpoint of biological applications by Murray (1993).

Models for biological invasions, including but not limited to reaction-diffusion models,

are discussed by Kawasaki and Shigesada (1997). Pattern formation is discussed by

Grindrod (1996) and, again in the biological context, by Murray (1993). There are some

general treatments of reaction-diffusion systems in bounded spatial domains, including

Lotka-Volterra models with diffusion, for example Leung (1989) and Pao (1992), and in

the time periodic case (Hess, 1991), but those treatments are essentially mathematical in

nature and generally do not attempt to make close connections with specific applications

in ecology. Also, the material we present includes a number of methods and applications

which to our knowledge have only appeared in journal articles.

The phenomena that can be described via reaction-diffusion models can often be

treated via other types of models. If highly detailed specific predictions are required, it is

probably best to use simulations, perhaps via individual based models, cellular automata,

or interacting particle systems. Some of these sorts of approaches are discussed by

Tilman et al. (1997). A limitation of simulation models is that it is usually difficult

to analyze them mathematically and extract general properties which can provide

insights into the mechanisms underlying their predictions. However, they can be used in

numerical experiments to construct artificial data sets from which general properties

can be inferred.

In particular, cellular automata models have been observed to generate spatial

patterns analogous to those produced by reaction-diffusion models (Comins et al., 1992;

Hassell et al., 1994). It is sometimes possible to obtain information about the rate at

which a population expands its range from interacting particle systems; see Ellner and
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et al. (1998).

Traveling waves can be shown to exist in island chain models; see Zinner (1991,1992).

A limitation of reaction-diffusion models for the propagation of traveling waves is that

diffusion equations on unbounded domains predict that an initial density which is zero

except on some bounded set will be positive everywhere for all positive times. This

seems to be at odds with the notion that organisms move with finite speed. That could

be resolved by replacing reaction-diffusion models with models based on the telegraph

equation

2
∂2u
∂t2 + ∂u

∂t
= ∂2u
∂x2 + f (u)

However, it turns out that for parameter values that occur in natural systems, the

predictions of the telegraph equation are very close to those of the corresponding reaction

diffusion model (Holmes, 1993). A more serious problem is that diffusion models do not

account for long-distance movement, e.g. for the movement of an insect that “hitch-hikes”

on a car or truck instead of crawling on its own. More generally, diffusion predicts that

a population which is initially concentrated at a single point will develop a normal (i.e.

Gaussian) distribution in space as time passes. Other patterns are certainly possible,

and these can be examined by using models based on integral kernels. It turns out

that the details of how the kernel decays at infinity can have profound effects on wave

propagation; see Lewis (1997). Thus, there are sometimes good reasons to use such

models instead of reaction-diffusion models in the study of biological invasions.

However, in a finite habitat patch the issue of long distance dispersal is much less

important, especially if the primary goal is to understand the long term effects of local

dispersal and habitat geometry on population dynamics. Thus, while it is possible to use

integral kernels to study long term persistence in habitat patches (Hardin et al., 1988,

1990; VanKirk and Lewis, 1997, 1999), it is also reasonable to use reaction-diffusion

models. Metapopulation models, especially as formulated by Hanski and his co-workers

(1997, 1999) and Tilman (1994) can address the issue of persistence in finite habitats, but

those models treat networks of patches and treat local population dynamics implicitly, in

terms of presence or absence of populations. Thus, they are typically appropriate models

for spatial effects on a different set of spatial scales than reaction-diffusion models.

Discrete diffusion models, i.e. island chain models, can also be used to model patch

networks. To describe systems where different species operate on different spatial scales,

it may be necessary to combine reaction-diffusion models and patch network models. An

example is discussed in Cantrell and Cosner (1996).
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The phenomena of traveling waves and pattern formation differ from that of minimal

patch in a fundamental way: they can occur in homogeneous space, while the very notion

of “patch” requires at least enough spatial heterogeneity to distinguish the patch from its

surroundings. A defining feature of any finite habitat is that it has a boundary, or edge.

Edges can mediate numerous effects in population dynamics (Fagan et al., 1999). Habitat

edges can be created by physical features such as rivers, roads, or (for aquatic systems)

shorelines; they can also arise from interfaces between different types of ecological

communities such as forests and grasslands. Edges can influence population dynamics

in various ways. They can affect movement patterns, act as a source of mortality or

resource subsidy, or function as a unique environment with its own rules for population

interactions (Fagan et al., 1999). Edges can have different effects on different species; for

example, a road may act as a barrier for some species and a source of mortality for others.

Thus, because edges can exert different effects on different species, the presence of edges

can influence community structure in ways that are not completely obvious from the ways

in which they affect each species. Reaction-diffusion models provide a natural framework

for the study of edge effects, because to correctly formulate a reaction-diffusion model

in a finite patch it is necessary to specify boundary conditions. In other words, we must

describe not only how individuals disperse throughout a patch, but also what they do

when they reach the edge of the patch. An advantage of reaction-diffusion models is

that they can readily incorporate simple rules about the effects of edges. They can also

incorporate effects of internal heterogeneity within a patch. We will use those features of

reaction-diffusion models to study how environmental heterogeneity affects populations.

2.4 Principal uses of reaction-diffusion theory in

ecology

There are three principal uses of reaction-diffusion theory in ecology as we indicated in

the previous section namely in the study of ecological invasions (dating from the work

of Fisher in the 1930s) and in the study of pattern formation (dating from the work of

Turing in the 1950s). Skellam in particular examined reaction-diffusion models for the

population density of a species in a bounded habitat, employing both linear (Malthusian)

and logistic population growth rate.
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2.4.1 Reaction-diffusion models and spatial ecology

The “origin of this species” lies in the pages of the journal Biometrika and precedes the

birth of either of the authors. There, in his remarkable landmark 1951 paper “Random

dispersal in theoretical populations,” J.G. Skellam made a number of observations that

have profoundly affected the study of spatial ecology. First, he made the connection

between random walks as a description of movement at the scale of individual members of

some theoretical biological species and the diffusion equation as a description of dispersal

of the organism at the scale of the species’ population density, and demonstrated the

plausibility of the connection in the case of small animals using field data for the spread

of the muskrat in central Europe. Secondly, he combined the diffusive description of

dispersal with population dynamics, effectively introducing reaction-diffusion equations

into theoretical ecology, paralleling Fisher’s earlier contribution to genetics. Thirdly,

Skellam in particular examined reaction-diffusion models for the population density of a

species in a bounded habitat, employing both linear (Malthusian) and logistic population

growth rate terms, oneand two-dimensional habitat geometries, and various assumptions

regarding the interface between the habitat and the landscape surrounding it. His

examinations lead him to conclude that “[just] as the area/volume ratio is an important

concept in connection with continuance of metabolic processes in small organisms, so is

the perimeter/area concept (or some equivalent relationship) important in connection

with the survival of a community of mobile individuals. Though little is known from the

study of field data concerning the laws which connect the distribution in space of the

density of an annual population with its powers of dispersal, rates of growth and the

habitat conditions, it is possible to conjecture the nature of this relationship in simple

cases. The treatment shows that if an isolated terrestrial habitat is less than a certain

critical size the population cannot survive. If the habitat is slightly greater than this the

surface which expresses the density at all points is roughly dome-shaped, and for very

large habitats this surface has the form of a plateau.”

The most general equation for a population density u mentioned in Skellam’s paper

has the form
∂u
∂t

= d∇2u+ c1 (x, y)u− c2 (x, y)u2

Writing in 1951, Skellam observed that “orthodox analytic methods appear in ad-

equate” to treat the equation, even in the special case of a one-dimensional habitat.

The succeeding half-century since Skellam’s paper has seen phenomenal advances in

many areas of mathematics, including partial differential equations, functional analysis,

dynamical systems, and singular perturbation theory. That which Skellam conjectured
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regarding reaction-diffusion models (and indeed much more) is now rigorously under-

stood mathematically and has been employed to provide new ecological insight into the

interactions of populations and communities of populations in bounded terrestrial (and,

for that matter, marine).

2.4.2 Spatial pattern formation with reaction-diffusion systems

I In spite of the enormous amount of research and the exploding growth of genetics, the

development of spatial pattern and form is still one of the central issues in embryology. In

the past 20–30 years, it has spawned exciting, important and genuine interdisciplinary

research between theoreticians and experimentalists, the common aim of which is the

elucidation of the underlying mechanisms involved in embryology and medicine; most of

these mechanisms are essentially still unknown.

I By way of illustration, we shall describe some specific biological problems and their

modelling. We shall point out some of the limitations of Turing-type reaction–diffusion

mechanisms which necessitated a new, and more experimentally verifiable, approach

to biological pattern formation, known as the mechanical theory of biological pattern

formation proposed by Oster et al. [90], Murray et al. [83] and Murray & Oster [82]. A

large body of research has been developed on tumour growth, such as brain tumours (see

[78] for a survey): it is now being used medically to quantify the efficacy of individual

patient treatment scenarios prior to their use.

I The first genuine experimentally based reaction–diffusion system which produced

steady-state chemical spatial patterns in line with Turing’s predictions was developed by

Thomas [113].

The suggestion here was that tumor cells create an environment which allows certain

mutations to be selected and hence the evolution of mutant cell populations to occur

within the body; this is called somatic evolution. The authors analyzed somatic evolution

in this context and showed a number of evolutionary pathways in ductal carcinoma in

situ. Colleagues suggested that different mutant clones would emerge in a well-defined

temporal sequence, while the mathematical simulations showed that this was highly

unlikely.

I The basic concept, which Turing demonstrated mathematically, was that if you

have two chemicals, in later studies (such as [42] referred to as an activator and an

inhibitor, which react together and at the same time diffuse, crucially at different

rates with the inhibitor having the larger diffusion coefficient, it is possible for such a
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coupled system of reaction–diffusion equations to produce steady-state spatial patterns

in chemical concentrations of the reactants. In the early to mid- 1970s Turing’s paper was

rediscovered by more theoreticians with an increasing number of publications starting to

appear. Closely related, but not specifically to Turing’s work, is the seminal experimental

work on the importance of chemical gradients in embryonic development by Wolpert

[119], who introduced the concept of ‘positional information’, where cells in a chemical

gradient react to a chemical concentration with which they are associated. His work

initiated a huge amount of experimental and theoretical work, often controversial, that

is still going on. For a review of his work and his views on development, seeWolpert’s

[118] book on the principles of development.

I Reaction-diffusion (Turing) Mechanisms
Density dependent proliferation is taken into account by introduction of cell concen-

tration in the denominator. Diffusion term in the equation for promoter is Turing (1952)

suggested that, under certain conditions, chemicals can react and diffuse in such a way

as to produce steady state heterogeneous spatial patterns of chemical or morphogen

concentration. which is in the form:

∂c
∂t

= f(c)+D∇2c

where c is the vector of morphogen concentrations, f represents the reaction kinetics and

D is the diagonal matrix of positive constant diffusion coefficients. With models for two

chemical species, A(r, t) and B(r, t) say. The equations system is then of the form
∂A
∂t

= F (A,B)+DA∇2A
∂B
∂t

=G (A,B)+DB∇2B

where F and G are the kinetics, which will always be nonlinear.

Turing’s (1952) idea is a simple but profound one. He said that, if in the absence of

diffusion (effectively DA = DB = 0), A and B tend to a linearly stable uniform steady state

then, under certain conditions, which we shall derive, spatially inhomogeneous patterns

can evolve by diffusion driven instability if DA = DB. Diffusion is usually considered a

stabilising process which is why this was such a novel concept.

Consider a field of dry grass in which there is a large number of grasshoppers which

can generate a lot of moisture by sweating if they get warm. Now suppose the grass

is set alight at some point and a flame front starts to propagate. We can think of the

grasshopper as an inhibitor and the fire as an activator. If there were no moisture to

quench the flames the fire would simply spread over the whole field which would result in
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a uniform charred area. Suppose, however, that when the grasshoppers get warm enough

they can generate enough moisture to dampen the grass so that when the flames reach

such a pre-moistened area the grass will not burn. The scenario for spatial pattern is

then as follows. The fire starts to spread—it is one of the ‘reactants,’ the activator, with a

‘diffusion’ coefficient DF say. When the grasshoppers, the inhibitor ‘reactant,’ ahead of the

flame front feel it coming they move quickly well ahead of it; that is, they have a ‘diffusion’

coefficient, DG say, which is much larger than DF . The grasshoppers then sweat profusely

and generate enough moisture to prevent the fire spreading into the moistened area. In

this way the charred area is restricted to a finite domain which depends on the ‘diffusion’

coefficients of the reactants—fire and grasshoppers—and various ‘reaction’ parameters.

If, instead of a single initial fire, there were a random scattering of them we can see how

this process would result in a final spatially heterogeneous steady state distribution of

charred and uncharred regions in the field and a spatial distribution of grasshoppers,

since around each fire the above scenario would take place. If the grasshoppers and flame

front ‘diffused’ at the same speed no such spatial pattern could evolve.

2.4.3 Reaction-diffusion models in population dynamics

Population dynamics is one of the oldest areas of mathematical modelling. Already in

1202 Leonard Fibonacci introduced special sequences of numbers (Fibonacci sequences) in

order to describe growth of rabbit population. In 1748 Euler used geometrical sequences

(exponential growth) to study human societies.

Malthus wrote in [68]: “It is an obvious truth, which has been taken notice of by

many writers, that population must always be kept down to the level of the means of

subsistence; but no writer that the Author recollects has inquired particularly into the

means by which this level is effected: and it is a view of these means which forms, to his

mind, the strongest obstacle in the way to any very great future improvement of society”.

Malthus described two types of populations with preventive and destructive ways

to control the rate of growth. He also observed that the destructive mode could be

accompanied by oscillations in the population size and conditions (price of labour, etc.),

though these oscillations were difficult to observe in human societies. As we will see

below, these two modes of population growth correspond to logistic and prey-predator

models which were introduced later by Verhulst and Lotka–Volterra.

A important question raised by Malthus concerned help to the poor and redistribution

of wealth. “The poor laws of England tend to depress the general condition of the poor in
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these two ways. Their first obvious tendency is to increase population without increasing

the food for its support. A poor man may marry with little or no prospect of being able to

support a family in independence. They may be said therefore in some measure to create

the poor which they maintain, and as the provisions of the country must, in consequence

of the increased population, be distributed to every man in smaller proportions, it is

evident that the labour of those who are not supported by parish assistance will purchase

a smaller quantity of provisions than before and consequently more of them must be

driven to ask for support.

Secondly, the quantity of provisions consumed in workhouses upon a part of the

society that cannot in general be considered as the most valuable part diminishes the

shares that would otherwise belong to more industrious and more worthy members, and

thus in the same manner forces more to become dependent. If the poor in the workhouses

were to live better than they now do, this new distribution of the money of the society

would tend more conspicuously to depress the condition of those out of the workhouses

by occasioning a rise in the price of provisions” ([68], Chapter 5). The question about how

redistribution of wealth acts on society is more complex for modelling.

According to Malthus, growth rates for populations and for resources are different,

then there is a constant pressure on the population to control its rate of growth. So

the next step is to analyze how this pressure acts inside a population or species and

between them. Here we enter the area of “struggle for life”, as Darwin called it. The

model of competition of species has been known for a long time. However, modelling of

intra-specific competition is more recent. Similar models can also be used to describe

economical populations.

Many problems modeling the evolution of populations involve several different physi-

cal effects. These include: Birth and death rates as functions of the populations, intra-

species competition, i.e., when the birthrate decreases as the population increases, due

to crowding and competition for scarce resources, inter-species competition, when two or

more species compete for the same resources Diffusive spreading, non-local interactions,

i.e., the evolution of a population at a location depends not just on local conditions but

also on resources in a neighborhood of the location, etc...

2.5 Reaction-diffusion in chemical physics

A chemical reaction is a transformation of matter during which the chemical species

that make up matter are modified: the species that are consumed are called reactants.
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The species formed during the reaction are called reaction products. Since the work of

Lavoisier (1777), scientists know that the chemical reaction takes place without measur-

able variation in mass: "Nothing is lost, nothing is created, everything is transformed",

which reflects the conservation of mass. The aluminothermic reaction is a spectacular re-

dox. We will cite some examples in this context in the next chapter. for more information,

see Duvaut [32].

2.5.1 Laws of behavior

2.5.1.1 Diffusion

When you put a colored substance, such as a drop of ink, in a container filled with water,

what is called a diffusion phenomenon takes place. The substance is first separated from

the water by a clear border, then the molecules of the substance are distributed uniformly

in the water under the action of a concentration gradient. Where the concentration is high,

the molecules tend to decrease in number; and conversely, in places of low concentration

their number increases.

2.5.1.2 Lois de Fick

This law qualitatively expresses that the particles move towards the regions with lower

density. Concentration %= % (t, x). We will assume that ρ is differentiable with respect to t
and x. The amount of diffusing matter, flowing through one square centimeter per second

in a given direction where the concentration will decrease is expressed in a system of

Cartesian coordinates by the formula

J =−d
∂%

∂x

J is the transfer or transport rate per unit area of section in one direction x normal to

the section and d is a proportionality factor, it is the diffusion coefficient, considered as a

positive constant. This law can be generalized to three or more dimensions

(2.1) J =−d∇%

where J is the diffusion flux of the substance. The flux is defined as the quantity of

material which per second crosses the unit area of a surface normal to the transfer

movement. ∇% it is the concentration gradient %. The relation (2.1) bears the name of

Fick’s first law.
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We have Ω the reactor or the reaction takes place, it is a bounded region in R3, so we

have by definition M (t)= ∫
Ω

(
%t, xdx

)
the mass of the substance in Ω in time t. Me (t) the

mass of the substance flowing outward from Ω during the time interval [0, t.[ We have by

definition:
dMe (t)

dt
=

∫
∂Ω

J.dσ

As M (t)+Me (t)= constante, we get then

d
dt

(M (t)+Me (t))= d
dt

∫
Ω

(∫
Ω
% (t, x)dx+

∫
∂Ω

J.dσ
)
= 0

Gauss’s divergence theorem gives us∫
Ω

(
%t +∇.J

)
dx = 0

As this last equality is true for any region Ω, we conclude

%t +∇.J = 0

And according to Fick’s first law, we get

(2.2) %t =∇.
(
d∇%)

This is Fick’s second law of diffusion.

For more details, see for example, Coirier [26], Duvaut [32], Royis [99] and Salençon

[105].

2.5.2 Derivation of equations

Consider a region (which can be a test tube or a living cell) in which chemical reactions

take place (the living cell is the site of thousands of simultaneous chemical reactions).

Either ui = ui (x, t) , i = 1, . . . ,n the concentration of the i-th species E i taking part

in the reactions, and either f i = f i (x, t,u) the rate of formation of this species in this

reaction. here u = (u1, . . . ,un) is the vector of concentrations, x is the locus and t is the

time.

Either φi =φi (x, t) , i = 1, . . . ,n,the flow of the i-th species due to the diffusion with

the usual convention is that φi is positive if the flow of the i-th species is from the interior

of the region to the exterior.
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EitherΩ the considered surface region S = ∂Ω. So, the rate of formation of the amount

of E i in Ω is equal to the amount formed by the reaction minus the flux across the surface

S. In mathematical terms:

∂

∂t

∫
Ω

uidx =
∫
Ω

f idx−
∫

S
φidσ

Using the divergence theorem, it comes∫
Ω

(
∂ui

∂t
− f i +∇.φi

)
dx = 0

As this relation is true for any region we draw from it for each i

∂ui

∂t
+∇.φi = f i

According to Fick’s first law, the flow φi of E i is given by the expression

φi =−D i∇ui

where D i is the diffusion coefficient of the species E i. Thus, from the last two relations

we derive

(2.3)
∂ui

∂t
=∇. (D i∇ui)+ f i

for i = 1, . . . ,n
It is also possible that the flux φi of the density ui may depend on the gradients of

the concentrations of other species not only on ∇ui the gradient of ui, i.e.

φi =− ∑
1≤ j≤n

D i j∇u j

or in matrix form

φ=−D∇u

where D = (
D i j

)
is an n×n non-diagonal matrix, its terms are the diffusion coefficients.

D i j characterizes the diffusion of ui in u j.

In this case we have what we call a diffusion crossing between the densities ui.

It should be noted here that:

(i) Diffusion coefficients are not always positive.

(ii) If the reaction term f i > 0, there is a source or mass production for the i-th species.

Otherwise f i < 0, there is mass annihilation.

(iii) The diffusion coefficient D is constant if the region Ω is a homogeneous medium.
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2.5.3 Modeling of the evolution of reaction

2.5.3.1 Speed of a reaction, conservation of matter

Note [A] the concentration of a component A in a given system, that is to say the quantity

of this constituent per unit of volume. The mole per liter is generally used as the unit of

concentration. Consider in a general way the following equation in equilibrium

n1A1 +n2A2 + ...+np Ap −→ m1B1 +m2B2 + ...+mqBq

The constituents A i are called reactants, and the constituents B j produced. In general,

an equilibrium reaction is not only made up of an elementary reaction, but several

parallel or successive reactions, for example of the following type

A −→ B , B −→ C

or

A
B

or

A+B
 X , X
C+D

We will suppose that, in the reactions called "elementary", The reaction rate is

assumed to be proportional to the product of the concentrations of the reactants.

2.5.3.2 Elementary reactions

We will assume that the elementary reactions satisfy the law of mass action. The study

of the speed of a chemical reaction is done by chemical kinetics. In the following two

experiments we study some of the factors influencing the speed of a chemical reaction.

Most chemical reactions take place in several stages, that is to say, they evolve by

successive elementary chemical reactions. For example, the overall reaction

A+B+C → D+E

could happen in two stages

A+B → D+ X

X +C → E

Both stages are elementary reactions. Each step will have its own speed and the

speed of the overall reaction will be a function of these two speeds. The series of steps
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through which the reaction takes place is called the reaction mechanism. In some cases

one of the steps will be much slower than the others, so the speed of the overall reaction

will be essentially equal to the speed of the slower reaction.

The speed of a chemical reaction depends on several parameters:

• Concentration of reagents,

• Temperature,

• Solvent used,

• Possible presence of a catalyst.

A catalyst is a substance which, added to a reaction mixture, accelerates the reaction

without being consumed in it. This acts by reducing the activation energy of the reaction

considered. In biological media, it is the enzymes that play the role of catalyst. An

enzyme is a proteinaceous substance that allows metabolic reactions to take place at a

sufficient rate at body temperature. see Duvaut [32]. Either the reaction

A+B → C

the speed v of the reaction is given by the variation in the concentrations of A, B or C as

a function of time:

V = −d [A]
dt

= −d [B]
dt

= −d [C]
dt

[ms−1]

We find, experimentally, that the speed depends on the concentration of the reactants

according to the law of speed:

V = −d [A]
dt

= k [A]x [B]y

where

k is the rate constant for the reaction considered (attention: k depends on temperature

and solvent).

x and y are the partial orders of the reaction with respect to A and B respectively.

The global order is given by (x+ y).

The expressions of the speed law for different orders are then:

• Zero order: speed = k (constant independent of the concentration).

• first global order: speed= k [A] or k [B]
• second global order: speed = k [A] [A] . [B] or k[A]2 or k [B]2

• third global order: speed = k [A] . [B] . [C] or k[A]2 [B] etc.

The variation in the concentration of the reactants as a function of time can be

obtained by integrating the differential equation giving the law of speed.
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Zero order

V = −d [A]
dt

= k

d [A] = −kt

Integration between 0 and t donne : [A]t = [A]0 − kt (t = time), where [A]0 is the

concentration of A at time t = 0, and [A]t is the concentration of A at time t.
A zero-order reaction is characterized by a linear dependence of the concentration:

[A] as a function of time. The constant k is measured in [m.s−1].

First order

V = −d [A]
dt

= k [A]2

d [A]
[A]2 = −kdt

After integration we find
1

[A]t
− 1

[A]0
= kt

A second order reaction is characterized by a linear dependence of
1

[A]
as a function

of time. The constant is measured in [m−1s−1].

Law of order two Consider the example of ammonia

N2 +3H2 −→ 2NH3

whose mechanism can be explained by the introduction of an intermediate state X

N2 +3H2
k1


k−1

X

X k2−→ NH3 +NH3
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3
SOME REACTION-DIFFUSION MODELS IN BIOSCIENCE

This chapter presents several models involving reaction diffusion systems in biol-

ogy, medicine, ecology, biochemistry and engineering. The models were collected

from published articles and specialist books. Most of them are similar to the

models studied in the last three chapters of this thesis.

3.1 Reaction-diffusion models in chemical physics

3.1.1 The Belousov-Zhabotinskii model

The Belousov-Zhabotinskii reaction consists of the metal-ion-catalyzed oxidation by

bromate ion of brominated organic materials. This reaction is a visually dramatic phe-

nomenon for that a mathematical model of ten chemical reactions with seven intermedi-

ates has been developed (cf. [41]). The chemical reaction scheme of this simplification is

given by
A1 +Y → X , X +Y → P1, A2 + X → 2X +Z
2X → P2, Z → γY ,

Here A1 and A2 are reactants that are considered as known constants, P1 and P2

are products, γ is the stoichiometric factor, and X , Y and Z are the concentrations of the

intermediates HBrO2 (Bromous acid), Br−(Bromide Ion) and Ce (IV) (Cerium), respec-

tively. If we apply the law of mass action to reaction-diffusion the resulting equations
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describing the dynamics of the oregonator model are given by

∂X
∂t

−D1∇2X =−k1XY +k2A2X −2k3X2 +k4A1Y
∂Y
∂t

−D2∇2Y =−k1XY +γk5Z−k4A1Y
∂Z
∂t

−D3∇2Z = k2A2X −k5Z

where D i are the diffusion coefficients and ki, 1≤ i ≤ 5, are the forward rate constants.

Some numerical values of A1, A2, and ki are given by A1 = A2 = 0.06 M, k1 = 1.6×
109 Ms−1, k2 = 8×103Ms−1, k3 = 4×107Ms−1 and k4 = 1.34 Ms−1. The constants k5 and

γ are expendable.

3.1.2 A gas-liquid interaction model

Consider a dissolved gas A and a dissolved reactant B that interact in a bounded

diffusion medium Ω. The chemical reaction scheme is given by A + k1B → k2P and

is called the second order reaction, where k1 and k2 are the rate constants and P is

the product. Denote by u ≡ u(x) and v ≡ v(x) the concentrations of the dissolved gas A
and the reactant B, respectively. Then the above reaction scheme leads to the coupled

reaction-diffusion system {
ut −D1∇2u = f1(x,u,v)

vt −D2∇2v = f2(x,u,v)
in D

The boundary condition is given either in the form

B1u = h1(x), B2v = h2(x) on ∂D

or in the special form B1 =B2 ≡B, that is

Bu = h1(x), Bv = h2(x), on ∂D

with

f1(u,v)=−σ1uv, f2(u,v)=−σ2uv

where σ1 is the rate constant and σ2 = k1σ1. In a more general reaction scheme called

the (m,n) the order reaction, f1 and f2 are given by

f1(x,u,v)=−σ1umvn + q1(x), f2(x,u,v)=−σ2umvn + q2(x)

where m ≥ 1,n ≥ 1 are constants and qi(x)≥ 0, i = 1,2, are possible internal sources.
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Remark 3.1. This model, as well as the following models similar to it; has been studied

in detail by K.I. Saffidine and S. Mesbahi, and the results obtained are the subject of an

article sent for publication in the journal “MATHEMATICAL COMMUNICATIONS”.

3.1.3 Heat-Mass transfer in chemical reactors

In the process of chemical reactions as well as in the theory of combustion, where both

temporal and spatial variations are taken into consideration the equations for the mass

concentration and temperature. In the case of a single irreversible chemical reaction in a

porous medium as well as in the classical problem of thermal ignition the equations for

the chemical concentration (or combustible material) u and the temperature v become{
ut −D1∇2u =−σ1up f (v)

vt −D2∇2v =σ2up f (v)
in D

where σ1, σ2 are positive constants, p ≥ 1 is the order of reaction, and

f (v)= exp(γ− γ

v
) (γ> 0)

The physical meaning of the constants σ1, σ2, γ and the derivation of the reaction

function f (v) have been discussed in [94].

3.1.4 A diffusion model with temperature feedback

One of the fundamental problems of reactor physics is the determination of neutron

density and temperature distribution as a function of time and space. Because of the

complexity of the problem various simplified models have been proposed. In this section

we consider the adiabatic case with or without the diffusion effect on temperature. This

leads to the consideration of the system{
ut −D1∇2u = u (a−bv)
vt −D2∇2v = cu

in D

where a,b, and c are constants and c > 0 temperature is neglected we set D2 = 0 and

ignore the boundary condition for v.

f1(u,v)= u(a−bv) , f2(u,v)= cu
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3.2 Reaction-diffusion models in biomedical

3.2.1 Cell dynamics with extracellular regulation

We will assume in this section that cell density is sufficiently small such that cells do

not prevent random motion of each other and convective motion of the medium does not

occur. Cell adhesion is also neglected, so that they move independently of each other.

Let C = (C1, . . . ,Cn) be the vector of cell concentrations and u = (u1, . . . ,um) the vector

of concentrations of extracellular substances. Assuming that the rates of self-renewal,

differentiation and apoptosis depend on cell concentrations and extracellular variables,

we get the reaction-diffusion system

(3.1)
∂C
∂t

= Dc∆C+F (C,u)

(3.2)
∂u
∂t

= Du∆u+G (C,u)

where F = (F1, . . . ,Fn) are the rates of cell production, G = (G1, . . . ,Gn) are the rates of

production of extracellular species. By the rate of cell production we understand the

overall rate of change of cell concentration taking into account their self-renewal, prolif-

eration, apoptosis. Similarly, the functions G i take into account production, consumption

and destruction of the corresponding biochemical species. We will assume for simplicity

that the matrices of diffusion coefficients are diagonal.

Self-renewal and apoptosis Consider a cell population which consists of a single

cell type and denote its concentration by C. These cells can divide and give similar cells

(self-renewal) or die by apoptosis. Suppose that there exists one extracellular variable u.

We consider equations (3.1), (3.2) with the functions

F (C,u)= (ks(u)−ka(u))C, G (C,u)= qC−σu

where ks (u) and ka (u) are the rates of self-renewal and apoptosis, which depend on

the extracellular variable, q and σ are positive numbers. We suppose that ks and ku

are sufficiently smooth positive functions. The extracellular species is produced by

cells themselves, so that the first term in the function G is proportional to the cell

concentration.
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Consumption of nutrients As before, we consider a cell population which consists

of cells of the same type. Cells can consume nutrients and divide. The concentration of

nutrients is denoted by u. where the functions F and G are given by the equalities:

F (C,u)= k1uC, G (C,u)=−k2uC

k1 and k2 are some positive constants. Here we assume that cell proliferation is propor-

tional to the cell concentration and to the concentration of nutrients, and consumption of

nutrients is also proportional to the same concentrations. For more details, see Chapter10

in [116].

3.2.2 An enzyme model

Biochemical reactions are continually taking place in all living organisms and most of

them involve proteins called enzymes, which act as remarkably efficient catalysts. En-

zymes react selectively on definite compounds called substrates. For example, haemoglobin

in red blood cells is an enzyme and oxygen, with which it combines, is a substrate. En-

zymes are important in regulating biological processes, for example, as activators or

inhibitors in a reaction. To understand their role we have to study enzyme kinetics which

is mainly the study of rates of reactions, the temporal behavior of the various reactants

and the conditions which influence them. Introductions with a mathematical bent are

given in the books by Rubinow (1975), Murray (1977) and the one edited by Segel (1980).

Biochemically oriented books, such as Laidler and Bunting (1977) and Roberts (1977), go

into the subject in more depth.

There are enzyme reaction models governed by the coupled reaction-diffusion equa-

tions. One of these models describes a substrate S1 and a cosubstrate S2 in an enzyme

membrane that separates two reservoirs along the longitudinal axis of a cylindrical

domain Ω. In an artificial membrane proposed in [54] the enzyme is taken as uricase

and the substrate and cosubstrate are uric acid and oxygen. The kinetics are those of the

enzyme uricase, which catalyzes an irreversible reaction involving the two substrates.

An empirical expression for the reaction rate is given by

R (S1,S2)= K1S1S2
(
K2 +S1 +K3S2

1
)−1

where K i, i = 1,2,3, are positive constants related to the various reaction rates. Let

S(o)
1 ,S(o)

2 be the fixed concentrations of the two substrates S1, S2 in the surrounding

reservoirs. Under the assumption of a possible linear absorption from the reservoir the
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law of conservation of mass yields the following balance relation: (S1)t −D1∇2S1 =−R (S1,S2)+K ′
1

(
S(o)

1 −S1

)
(S2)t −D2∇2S2 =−R (S1,S2)+K ′

2

(
S(o)

2 −S2

)
where K ′

1 and K ′
2 represent the rates of absorption, including the case of no absorption

when K ′
1 = K ′

2 = 0. By letting u = S1
K2

, v = S2
K2

the above system is reduced to the form{
ut −D1∇2u =−σ1uv

(
1+u+b1u2)−1 +a1

(
ρ1 −u

)
vt −D2∇2v =−σ2uv

(
1+u+b2u2)−1 +a2

(
ρ2 −v

) in D

where σi, bi, and ρ i are positive constants and ai ≥ 0, i = 1,2. These physical constants

are related to the constants K i, K ′
i, S(0)

1 and S(0)
2 in an obvious way. See [94].

3.2.3 Model in protein networks

The following reaction-diffusion system models protein-protein interactions in a signaling

network that regulates the actin cytoskeleton in a malignant breast cell
∂ui

∂t
−di∆ui = r i(u,k) in Ω× (0,T)

∂ui

∂t
= 0 on ∂Ω× (0,T)

ui(x,0)= u0
i (x) in Ω× (t = 0)

, 1≤ i ≤ N

Assume that the domain Ω is an open, bounded and connected subset of Rη, where

u1(x, t), . . . ,uN(x, t) are the concentration levels of N proteins, d1, . . . ,dN ∈ (0,+∞)N are

the mass diffusivities, and k1, . . . ,kM ∈ (0,+∞)M are the rate constants. Assume that the

initial value u0 ∈ L∞(Ω)N and u0(x)> 0 for all x ∈Ω. We call r i the reaction function of

the i-th protein. The structure of the reaction function is determined by two factors: the

reaction kinetics model and the protein network topology. For more details see [120].

3.3 Reaction-diffusion systems in physiology

3.3.1 Model for glioma tumor growth

Mathematical modelling of tumor growth is one of the most useful and inexpensive

approaches to determine and predict the stage, size and progression of tumors in realistic

geometries. Moreover, these models has been used to get an insight into cancer growth
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and invasion and in the analysis of tumor size and geometry for applications in cancer

treatment and surgical planning. The following model presents a general perspective of

the use of models based on reaction-diffusion equations not only for the description of

tumor growth in gliomas, addressing for processes such as tumor heterogeneity, hypoxia,

dormancy and necrosis, but also its potential use as a tool in designing optimized and

patient specific therapies. 

∂C
∂t

= DC
∂2C
∂x2 +F (C,P, I)−σC

∂I
∂t

= DI
∂2I
∂x2 +a11C−a12I

∂P
∂t

= a21C−a22P

Here C is the concentration of cells, I is the concentration of inhibitor and P of

promoter, ai j and σ are positive constants, F is the rate of cell division given by the

expression

F(C,P, I)= rC
εC+1

· P
I +1

3.3.2 Model in Atherosclerosis

Atherosclerosis is an inflammatory disease. The atherosclerosis process starts when low-

density lipoproteins (LDLs) enter the intima of the blood vessel, where they are oxidized

(ox-LDLs). The anti-inflammatory response triggers the recruitment of monocytes. Once

in the intima, the monocytes are transformed into macrophages and foam cells, leading

to the production of inflammatory cytokines and further recruitment of monocytes. This

auto-amplified process leads to the formation of an atherosclerotic plaque and, possibly,

to its rupture. In this paper we develop two mathematical models based on reaction-

diffusion equations in order to explain the inflammatory process. This model explains

the inflammatory process and shows that atherosclerosis develops as a reaction-diffusion

wave, see [116] page 516.

Two-dimensional model is formulated for the concentration M of cells in the intima

and for the concentration A of cytokines [33]

(3.3)
∂M
∂t

= d1∆M−βM

(3.4)
∂A
∂t

= d2∆A+ f (A) M−γA+b
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This system is considered in the two-dimensional domain Ω= {−∞< x <∞,0< y< L},

which corresponds to the longitudinal cross section of the blood vessel wall. Here y= L
corresponds to the boundary between blood flow and intima. The boundary conditions

are as follows:

y= 0 :
∂M
∂y

= ∂A
∂y

= 0, y= L :
∂M
∂y

= g (A) ,
∂A
∂y

= 0

3.3.3 Model applied to HIV infection

The basic model of virus dynamics as proposed by Nowak and Bangham to study HIV

infection [88], and later adapted to HBV [89] and HCV [87] infection. The basic model

can be formulated as a system of three differential equations

Ṫ (t)=λ−dT −βV T
İ (t)=βV T −aI
V̇ (t)= kI −mV

where susceptible host cells (T) are produced at a rate λ, die at a rate dT and become

infected by virus at a rate βV T. Infected cells (I) die at a rate all. Free virus (V ) is

produced by infected cells at a rate kI and decays at a rate mV .

K. Wang and W. Wang [117] assumed that susceptible host cells and infected cells are

hepatocyte and cannot move under normal conditions and neglected their mobility, while

viruses can move freely and their motion follows a Fickian diffusion. They proposed the

following model:
∂T
∂t

=λ−dT (x, t)−βV (x, t)T (x, t)
∂I
∂t

=βV (x, t)T (x, t)−aI (x, t)
∂V
∂t

= dv∆V +kI (x, t)−mV (x, t)

where T (x, t) , I (x, t), and V (x, t) represent the densities of uninfected cells, infected cells,

and free virus at location x and time t, respectively, dV is the diffusion coefficient. They

assumed that the domain is the whole real line and proved the existence of traveling

waves.

3.3.4 Model for viral infection and immune response

It is a model for model for virus infection and immune response to account for the spatial

effects of processes, such as diffusion transport of virions, biomolecules, and cells. This
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leads to two different models of nonlinear EDP, a first where cells and biomolecules

diffuse (which we call the reaction-diffusion model) and a second where only biomolecules

can diffuse (the hybrid model).

Let Ω⊂RN (N = 2,3) be a bounded domain with Lipschitz boundary Γ, and let T > 0.

We consider in Ω× [0,T] a reaction-diffusion system

∂tW = d∆W − iW −vW
∂tI = d∆I −µI I +vW
∂tR = d∆R+ iW
∂tv = dv∆v−µvv+αvI −α4vW
∂t i = di∆i−µi i+αi I −α3iW

where W wild-type cells, I infected cells, R resistant cells, v virions and i interferons,

with boundary conditions 

∇W .n (σ, t)= 0 on Γ× [0,T]
∇I.n (σ, t)= 0 on Γ× [0,T]
∇R.n (σ, t)= 0 on Γ× [0,T]
∇v.n (σ, t)= 0 on Γ× [0,T]
∇i.n (σ, t)= 0 on Γ× [0,T]

and initial conditions 

W (x,0)=W0 (x)
I (x,0)= I0 (x)

R (x,0)= R0 (x)
v (x,0)= v0 (x)
i (x,0)= i0 (x)

For more details see [69].

3.3.5 The Fitz Hugh-Nagumo model in Neurophysiology

When study of nerve impulses on nerve axons Hodgkin and Huxley proposed a set of

differential equations to describe the ionic and electrical events occurring during the

transmission of an impulse along an axon, which is usually the filament carrying signals

from the nerve cell body to other parts of the organism. Their formulation is based on

the assumption that an axon behaves like a cylindrical electrical cable with conducting

core and partially insulating sheath. A simplified formulation has been suggested by

FitzHugh ; and by Nagumo, Arimoto and Yoshizawa which appears to preserve most of
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the qualitative features of the original system, and yet is more amenable to analytical

manipulation. This simplification leads to the so-called FitzHugh-Nagumo equations,

which are given by the following coupled system of two equations where u denotes the

electrical potential across the axonal membrane and v represents a pair of variables in

the original Hodgkin-Huxley model and{
ut −D1∇2u =σu(u−θ)(1−u)−bv (t > 0, x ∈Ω)
vt = cu−av (t > 0, x ∈Ω)

where u denotes the electrical potential across the axonal membrane and v repre-

sents a pair of variables in the original Hodgkin-Huxley model. The physical constants

D1,σ,a,b, c, and θ are all positive, and 0< θ < 1. This system has been given considerable

attention in relation to the qualitative property of the solution, including the traveling

wave solution in R. See Murray [79].

3.3.6 Model of Calcium ions in dendritic spines

Ca2+ ions inside the dendritic spine play a crucial role in the twitching motion and

synaptic plasticity, and therefore in cognitive processes like learning and memory. We

consider calcium ions interacting with some proteins that have 4 binding sites for the

ions. Both calcium ions and proteins diffuse all within a moving domain Ω (a dendritic

spine) full of cytoplasm. Let M be the concentration of calcium ions, U the total number

of binding sites and W the total number of free sites and V the cytoplasmic flow field. If

we suppose that the proteins are fixed in the cytoplasm (i.e. they do not diffuse) then the

model is 
∂tM =∇· [D∇M−V M]−k1 [A−U]
∂tU =−k1MU +k−1 [A−U]
V =∇Φ, ∆Φ= 0

with initial conditions {
M (x,0)= m0 (x)
U (x,0)= A (x)

and boundary conditions
M (σ, t)= 0 on Γa × [0,T]
(D∇M−V M) .n (σ, t)= 0 on Γr × [0,T]
∇Φ.n (σ, t)= a (σ)λ (t) on Γ× [0,T]

For a better understanding see [69].
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3.4 Reaction-diffusion systems applied in ecology

3.4.1 The Volterra-Lotka Competition Model

The competition between two competing species in an ecological system has been tradi-

tionally formulated in relation to time evolution with uniform population distributions

in the habitat. This leads to the well-known Volterra-Lotka competition model. If the

presence of the u -population species encourages the growth of the v -population species

and vice versa then the governing equations for u and v become

−D1∇2u = u (a1 −b1u+ c1v)
−D2∇2v = v (a2 +b2u− c2v)

where ai,bi, and ci are positive constants, i = 1,2. See [94]. This model is a good example

of the problem studied in chapter 4.

3.4.2 The Volterra prey-predator model

When the two competing species in the previous model are replaced by a prey and

a predator species the equations governing the prey population u and the predator

population v are given by{
ut −D1∇2u = u (a1 −b1u− c1v)
vt −D2∇2v = v (a2 +b2u− c2v)

in D

where ai,bi, and ci, i = 1,2, are positive constants. The physical meaning is that in the

presence of the prey u the population of the predator increases in u with an increasing

rate b2u.

3.4.3 A competition model

The following two-species Lotka-Volterra competition model is{
ut −d1(x)∇2uα1 = u (a1 −b1u− c1v)
vt −d2(x)∇2vα2 = v (a2 −b2u− c2v) (t > 0, x ∈Ω)

under the boundary and initial conditions specific, where for each i = 1,2,αi,ai,bi and

ci are positive constants with αi > 0,di(x)> 0 on Ω̄ and (u0,v0)> (0,0) in Ω. It is known

that in the density independent case α1 =α2 = 1,the solution (u,v) converges to a positive

steady-state solution for a certain class of initial functions if some additional condition is

satisfied.
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3.5 Reaction-diffusion systems applied in

epidemiology

3.5.1 An SIS epidemic model

Allen et al. in [9] proposed a frequency-dependent SIS (susceptible-infected-susceptible)

reaction-diffusion model for a population living in a continuous spatial habitat, which

reads as follows

(3.5)



∂S
∂t

−dS∆S =−β (x)SI
S+ I

+γ (x) I x ∈Ω, t > 0
∂I
∂t

−dI∆I = β (x)SI
S+ I

−γ (x) I x ∈Ω, t > 0
∂S
∂ν

= ∂I
∂ν

= 0 x ∈ ∂Ω, t > 0

S (x,0)= S0 (x)≥ 0, I (x,0)= I0 (x)� 0 x ∈Ω

Here, S and I represent the density of susceptible and infected individuals at location

x and time t respectively; dS and dI are positive constants for the susceptible and

infected populations respectively; and β and γ are positive Hölder continuous functions

on Ω̄ that represent the rates of disease transmission and recovery at x respectively. The

habitat Ω⊂Rn is a bounded domain with smooth boundary ∂Ω, and the homogeneous

Neumann boundary conditions mean that no population flux crosses the boundary ∂Ω.

3.5.2 An SIS epidemic model with spontaneous infection in a

spatially heterogeneous environment

The heterogeneity of spatial environment and the movement of the individual play an

important role in the theory of epidemiology. The following model is one among many

mathematical models for studying the effects of migration and spatial heterogeneity on

disease transmission

∂S
∂t

−dS∆S =−β (x)SI
S+ I

+γ (x) I, x ∈Ω, t > 0
∂I
∂t

−dI∆I = β (x)SI
S+ I

−γ (x) I, x ∈Ω, t > 0
∂S
∂ν

= ∂I
∂ν

= 0, x ∈ ∂Ω, t > 0

S (x,0)= S0 (x)≥ 0, I (x,0)= I0 (x)� 0 x ∈Ω
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where dS, dI , β, γ, S and I have the same epidemiological interpretation as in (3.5).

Here we also assume that the spontaneous infection rate η depends on spatial location x,

is positive and Hölder continuous functions on Ω̄. The function η models the propagation

of the disease due to imported cases of the infection. In order to know how to study it see

[114].

3.5.3 A model of transmission of the HIV virus within a

population

This system may be viewed as a model of a diffusive epidemic, which describes the HIV

virus transmission within a population. The population considered contains susceptible

individuals S1, S2 and infected ones U1, U2 divided into two groups, where indices 1 and

2 indicate which group they belong to. The constants Λ1 and Λ2 represent the influx

rates of new susceptible individuals in each group. µ is the mortality rate, the ratio of

the number of deaths from the disease to the total number of cases per unit of time of

that disease. The parameters βi describe the rate at which the disease is spread among

the individuals per unit of time, and T is the total population.

∂S1

∂t
−d1∆S1 =Λ1 −β1

S1ϕ(U1)
T −β2

S1ϕ(U2)
T −µS1 in R+×Ω

∂U1

∂t
−d2∆U1 =β1

S1ϕ(U1)
T +β2

S1ϕ(U2)
T −σ1U1 in R+×Ω

∂S2

∂t
−d3∆S2 =Λ2 −β3

S2ϕ(U1)
T −β4

S2ϕ(U2)
T −µS2 in R+×Ω

∂U2

∂t
−d4∆U2 =β3

S2ϕ(U1)
T +β4

S2ϕ(U2)
T −σ2U2 in R+×Ω

with the homogeneous Neumann boundary conditions

∂Si

∂v
= ∂Ui

∂v
= 0 on R+×∂Ω, i = 1,2

and the continuous initial data S1,0,U1,0,S2,0,U2,0

Si(0, x)= Si,0(x)≥ 0, Ui(0, x)=Ui,0(x)> 0 in Ω, i = 1,2

Here, Ω is a bounded domain of class C1 in Rn, with boundary ∂Ω. The nonlinearity

ϕ is assumed to be a nonnegative and continuously differentiable function on [0,+∞).

For more details, see [115].
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3.5.4 SIR epidemic reaction-diffusion model

We consider the following delayed SIR epidemic model with nonlinear incidence rate

and spatial diffusion where S, I and R are susceptible, infectious and recovered classes,

respectively. B is the recruitment rate of new individuals is into the susceptible class.

µ1,µ2 and µ3 are positive constants representing the death rates of the classes, respec-

tively. The average time spent in class I before recovery is
1
γ

,β is the contact number

and α determines the level at which the force of infection saturates and the positive

constants dS,dl and dR denote the corresponding diffusion rates for the susceptible,

infected and removed populations, respectively.

∂S
∂t

= dS∆S+B−µ1S(x, t)− βS(x, t)I(x, t−τ)
1+αI(x, t−τ)

∂I
∂t

= dI∆I + βS(x, t)I(x, t−τ)
1+αI(x, t−τ)

− (
µ2 +γ

)
I (x, t)

∂R
∂t

= dR∆R+γI(x, t)−µ3R(x, t)

assumed that dS = dI = dR and proved the existence of traveling waves solutions for the

model. with homogeneous Neumann boundary conditions

∂S
∂v

= ∂I
∂v

= 0, on ∂Ω× (0,+∞)

and initial conditions

S(x, s)= S0(x, s)≥ 0, I(x, s)= I0(x, s)≥ 0, (x, s) ∈Ω× [−τ,0]

For more details see [120]

3.5.5 The Kermack-McKendrick model with diffusion

In the description of the spread of infection in some epidemic problems a classical model

for the susceptible and infective populations is the well-known Kermack-McKendrick

equation. When the effect of diffusion is taken into consideration an extended version of

this model is given by{
ut −D1∇2u =−a1u−b1u

∫
ΩK (x,ξ)v (t,ξ)dξ

vt −D2∇2u =−a2u−b2u
∫
ΩK (x,ξ)v (t,ξ)dξ

in D

where u and v represent the susceptible and infective populations, respectively; ai and

bi, i = 1,2, are the rate constants; and K(x,ξ) is a transfer function. The inclusion of
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the diffusion terms allows the migration of both infective and susceptible populations,

and the integral term gives a transfer mechanism of infection governed by a nonlocal

law: the presence of infective population at x ∈Ω influences both populations in a small

region surrounding x. This interpretation leads to the assumption that ai ≥ 0,bi > 0,

and K(x,ξ) is bounded nonnegative Hölder continuous in Ω×Ω. this system becomes

(u1,u2)= (u,v)≡u and{
f1 (t, x,ξ,u1,u)=−b1K(x,ξ)u(t, x)v(t,ξ)
f1 (t, x,ξ,u2,u)=−b2K(x,ξ)u(t, x)v(t,ξ)

where u≡u(t,ξ). By the nonnegative property of K(x,ξ) the reaction function f = ( f1, f2)
is mixed quasi-monotone reaction-diffusion systems in Neurophysiology.

The study of synapses is a very recurrent and important topic that lies in the in-

tersection of Medicine, Neurology, Biology and Chemistry. The current technology of

microscopes has shown that the dendritic spines, the smallest structures of the neuron

and the part responsible of the synapses, possess a twitching motion.
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4
EXISTENCE RESULT FOR POSITIVE SOLUTION OF A

DEGENERATE REACTION-DIFFUSION SYSTEM VIA A

METHOD OF UPPER AND LOWER SOLUTIONS

The aim of this paper is to prove the existence of positive maximal and minimal

solutions for a class of degenerate elliptic reaction-diffusion systems, including

the uniqueness of the positive solution. To answer these questions, we use a tech-

nique described by Pao based on the method of upper and lower solutions, its associated

monotone interactions and various comparison principles.

The work constituting this chapter is the subject of an article published in an inter-

national journal specialized in Mathematics (Nonlinear Dynamics and Systems Theory),

in collaboration with S. Mesbahi.

4.1 Introduction

Reaction-diffusion systems are widely used in biology, ecology, engineering, physics

and chemistry. What we observe in modern scientific studies is the great interest of

scientists in studying this type of systems; this confirms once again its importance in the

development of applied and technological sciences. Various models and real examples can
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be found in various scientific fields, see Murray [78, 79]. The propagation of epidemics

(Coronavirus, Hepatitis,...), population dynamics, migration of biological species are

among many examples of such phenomena. There are many methods and techniques for

studying these issues. The reader can see some of them in the works of Alaa and Mesbahi

[5, 6, 73, 74], Abbassi et al. [1], Lions [65], Raheem [96] and the references therein.

In recent years, special attention has been paid to degenerate systems. However, most

of the discussions relate to systems of two equations of the porous reaction medium type

diffusion and with diffusion coefficients and specific reaction functions. This is because

of their wide applications in various sciences. Among the important works on degenerate

systems, we mention, for example, Alaa et al. [6], Al-Hdaibat et al. [8], Anderson [13],

where we find techniques and methods of treatment.

The aim of this paper is to show the existence of positive maximal and minimal

solutions for a quasilinear elliptic degenerate system, including the uniqueness of the

positive solution. The two elliptic operators of the system under consideration can

degenerate in the sense that D1 (0)= 0 or D2 (0)= 0. To answer these questions, we use a

technique described by Pao, based on the upper and lower solutions. For more details on

this technique, see Pao et al. [94]-[95]. So, we need to construct suitable upper and lower

solutions. We are therefore interested in studying the following system:

(4.1)


−div (D1 (u)∇u)= f (x,u,v) in Ω

−div (D2 (v)∇v)= g (x,u,v) in Ω

u (x)= u0 (x) , v (x)= v0 (x) on ∂Ω,

where Ω is a bounded domain in Rn (n ≥ 2) with the boundary ∂Ω. D1, D2, f and g are

prescribed functions satisfying the conditions in hypotheses (H1) and (H3). We remark

that these two functions f and g verify simple properties, this allows us to choose

them from a wide range. Below we will denote Cα (Ω) to the space of Hölder continuous

functions in Ω.

The results obtained in this paper can be applied to a large number of reaction-

diffusion models, which arise in various fields of the applied science such as theory of

shells, Brownian motion theory and many problems of physics and biology. In addition to

the classical problems in the fields of mass-heat transfer, chemical reactors, and nuclear

reactor dynamics, there are many recently developed models from enzyme kinetics,

population growth, nerve axion problems, and others.

The system (4.1) can model the circulation of an ideal gas in a homogeneous porous

medium with an isentropic flow. It can also model the steady-state of phenomena such
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as the heat propagation in a two-components combustible mixture, chemical processes,

the interaction of two non-self-limiting biological groups, etc. We send the reader to

see many models and applications in Friedman [39], Ladyženskaja et al. [60], Lei and

Zheng [62], especially Pao [91, 93] and the references therein. For example, the steady-

state of the Gas-Liquid Interaction Problem, when considering a dissolved gas A and

a dissolved reactant B that interact in a bounded diffusion medium, is a special case

of (4.1) with the reaction terms f (u,v) = −σ1uv, g(u,v) = −σ2uv, where σ1 is the rate

constant and σ2 = k1σ1. In a more general reaction scheme called the (m,n) order

reaction, the resulting equations are given by (4.1) with f (x,u,v) = −σ1umvn + q1(x),

g(x,u,v) = −σ2umvn + q2(x), m,n ≥ 1 are constants and q1(x), q2 (x) ≥ 0 are possible

internal sources.

In the problems of molecular interactions and subsonic flows, a simple model for

the density function u is given by (4.1) with the reaction function f (u) = σup, with

σ> 0, p ≥ 1.

This model also describes the temperature in radiating bodies or gases and in nuclear

reactors with positive temperature feedback. For more information on this model, and

also to see other models, we refer the reader to Pao [91].

The rest of this paper is organized as follows. In the next section, we state our main

result. In the third section, we provide some preliminary results on the scalar problem

which we need in the proof of the main theorem. Next, we give some results concerning

the approximate problem. The fifth section is devoted to proving the main result. Finally,

we give an application to the problem under study. The paper ends with a concluding

remarks and some perspectives.

4.2 Statement of the Main Result

In all that follows, we denote u ≡ (u,v), ũs ≡ (ũ, ṽ), ûs ≡ (û, v̂). The inequality ûs ≤ ũs

means that û ≤ ũ and v̂ ≤ ṽ.

4.2.1 Assumptions

First, we have to clarify in which sense we want to solve our problem.

71



CHAPTER 4. EXISTENCE RESULT FOR POSITIVE SOLUTION ...

Definition 4.1. A pair of functions ũs ≡ (ũ, ṽ), ûs ≡ (û, v̂) in C2 (Ω)∩C
(
Ω̄

)
are called

ordered upper and lower solutions of (4.1) if ûs ≤ ũs and

(4.2)


−div (D (û)∇û)≤ f (x, û, v̂) in Ω

−div (D (v̂)∇v̂)≤ g (x, û, v̂) in Ω

û (x)≤ u0 (x) , v̂ (x)≤ v0 (x) on ∂Ω

and ũ, ṽ satisfies (4.2) with inequalities reversed.

For a given pair of ordered upper and lower solutions ũs and ûs, we define

S∗
1 = {

u ∈ C
(
Ω̄

) | û ≤ u ≤ ũ
}

, S∗
2 = {

v ∈ C
(
Ω̄

) | v̂ ≤ v ≤ ṽ
}

S∗ =
{
u= (u,v) ∈ (

C
(
Ω̄

))2 | ûs ≤u≤ ũs

}
.

Now, we make the following assumptions:

(H1) f (x, .), g (x, .) ∈ Cα
(
Ω̄

)
and u0 (x), v0 (x) ∈ Cα (∂Ω).

(H2) D1 (u) ∈ C2 ([0, M1]), D1 (u)> 0 in (0, M1], and D1 (0)≥ 0 with M1 = ‖ũ‖C(Ω̄).

D2 (v) ∈ C2 ([0, M2]), D2 (v)> 0 in (0, M2], and D2 (0)≥ 0 with M2 = ‖ṽ‖C(Ω̄).

(H3) f (.,u) , g (.,u) ∈ C1 (S∗), and

∂ f
∂v

(.,u)≥ 0 and
∂g
∂u

(.,u)≥ 0 for all u ∈ S∗.

(H4) There exists a constant δ0 > 0 such that for any x0 ∈ ∂Ω there exists a ball K outside

of Ω with radius r ≥ δ0 such that K∩ Ω̄= {x0}.

In the above system, we further assume D1 (0)= 0 or D2 (0)= 0.

Let γ1 (x) and γ2 (x) be smooth positive functions satisfying

(4.3) γ1 (x)≥max
{
−∂ f
∂u

(x, u) ; u ∈ S∗
}

and γ1 (x)≥ C1 (x)+δ1

(4.4) γ2 (x)≥max
{
−∂g
∂v

(x, u) ; u ∈ S∗
}

and γ2 (x)≥ C2 (x)+δ2

for some constants δ1, δ2 > 0, where C1 (x) and C2 (x) are analogous to C (x) defined in

Section 3 by the relations (4.11), i.e.,

C1 (x) = −div∇ (ũ)D′
1 (θ1)− fu (x,θ2)

C2 (x) = −div∇ (ṽ)D′
2
(
θ̄1

)− gv
(
x, θ̄2

)
.
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We define for all u ∈ S∗

(4.5) F (x,u)= γ1 (x)u+ f (x,u) and G (x,u)= γ2 (x)v+ g (x,u) .

A typical example where the result of this paper can be applied is

(4.6)


−∆uλ = p (x)u jvk in Ω

−∆vµ = q (x)u`vm in Ω

u = v = 0 on ∂Ω,

where λ, µ> 1, j, k, `, m > 0 and p (x), q (x)> 0 in Ω.

It is obvious that the problem (4.6) is a special case of (4.1) with

D1 (u) = λuλ−1 , D2 (v)=µuµ−1 , u0 (x)= v0 (x)= 0

f (x,u,v) = p (x)u jvk , g (x,u,v)= q (x)u`vm.

Lemma 4.1. F (x,u) and G (x,u) are nondecreasing functions in u for all u ∈ S∗.

Proof. According to (H3) and (4.5), we have for all u ∈S∗

∂F
∂v

(x,u)= ∂ f
∂v

(x,u)≥ 0 and
∂G
∂u

(x,u)= ∂g
∂u

(x,u)≥ 0.

By (4.3)− (4.5), we obtain

∂F
∂u

(x,u)= γ1 (x)+ ∂ f
∂u

(x,u)≥ 0 and
∂G
∂v

(x,u)= γ2 (x)+ ∂g
∂v

(x,u)≥ 0,

which implies the desired result. �

4.2.2 The main result

Now, we can state the main result of this paper.

Theorem 4.1. Let ũs, ûs be ordered positive upper and lower solutions of (4.1), and let

hypotheses (H1)−(H4) hold. Then problem (4.1) has a minimal solution us and a maximal

solution us such that ûs ≤us ≤us ≤ ũs . If us =us
(≡u∗

s
)
, then u∗

s is the unique positive

solution in S∗.
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4.3 Preliminary Results for the Scalar Problem

To illustrate our basic approach to the coupled system (4.1), we first consider the following

scalar quasilinear elliptic boundary problem:

(4.7)

{
−div (D (w)∇w)= h (x,w) in Ω

u (x)= h (x) on ∂Ω,

where D and h are prescribed functions satisfying hypotheses (H1)− (H4) above.

The following theorem ensures the existence of positive solutions to the scalar problem

(4.7). For the proof, we refer to Friedman [39], Ladyženskaja et al. [60], Pao and Ruan

[94].

Theorem 4.2. Let w̃s (x), ŵs (x) be a pair of upper and lower solutions of (4.7) such that

w̃s (x) ≥ ŵs (x) > 0 in Ω, and let hypotheses (H1) and (H3) hold. Then problem (4.7) has

a classical solution ws (x) such that ŵs (x) ≤ ws (x) ≤ w̃s (x) in Ω. Furthermore, there are

maximal and minimal solutions ws (x) and ws (x) such that every solution ws ∈ S∗
0 satisfies

ws (x)≤ ws (x)≤ ws (x).

Remark 4.1. We consider the scalar problem (4.7) for w. In this case, we can write

(4.8) −div (D (ŵ)∇ŵ)≤ h (x, ŵ) in Ω

(4.9) −div (D (w̃)∇w̃)≥ h (x, w̃) in Ω.

Subtracting (4.9) from (4.8), we find

−div
[
D1 (ŵ)∇ (ŵ− w̃)+∇w̃

(
D (ŵ)−D (w̃)

ŵ− w̃
(ŵ− w̃)

)]
≤ h (x, ŵ)−h (x, w̃)

ŵ− w̃
(ŵ− w̃) .

According to the mean value theorem, there exist θ1,θ2 ∈ [0, M] , where M = ‖w̃‖C(Ω̄),

such that

−div
[
D (ŵ)∇z+∇w̃

(
D′ (θ1) z

)]≤ hw (x,θ2) z
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with z = ŵ− w̃, then

−div (∇z) (D (ŵ))−∇ (D (ŵ))∇z

−div
(∇w̃

(
D′ (θ1) z

))−∇ (w̃)D′ (θ1)∇z−hw (x,θ2) z ≤ 0.

We get

−D (ŵ)∆z+ [−∇D (ŵ)−D′ (θ1)∇ (w̃)
]∇z+ [−∇.∇ (w̃)D′ (θ1)−hw (x,θ2)

]
z ≤ 0.

We denote

(4.10) B (x)=−∇D (ŵ)−D′ (θ1)∇ (w̃)

(4.11) C (x)=−div∇ (w̃)D′ (θ1)−hw (x,θ2) .

To understand the calculations well, see Friedman [39], Ladyženskaja et al. [60], Pao

and Ruan [94].

Another important result is the following.

Lemma 4.2. If z, z are in C2 (Ω)∩C
(
Ω̄

)
and satisfy the relation −Γ[

z
]+γz ≤−Γ [z]+γz in Ω

z (x)≤ z (x) on ∂Ω

with Γ [u]=div (D (w)∇w), then z (x)≤ z (x) on Ω.

Proof. Let z (x)= z (x)− z (x). Firstly, we have

−Γ[
z
]+γz ≤−Γ [z]+γz = γz+h (x, z̄)≡z (x, z̄) ,

then

(4.12) −Γ[
z
]+γ(

z− z̄
)−h (x, z̄)≤ 0.

On the other hand, we have

(4.13) Γ [z]+γ(
z− z

)+h
(
x, z

)≤ 0.
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Adding (4.12) and (4.13), we obtain

−div
[
D

(
z
)∇(

z− z
)+∇z

(
D(z)−D(z)

z−z
(
z− z

))]
+2γ

(
z− z̄

)+ h(x,z)−h(x,z)
z−z

(
z− z

)≤ 0.

According to the mean value theorem, ∃ θ1,θ2 ∈ [0, M] such that

−div
[
D

(
z
)∇z+∇z

(
D′ (θ1) z

)]+2γ
(
z− z̄

)+ h
(
x, z

)−h (x, z)
z− z

(
z− z

)≤ 0

with z = z− z, then we get

−div (∇z)
(
D

(
z
))−∇(

D
(
z
))∇z

−div
(∇z

(
D′ (θ1) z

))−∇ (z)D′ (θ1)∇z+hw (x,θ2) z ≤ 0

We obtain then
−D

(
z
)
∆z− [∇D

(
z
)−D′ (θ1)∇ (z)

]∇z

−div∇ (z)D′ (θ1) z+2γz+hw (x,θ2) z ≤ 0

−D
(
z
)
∆z+ [−∇D

(
z
)−D′ (θ1)∇ (z)

]∇z+[
γ+div∇ (z)D′ (θ1)+hw (x,θ2)

]
z ≤ 0.

We come to

−D
(
z
)
∆z+ (B (x))∇z+ (

γ−C (x)
)
z ≤ 0,

where B (x) and C (x) are defined in the same way as B (x) and C (x) of relations (4.10)

and (4.11), i.e.,

B (x) = −∇D
(
z
)−D′ (θ1)∇ (z)

C (x) = −div∇ (z)D′ (θ1)+hw (x,θ2) .

Assume, by contradiction, that z (x) has a positive maximum at some point x0 ∈Ω.

Then x0 ∈Ω and ∆z (x0) ≤ 0, ∇z (x0) = 0. This implies that
(
γ−C

)
z (x0) ≤ 0, which is a

contradiction because γ−C = δ> 0. �
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4.4 Approximating Scheme

To prove the main theorem, we use the method of upper and lower solutions and its

associated monotonic iteration. The basic idea of this method is that when using an upper

solution or a lower solution as the initial iteration in a suitable iterative process, the

resulting sequence of iterations is monotone and converges to a solution of the problem.

Using then either ûs or ũs as the initial iteration, we construct a sequence
{
u(m)

s

}
from

the iteration process

(4.14)


−Φ[

u(m)]+γ1u(m) = F
(
x,u(m−1)

s

)
in Ω

−Ψ[
v(m)]+γ2v(m) =G

(
x,u(m−1)

s

)
in Ω

u(m) (x)= u0 (x) , v(m) (x)= v0 (x) on ∂Ω

with

Φ [u]=div (D1 (u)∇u) , Ψ [v]=div (D2 (v)∇v) .

We denote the sequence by
{
u(m)

s
}

if u(0)
s = ûs, and by

{
u(m)

s

}
if u(0)

s = ũs. We call

them minimal and maximal sequences, respectively. The existence of these sequences is

ensured by the previous Lemma 5.2.

Lemma 4.3. The minimal and maximal sequences
{
u(m)

s
}
,

{
u(m)

s

}
exist and possess the

monotone property

(4.15) ûs ≤u(m)
s ≤u(m+1)

s ≤u(m+1)
s ≤u(m)

s ≤ ũs for all m ≥ 1.

Proof. Firstly, we consider the scalar problem

(4.16)

 −Φ[
u(m)]+γ1u(m) = F

(
x,u(m−1)

s

)
in Ω

u(m) (x)= u0 (x) on ∂Ω.

We prove by induction. Start from m = 1 and u(0)
s = ûs. By Definition 5.1, the compo-

nents û of ûs satisfy the relation

(4.17)

 −Φ [û]+γ1û ≤ F (x, ûs)= F
(
x,u(0)

s
)

in Ω

û (x)≤ u0 (x) on ∂Ω

and the components ũ of ũs satisfy the above inequalities (4.17) in revers order, i.e., −Φ [ũ]+γ1ũ ≥ F (x, ũs)≥ F
(
x,u(0)

s
)

in Ω

ũ (x)≥ u0 (x) on ∂Ω.
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Similarly, by considering the case m = 1 and u(0)
s = ũs, we have

(4.18)

 −Φ [û]+γ1û ≤ F (x, ûs)≤ F (x, ũs)= F
(
x,u(0)

s

)
in Ω

û (x)≤ u0 (x) on ∂Ω

and the components ũ of ũs satisfy the above inequalities (4.18) in revers order, i.e., −Φ [ũ]+γ1ũ ≥ F (x, ũs)= F
(
x,u(0)

s

)
in Ω

ũ (x)≥ u0 (x) on ∂Ω.

We see that ũ and û are ordered upper and lower solutions of (4.16) for the case m = 1.

By Theorem 5.1, problem (4.16) has also a minimal solution u and a maximal solution

u such that û ≤ u ≤ u ≤ ũ. We choose u (or u) as u(1) if u(0)
s = ûs and u (or u) as u(1) if

u(0)
s = ũs. So, we get û ≤ u(1) ≤ u(1) ≤ ũ.

The same works if we consider the problem −Ψ[
v(m)]+γ2v(m) =G

(
x,u(m−1)

s

)
in Ω

v(m) (x)= v0 (x) on ∂Ω,

which gives v̂ ≤ v(1) ≤ v(1) ≤ ṽ.

This shows that u(1)
s ≡ (

u(1),v(1)) and u(1)
s ≡

(
u(1),v(1)

)
are solutions of (4.14) for m = 1

and satisfy ûs ≤u(1)
s ≤u(1)

s ≤ ũs.

Assume, by induction, that u(m−1)
s ≤u(m)

s ≤u(m)
s ≤u(m−1)

s for some m > 1. Then by the

nondecreasing property of F (.,u) for u ∈ S∗ we have
−Φ[

u(m)]+γ1u(m) = F
(
x,u(m−1)

s
)≤ F

(
x,u(m)

s
)

−Φ
[
u(m)

]
+γ1u(m) = F

(
x,u(m−1)

s

)
≥ F

(
x,u(m)

s

)
u(m) = u(m) = u0 (x) .

This implies that u(m), u(m) are ordered upper and lower solutions of (4.16) when

(m−1) is replaced by m and u(m)
s is either u(m)

s or u(m)
s . Again, by Theorem 5.1, problem

(4.16) has a minimal solution u and a maximal solution u. We choose u (or u) as u(m+1)

if u(m)
s =u(m)

s and u (or u) as u(m+1) if u(m)
s =u(m)

s , which gives us u(m) ≤ u(m+1) ≤ u(m+1) ≤
u(m).
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This choice ensures that u(m+1)
s ≡ (

u(m+1),v(m+1)) and u(m+1)
s ≡

(
u(m+1),v(m+1)

)
are

solutions of (4.14) and possess the monotone property (4.15), which implies, by induction,

the truth of the relation (4.15). �

4.5 Proof of the Main Result

We are now ready to prove the main result of this work.

Proof of Theorem Th1 In view of Lemma 5.3 the pointwise limits

(4.19) lim
m−→∞u(m)

s =us , lim
m−→∞u(m)

s =us

exist and satisfy ûs ≤ us ≤ us ≤ ũs. To prove that us and us are, respectively, the min-

imal and maximal solutions of (4.1), we first consider the minimal sequence
{
u(m)

s
} ≡{

u(m),v(m)}. Define for each m w(m)
1 (x)= I1

(
u(m))= ∫ u(m)

0 D1 (s)ds

Q(m)
1

(x)=−γ1 (x)u(m) +F
(
x,u(m−1))

and  w(m)
2 (x)= I2

(
v(m))= ∫ v(m)

0 D2 (s)ds

Q(m)
2

(x)=−γ2 (x)v(m) +F
(
x,u(m−1)) .

We remark that I ′1
(
u
) = D1

(
u
)

and I ′2
(
v
) = D2

(
v
)
. The inverse of I1

(
u
)

and I2
(
v
)

exist and are denoted, respectively, by q1
(
w1

)
and q2

(
w2

)
.

The quasilinear problem (4.14) may be written as the scalar linear problem
−∇2w(m)

1 =Q(m)
1

(x) in Ω

−∇2w(m)
2 =Q(m)

2
(x) in Ω

w(m)
1 (x)= u∗

0 (x) , w(m)
2 (x)= v∗0 (x) on ∂Ω,

where u∗
0 (x) = I1 (u0) ≥ 0 and v∗0 (x) = I2 (v0) ≥ 0. It is clear from (4.19) and (4.5) that

w(m)
1 → w1 ≡ I1

(
u
)
, w(m)

2 → w2 ≡ I2
(
v
)

and Q(m)
1

→ f
(
x,us

)
, Q(m)

2
→ g

(
x,us

)
as m →∞.
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By the argument in the proof for the scalar problem (4.7), w1 is the unique solution

of the linear problem  −∇2w(m)
1 (x)=Q(m)

1
(x)

w(m)
1 (x)= u∗

0 (x)

and w2 is the unique solution of the linear problem −∇2w(m)
2 (x)=Q(m)

2
(x)

w(m)
2 (x)= v∗0 (x) .

This shows that us ≡
(
u,v

)
, where u = q1

(
w1

)
and v = q2

(
w2

)
are solutions of (4.1)

and us ∈ S∗.

Now, we show that us is a solution of (4.1) in S∗, for this we consider the maximal

sequence
{
u(m)

s

}
≡

{
u(m),v(m)

}
. Define for each m w(m)

1 (x)= I1

(
u(m)

)
= ∫ u(m)

0 D1 (s)ds

Q
(m)
1 (x)=−γ1 (x)u(m) +F

(
x,u(m−1)

)
and  w(m)

2 (x)= I2

(
v(m)

)
= ∫ v(m)

0 D2 (s)ds

Q
(m)
2 (x)=−γ2 (x)v(m) +G

(
x,u(m−1)

)
.

Then the quasilinear problem (4.14) may be written as the scalar linear problem
−∇2w(m)

1 =Q
(m)
1 (x) in Ω

−∇2w(m)
2 =Q

(m)
2 (x) in Ω

w(m)
1 (x)= u∗

0 (x) , w(m)
2 (x)= v∗0 (x) on ∂Ω.

It is clear from (4.19) and (4.5) that w(m)
1 → w1 ≡ I1

(
u
)
, w(m)

2 → w2 ≡ I2 (v) and Q
(m)
1 →

f
(
x,us

)
, Q

(m)
2 → g

(
x,us

)
as m →∞.

By the argument in the proof for the scalar problem, w1 is the unique solution of the

linear problem  −∇2w(m)
1 (x)=Q

(m)
1 (x)

w(m)
1 (x)= u∗

0 (x)
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and w2 is the unique solution of the linear problem −∇2w(m)
2 (x)=Q

(m)
2 (x)

w(m)
2 (x)= v∗0 (x) .

This shows that us ≡ (u,v) , where u = q1 (w1) and v = q2 (w2) are solutions of (4.1)

and us ∈ S∗.

To show that us and us are, respectively, minimal and maximal solutions of (4.1) in

S∗, we observe that every solution u= (u,v) of (4.1) in S∗ satisfies −Φ [u]+γ1u = F (x,us)≥ F
(
x,u(0)

s
)

in Ω

u (x)= u0 (x) on ∂Ω

and  −Ψ [v]+γ1v =G (x,us)≥G
(
x,u(0)

s
)

in Ω

v (x)= v0 (x) on ∂Ω.

By (4.14) (with m = 1 and u(1) = u(1) and v(1) = v(1)) we have

F
(
x,u(0)

s
) = −Φ[

u(1)]+γ1u(1)

G
(
x,u(0)

s
) = −Ψ[

v(1)]+γ1v(1),

then

−Φ [u]+γ1u ≥ −Φ[
u(1)]+γ1u(1)

−Ψ [v]+γ1v ≥ −Ψ[
v(1)]+γ1v(1).

By Lemma 5.2 we have u ≥ u(1) and v ≥ v(1), i.e. u ≥ u(1)
s . This implies, by Lemma

5.1, that F (x,u)≥ F
(
x,u(1)

s

)
and G (x,u)≥G

(
x,u(1)

s

)
. It follows by an induction argument

that

F (x,u) ≥ F
(
x,u(1)

s
)≥ F

(
x,u(2)

s
)≥ ...≥ F

(
x,u(m)

s
)

G (x,u) ≥ G
(
x,u(1)

s
)≥G

(
x,u(2)

s
)≥ ...≥G

(
x,u(m)

s
)
,

then u≥u(m)
s , for every m ≥ 1.
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In the same way, we observe that every solution u= (u,v) of (4.1) in S∗ satisfies −Φ [u]+γ1u = F (x,u)≤ F
(
x,u(0)

s

)
in Ω

u (x)= u0 (x) on ∂Ω

and  −Ψ [v]+γ1v =G (x,u)≤G
(
x,u(0)

s

)
in Ω

v (x)= v0 (x) on ∂Ω.

By (4.14) (with m = 1 and u(1) = u(1) and v(1) = v(1)) we have

F
(
x,u(0)

s

)
= −Φ

[
u(1)

]
+γ1u(1)

G
(
x,u(0)

s

)
= −Ψ

[
v(1)

]
+γ1v(1),

then

−Φ [u]+γ1u ≤ −Φ
[
u(1)

]
+γ1u(1)

−Ψ [v]+γ1v ≤ −Ψ
[
v(1)

]
+γ1v(1).

By Lemma 5.2, we have u ≤ u(1) and v ≤ v(1), i.e., us ≤u(1)
s . This implies, by Lemma

5.1, that F (x,u)≤ F
(
x,u(1)

s

)
and G (x,u)≤G

(
x,u(1)

s

)
. It follows by an induction argument

that

F (x,u) ≤ F
(
x,u(1)

s

)
≤ F

(
x,u(2)

s

)
≤ ...≤ F

(
x,u(m)

s

)
G (x,u) ≤ G

(
x,u(1)

s

)
≤G

(
x,u(2)

s

)
≤ ...≤G

(
x,u(m)

s

)
,

which implies us ≤u(m)
s .

Letting m →∞ and using relation (4.19) lead to us ≤u≤us. This proves the minimal

and maximal property of usand us. Finally, if us =us
(≡u∗

s
)
, then this maximal-minimal

property ensures that u∗
s is the unique positive solution in S∗. �

4.6 Application

As an application of the obtained theorem, we give a model concerning the type of

diffusion in porous media, where the diffusion coefficients are degenerate; it is the
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following two-species Lotka–Volterra competition steady-state model:

(4.20)


−D1 (x)∇2uα = u (a1 −b1u− c1v)
−D2 (x)∇2vβ = v (a2 −b2u− c2v)
u (x)= u0 (x)> 0 , v (x)= v0 (x)> 0,

, t > 0, x ∈Ω

where for each i = 1, 2, α, β, ai, bi, ci are positive constants, and α > 1, β > 1, with

D i (x)> 0 on Ω̄. For more details on this model, we refer the reader to Pao in [91, 93].

4.7 Concluding Remarks and Perspectives

This work has mainly focused on the question of the existence and the uniqueness

of positive maximal and minimal solutions for a class of degenerate reaction-diffusion

systems. It should be noted that the results obtained can be applied to a number of models

arising from biology, ecology and biochemistry as well as to models in several fields of

applied sciences and engineering. We have developed original methods to overcome

certain difficulties, and despite the complexity of the model studied, we have succeeded

in obtaining an existence result.

There are many additional important open problems, which we hope to address in

the near future, they are: Numerical simulation, Generalization to the parabolic case,

Generalization to the case of a higher order system. This list of questions corresponds

to a work in progress or prospective work. Some are a continuation of the work already

done, and some are new research projects. This not only makes it possible to delve deeper

into the theoretical study, but also goes beyond the theoretical framework by developing

models and techniques.
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ON THE EXISTENCE AND UNIQUENESS OF POSITIVE

SOLUTION FOR A DEGENERATE REACTION-DIFFUSION

PROBLEM

The objective of this paper is to show the existence and uniqueness of positive solu-

tions for a class of quasilinear degenerate parabolic reaction-diffusion problems

defined in a bounded domain, which have many applications in various applied

sciences. Its specificity lies in the introduction of degenerate diffusion. Our approach

towards our goal is mainly based on the method of upper and lower solutions. The result

obtained is applied to the Lotka-Volterra model.

The work constituting this chapter is the subject of an article published in an inter-

national journal specialized in Mathematics (IEEE International Conference on Recent

Advances in Mathematics and Informatics), in collaboration with S. Mesbahi.

5.1 Introduction

Many problems and phenomena in science, engineering, and biology are modeled in

the form of reaction-diffusion equations, which gives great importance to this type of

equations. This is what prompted many researchers to take an interest in the study of
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reaction-diffusion systems, whether in terms of modeling like what we find, for example,

in Hritonenko and Yatsenko [47] and in Murray’s books [78, 79], where we find many

examples and models in economics, biology, environment and various applied sciences;

or in terms of mathematical study in many ways and various techniques depending on

the situation. This is what we find, for example, in the works of Alaa and Mesbahi et al.
[5, 6, 50, 73, 74, 104], and the references contained therein.

In recent years, special attention has been given to degenerate models due to their

wide applications. We find many models and applications in Alaa et al. [4], Anderson [13],

Desvillettes et al. [28], Floridia et al. [37], Liang [64], Murakawa [77], Murray [78, 79],

Pao and Ruan [94], Sabri et al. [101], Saffidine and Mesbahi [104], and the references

therein, where we find techniques and methods of treatment; in addition to what was

previously mentioned.

The work that we will do in this paper is in this context, we will be interested in

the study of a quasilinear parabolic degenerate reaction-diffusion model. The elliptical

operator of the considered system can degenerate.

We will use a technique described by Pao, based on the construction of the upper

and lower solutions. In Pao [94], we find important details about this technique. We are

therefore interested in the study of the following system:

(5.1)


∂u
∂t

−div (D (u)∇u)= f (t, x,u) in QT

u (t, x)= u0 (t, x) on Σ

u (0, x)= h (x) in Ω,

where Ω is a bounded domain in Rn (n ≥ 2) with boundary ∂Ω. D (u) and f are prescribed

functions satisfying the conditions in hypotheses (H1)-(H3) that we will mention later in

the next section.

System (5.1) can model the circulation of an ideal gas in a homogeneous porous

medium with an isentropic flow. It can also model the heat propagation in a combustible

mixture, chemical processes, etc. For example, the problem of the enzyme-substrate

model discussed in Pao [94] is a special case of (5.1) with the reaction term

f (u)= −σu
1+au+bu2 , with σ, a, b > 0.

The rest of this paper is organized as follows. In the next section, we present the

assumptions under which we will study our problem. Next, we present some preliminary

results that we will need later. In the fourth section, we prove an important and necessary

result related to the approached problem. In the fifth section, we state our main result
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and also present its proof. In the penultimate section, we present an application of the

obtained result. The paper ends with a conclusion remarks and perspectives.

5.2 Assumptions and notations

Below we will denote C` (QT) to the space of all continuous functions whose partial

derivatives up to the `-th order are continuous in QT , Cα (QT) to the space of Hölder

continuous functions in QT , and C`+α (QT) to the space of functions in C` (QT) that

are Hölder continuous in QT with exponent α ∈ (0,1). Let also C`,m (QT) the space of

functions whose `-times derivatives in t and m-times derivatives in x are continuous in

QT . In particular, the space C1,2 (QT) consists of all functions that are once continuously

differentiable in t and twice continuously differentiable in x for (t, x) ∈QT . When `= 0,

we denote by C (QT) the set of continuous functions in QT . Similar notations are used if

QT is replaced by another set.

Now, we introduce the definition of upper and lower solutions.

Definition 5.1. A pair of functions ũ, û in C
(
QT

)
∩C1,2 (QT) are called ordered upper

and lower solutions of (4.1) if û ≤ ũs and

(5.2)



∂û
∂t

−div (D (û)∇û)≤ f (t, x, û) in QT

û (t, x)≤ u0 (t, x) on Σ

u (0, x)≤ h (x) in Ω,

and ũ satisfies (5.2) with inequalities reversed.

For a given pair of ordered upper and lower solutions ũ and û, we define

S =
{
u ∈Cα (QT)∩C

(
QT

)
| û ≤ u ≤ ũ

}
.

Now, we make the following assumptions:

(H1) f (t, x, .) ∈C
α
2 ,α

(
QT

)
, f (t, x,0)≥ 0 in QT , u0 (t, x) ∈C

α
2 ,α (Σ) and h (x) ∈Cα

(
Ω

)
, where

α ∈ (0,1).

(H2) f (.,u) ∈C1 (Σ) and
∂ f
∂u

(.,u)≥ 0 for u ∈Σ.

(H3) D (u) ∈C1 ([0, M]), D (0)≥ 0 and D (u)> 0 in (0, M], with M = ‖ũ‖C
(
QT

).
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(H4) u0 (t, x)≥ 0 on Σ, h (x)> 0 in Ω and h (x)= u0 (0, x) on ∂Ω.

(H5) There exists a constant δ0 > 0 such that for any x0 ∈ ∂Ω, there exists a ball K
outside of Ω with radius r ≥ δ0 such that K∩Ω= {x0}.

For the functions D (u), we will assume that D (0)= 0. This is why we say that system

(5.1) is degenerate, this is exactly the main difficulty in this work.

Remark 5.1. The assumption (H5) is a powerful property of Ω, this means that it is not

necessary to assume the usual smooth state to have a classical solution, and it is useful in

applications such as rectangles or polygons .

Let γ≡ γ(t, x) be any smooth non-negative function satisfying

(5.3) γ(t, x)≥max
{
−∂ f
∂u

(t, x,u) | û ≤ u ≤ ũ
}

,

and define

(5.4) F(t, x,u)= γu+ f (t, x,u) .

Hypothesis (H2) leads directly to the following lemma.

Lemma 5.1. F (t, x, ·) is nondecreasing function in S.

5.3 Preliminary results

An important comparison relation between a lower solution and an upper solution, we

summarize it in the following lemma.

Lemma 5.2. Let ũ (t, x), û (t, x) be a pair of upper and lower non-negative solutions of

(4.1). Then ũ (t, x)≥ û (t, x) in QT . Moreover, problem (4.1) has at most one solution in QT.

Proof. We can write

(5.5)
∂û
∂t

−div (D (û)∇û)≤ f (t, x, û) , in Ω

(5.6)
∂ũ
∂t

−div (D (ũ)∇ũ)≥ f (t, x, ũ) , in Ω.
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Subtracting (5.6) from (5.5), we find

∂ (û− ũ)
∂t

−
div

[
D (û)∇ (û− ũ)+∇ũ

(
D (û)−D (ũ)

û− ũ
(û− ũ)

)]
≤ f (t, x, û)− f (t, x, ũ)

û− ũ
(û− ũ) .

According to the mean value theorem, there exist two functions θ1,θ2 between û and ũ

such that

zt −div
[
D (û)∇z+∇ũ

(
D′ (θ1) z

)]≤ fu (t, x,θ2) z,

with z = û− ũ, then

zt −div (∇z) (D (û))−∇ (D (û))∇z

−div
(∇ũ

(
D′ (θ1) z

))−∇ (ũ)D′ (θ1)∇z

− fu (x,θ2) z ≤ 0.

We obtain

(5.7)



zt −D (û)∆z+ [−∇D (û)−D′ (θ1)∇ (ũ)
]∇z

+[−∇.∇ (ũ)D′ (θ1)− fu (t, x,θ2)
]

z ≤ 0
in QT

z(t, x)≤ 0 on Σ

z(0, x)≤ 0 in Ω.

We denote

(5.8)
B (t, x)=−∇ (D (û))−D′ (θ1)∇ (ũ)

C (t, x)=−div
(
D′ (θ1)∇ (ũ)

)− fu (t, x,θ2)

We find many explanations and important details about this part in Friedman [39]

and Ladyženskaja et al. [60]. Let k ≥ |C|L∞(QT ) be a constant and let w(t, x)= z(t, x)e−kt.

Then, the maximum of w in QT is also positive and by (4.9), we have

(5.9)



wt −D(t, x)∆w+
B(t, x) ·∇w+ (k+C(t, x))w ≤ 0 in QT

w(t, x)≤ 0 on Σ

w(0, x)≤ 0 in Ω.
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Assume that the maximum of w in QT is achieved at (t0, x0). Then, by the last two

inequalities of (5.9), (t0, x0) ∈QT . Hence wt (t0, x0)≥ 0, ∆w (t0, x0)≤ 0, ∇w (t0, x0)= 0, and

wt −D (w)∆w+B(t, x) ·∇w+ (k+C(t, x))w

≥ (
k−|C|L∞(QT )

)
w (t0, x0)> 0,

this contradicts the first inequality of (5.9) which leads to ũ ≥ û. According to Definition

5.1, every solution of (5.1) is an upper solution as well as a lower solution, the above

conclusion ensures that there is at most one solution in S. �

Another important result that we find proven in Pao [94]. This is the following

theorem.

Theorem 5.1. Let ũ (t, x), û (t, x) be a pair of upper and lower solutions of (5.1) such that

ũ (t, x)≥ û (t, x)> 0 in QT , and let hypotheses (H1)− (H3) hold. Then problem (5.1) has a

unique classical solution u (t, x) in QT that satisfies the relation û (t, x)≤ u (t, x)≤ ũ (t, x)

in QT .

5.4 Approximating scheme

Here, we will use the method of upper and lower solutions and its associated monotonic

iteration. Using then either û or ũ as the initial iteration, we construct a sequence
{
u(m)}

from the iteration process

(5.10)


(
u(m))

t −Φ
[
u(m)]+γu(m) = F

(
t, x,u(m−1)) in QT

u(m) (t, x)= u0 (t, x) on Σ

u (0, x)= h (x) in Ω,

with Φ [u] = div (D (u)∇u). We denote
{
u(m)} to the minimal sequence if u(0) = û, and{

u(m)
}

to the maximal sequence if u(0) = ũ. The following lemma confirms the existence

of these sequences.

Lemma 5.3. The minimal and maximal sequences
{
u(m)} ,

{
u(m)

}
exist and possess the

monotone property

(5.11) û ≤ u(m) ≤ u(m+1) ≤ u(m+1) ≤ u(m) ≤ ũ in QT ,
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for all m ≥ 1.

Proof. We consider the following problem

(5.12)



∂u
∂t

−Φ [u]+γu = F (t, x,u) in QT

u (t, x)= u0 (t, x) on Σ

u (0, x)= h (x) in Ω

We will take the method of proof by induction. Starting from m = 1 and u(0) = û. By

Definition 5.1, the component û satisfy

(5.13)



∂û
∂t

−Φ [û]+γû ≤ F (t, x, û)= F
(
t, x,u(0)) in QT

û (t, x)≤ u0 (t, x) on Σ

û (0, x)≤ h (x) in Ω

and the component ũ satisfy the above inequalities (5.13) in reversed order, i.e.,

∂ũ
∂t

−Φ [ũ]+γũ ≥ F (t, x, ũ)≥ F
(
t, x,u(0)) in QT

ũ (t, x)≥ u0 (t, x) on Σ

ũ (0, x)≥ h (x) in Ω.

Similarly, by considering u(0) = ũ, we have

(5.14)



∂û
∂t

−Φ [û]+γû ≤ F (x, û)≤ in QT

F (t, x, ũ)= F
(
t, x,u(0)

)
û (t, x)≤ u0 (t, x) on Σ

û (0, x)≤ h (x) in Ω,

and the component ũ satisfy the above inequalities (5.14) in reversed order, i.e.,

∂ũ
∂t

−Φ [ũ]+γũ ≥ F (t, x, ũ)= F
(
t, x,u(0)

)
in QT

ũ (t, x)≥ u0 (t, x) on Σ

ũ (0, x)≥ h (x) in Ω.
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For the case F(t, x,u)= F
(
t, x,u(0)). It is easy to see from Definition 5.1 and F(t, x, ũ)≥

F
(
t, x,u(0)) that ũ and û are upper and lower solutions of (5.12). Theorem 5.1 ensures

the existence of a unique solution u(1) to (5.12) satisfying û ≤ u(1) ≤ ũ in QT . Similarly,

by considering F(t, x,u)= F(t, x, ũ) in (5.12), there exists a unique solution u(1) to (5.12)

satisfying û ≤ u(1) ≤ ũ in QT . Moreover, as in the proof of Theorem 5.1 in Pao [94], using

z = u(1) −u(1), we obtain u(1) ≤ u(1). This shows that û ≤ u(1) ≤ u(1) ≤ ũ in QT .

Assume, by induction, that u(m−1) ≤ u(m) ≤ u(m) ≤ u(m−1) for some m > 1. Then, the

component u(m) satisfy the boundary and initial conditions in (5.10) and the relations

(
u(m)

)
t
−Φ[

u(m)]+γu(m) =

F
(
t, x,u(m−1)) ≤ F

(
t, x,u(m)) .

which proves that u(m) is a lower solution of (5.12) when F(t, x,u)= F
(
t, x,u(m)). Depend-

ing on the inequality F
(
t, x,u(m−1)

)
≥ F

(
t, x,u(m)), we also find easily that u(m) is an

upper solution. By Theorem 5.1, problem (5.12) has a unique solution
(
u(m+1),u(m+1)

)
sat-

isfying u(m) ≤ u(m+1) ≤ u(m) and u(m) ≤ u(m+1) ≤ u(m). As in the proof of Theorem 5.1, using

z = u(m+1) −u(m+1), we get u(m+1) ≤ u(m+1). This shows that u(m) ≤ u(m+1) ≤ u(m+1) ≤ u(m),

which proves the monotonic property. �

5.5 The main result

The main result of this paper is what the following theorem states.

Theorem 5.2. Let ũ, û be a pair of upper and lower solutions of (5.1) such that ũ ≥ û > 0

in QT , and let hypotheses (H1)− (H5) hold. Then problem (5.1) has a unique positive

solution u∗ that satisfies û ≤ u∗ ≤ ũ. Moreover, the sequences
{
u(m)} ,

{
u(m)

}
governed by

(5.10) with u(0) = û and u(0) = ũ converge monotonically to u∗ and satisfy the relation

û ≤ u(m) ≤ u(m+1) ≤ u∗ ≤

≤ u(m+1) ≤ u(m) ≤ ũ in QT ,
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for every m ≥ 1.

Proof. In view of Lemma 5.3 the pointwise limits

(5.15) lim
m→∞u(m)(t, x)= u(t, x) and lim

m→∞u(m)(t, x)= u(t, x),

exist and satisfy u(m) ≤ u ≤ u ≤ u(m) for every m. Depending on the previous results, we

conclude that u and u satisfy the relations of (5.1). For a clearer detail on this point, see

Friedman [39] or Pao [94].

To show the uniqueness of the solution, we let w(t, x) = e−kt(u(t, x)− u(t, x)) for a

sufficiently large constant k. Then, by (5.1), (5.4), F(t, x,u) ≤ F(t, x,u), w(t, x) satisfies

the relations 

(w)t −D (w)∆w+B(t, x) ·∇w+
(k+C (t, x))w ≤ 0 in QT

w(t, x)= 0 on Σ

w(0, x)= 0 in Ω,

where B and C are given in the form of (5.8) with respect to D (u), and with û, ũ replaced

by u, u respectively, i.e.,

B (t, x) = −∇D
(
u
)−D′ (θ1)∇ (u)

C (t, x) = −div
(
D′ (θ1)∇ (u)

)− fw (t, x,θ2) .

Since B and C are bounded in QT . The argument in the proof of Theorem 5.1 in Pao

[94] shows that w ≤ 0. It follows from u ≤ u that u = u. This proves that u = u ≡ u∗ in QT

and u∗ is the unique solution of (5.1) which completes the proof of our theorem. �

5.6 Application

As an application of the obtained result, we give a two-species Lotka-Volterra competition

model with polynomial growth, where the diffusion coefficient is degenerated; it is the
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following

(5.16)


ut −d (x)∆uα = u (a+buν) in QT

u (t, x)= 0 on Σ

u (0, x)=Ψ (x) in Ω,

where α, a, b and ν are positive constants, and d is a positive smooth function on Ω. It is

obvious that problem (5.16) is special case of (5.1) with

D (u) = αuα−1

f (u) = u
(
a+buν

)
u0 (t, x) = 0.

This model is well studied in Pao [94], where we also find other models similar to

problem (5.1).

5.7 Conclusion

Despite the difficulties encountered in this study, we managed to obtain important

results; It can be applied to other similar models. There are many other important open

problems that we hope to study in the near future, the first of which is to study the same

problem numerically using one of the well-known numerical methods. We also hope to

study the asymptotic behavior of solutions.
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ON THE EXISTENCE OF WEAK PERIODIC SOLUTIONS

FOR A CLASS OF QUASILINEAR PARABOLIC PROBLEMS

In this paper, we are interested in the study of a quasilinear parabolic problem with

an arbitrary growth nonlinearity in gradient and nonlinear boundary conditions.

This model appears in the modeling of many diffusion phenomena in various sci-

ences. Using techniques of functional analysis based on Schauder’s fixed point theorem;

we prove an existence result of weak periodic solutions.

Several partial results were obtained with additional hypotheses justifying a paper

accepted for publication in an international journal specialized in Mathematics (Journal

of Applied Mathematics and Computational Mechanics), in collaboration with S. Mesbahi

and N. Alaa.

6.1 Introduction

In our lived reality we find many periodic physical, environmental, biological phenomena,

which can be mathematically modeled by reaction diffusion systems. As is the case,

for example, in problems arising from the population ecology, where the data depend

periodically on time according to seasonal or daily variations. We can also find many

other models in this context in the works of Murray [78, 79]. We mention that many
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mathematicians have been interested in the study of this type of phenomena, whether in

terms of mathematical modeling, the existence of solutions or their behavior, or otherwise,

using different methods depending on the situation. This is what we can find in [4],

[121] and references given there; where we find other models in addition to what was

previously mentioned.

Our work will be in this context. More precisely, we will prove the existence of weak

periodic solutions for a class of quasilinear parabolic reaction-diffusion models. For this

we will use a technique based on Schauder’s fixed point theorem. We are then interested

in the following problem

(6.1)


∂u
∂t

−d∆u+σ |∇u|p = 0 in QT

u (0, .)= u (T, .) in Ω

−∂u
∂η

=β (x, t)u+ g (t, x,u) on ΣT

where Ω is an open regular bounded subset of RN , N ≥ 1, with the smooth boundary ∂Ω,

T > 0 is the period, QT = ]0,T[×Ω, ΣT = ]0,T[×∂Ω, p ≥ 1, d > 0,σ> 0 and η denote the

unit normal vector to the boundary ∂Ω.

Our work is mainly focused on research of periodic solutions in an appropriate space

of T-periodic functions. To achieve our goal, we will rely on the following theorem for

maximal monotone mappings joint with a suitable fixed point argument.

Theorem 6.1 (for maximal monotone mappings). Let L be a linear closed, densely defined

operator from the reflexive space V to V ∗, L maximal monotone and let A be a bounded

hemicontinuous monotone mapping from V to V ∗, then L+ A is maximal monotone in

V ×V ∗. Moreover, if L+ A is coercive, then Range(L+ A)= V ∗.

For the proof of this theorem as well as for some applications, see Browder [21] and

Lions [65].

The rest of this paper is organized as follows. In the next section, we formulate the

necessary assumptions, we choose the functional framework in which we search periodic

solutions to our problem, we also introduce the idea of a weak periodic solution, and then

we state our main result. In the third section, we prove the existence and uniqueness of

a periodic solution for an abstract problem formulated by means of maximal monotone

mappings. The penultimate section is devoted to proving the main result. The paper

ends with a conclusion.
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6.2 Statement of the main result

In this section, we will formulate the necessary assumptions for our problem and then

establish our main result.

6.2.1 Assumptions

Throughout this work, we consider the following assumptions:

(H1) β is a periodic positive continuous and bounded function such that

0<β1 ≤β (t, x)≤β2, ∀ (t, x) ∈ΣT

(H2) g :ΣT ×R+ →R is a periodic Caratheodory function in time, s 7→ g (t, x, s) is nonde-

creasing with respect to s for a.e. (t, x) ∈ΣT and

s.g (t, x, s) ≥ 0

|g (t, x, s)| ≤ ξ (t, x)+|s| where ξ ∈ L2 (ΣT)

6.2.2 Functional framework and definitions

Here, we present our functional framework for the periodic solutions of our problem. We

define v = {
ψ ∈ D (Ω) ,divψ= 0

}
, and we will denote V to the adherence of v in H1 (Ω),

V ′ to the topological dual space of V , H to the adherence of v in L2 (Ω) and X ′ to the

topological dual space of H.

We have V ⊂ H ⊂V ′ with continuous and dense injection.

V = L2 (
0,T;H1 (Ω)

)∩L∞ (
0,T;H∩W1,q (Ω)

)
V ∗ = L2

(
0,T;

(
H1 (Ω)

)∗)
+L1 (

0,T; X ′)
with q = 2p, and we denote by

(
H1 (Ω)

)∗ the topological dual space of H1 (Ω) and 〈·, ·〉
present the duality pairing between V and V ∗. For more details and information, see

(Lions [65]). The standard norm of L2 (
0,T;H1 (Ω)

)
is defined by

‖u‖L2(0,T;H1(Ω)) :=
(∫

QT

|∇u (t, x)|2 dtdx+
∫

QT

|u (t, x)|2 dtdx
) 1

2

Throughout this paper, we equipped V with the norm

‖u‖V :=
(∫

QT

|∇u (t, x)|2 dtdx+
∫
ΣT

β (t,σ) |ũ (t,σ)|2 dtdσ
) 1

2
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which is equivalent to the standard norm of L2 (
0,T;H1 (Ω)

)
. We denote by ũ the trace of

u on ΣT . Let us define the set

W (0,T) :=
{

u ∈ V | ∂u
∂t

∈ V ∗ and u (0)= u (T)
}

equipped with the norm ‖u‖W (0,T) := ‖u‖V +∥∥∂u
∂t

∥∥
V ∗ .

It is obvious that W (0,T) is dense in V due to the density of C∞
(
Q

)
⊂W (0,T) in V .

For more details on this point, the reader can refer to Lions [65].

Now, we present the concept of a weak periodic solution of our problem.

Definition 6.1. A function u is said to be a weak periodic solution of the problem (6.1),

if u ∈ V and for all ϕ ∈W (0,T)∩L∞ (QT), we have

−
〈

u,
∂ϕ

∂t

〉
+d

∫
QT

∇u∇ϕ+σ
∫

QT

|∇u|pϕ+
∫
ΣT

β (t, x) ũϕ̃+
∫
ΣT

g (t, x, ũ) ϕ̃= 0

6.2.3 The main result

Now, we can state the main result of this paper, it is the following theorem.

Theorem 6.2. Under hypotheses (H1) and (H2), the problem (6.1) admits a weak periodic

solution u ∈W (0,T).

6.3 Abstract problem

Using Theorem 6.1, we will prove the existence and uniqueness of a periodic solution for

an abstract problem formulated by means of maximal monotone mappings.

Having fixed w ∈ V , we consider the problem

(6.2) −
〈

u,
∂ϕ

∂t

〉
+d

∫
QT

∇u∇ϕ+σ
∫

QT

|∇w|pϕ+
∫
ΣT

β (t, x) ũϕ̃+
∫
ΣT

g (t, x, ũ) ϕ̃= 0

In order to use Theorem 6.1, we must define two mappings L and A:

L is the linear operator defined by

L : W (0,T)→ V ∗ with
〈
Lu,ϕ

〉= ∫
QT

utϕdtdx, ∀ϕ ∈W (0,T)
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This operator is closed, skew-adjoint (i.e., L = −L∗) and maximal monotone (see

Lemma 1.1, p 313 and Section 2.2 of Chapter 3 in Lions [65]). As for the operator A, it is

defined as follows:

A : V → V ∗〈
Au,ϕ

〉 = d
∫

QT

∇u∇ϕ+
∫
ΣT

β (t, x) ũϕ̃+
∫
ΣT

g (t, x, ũ) ϕ̃, ∀ϕ ∈W (0,T)

The following proposition summarizes the properties of the operator A.

Proposition 6.1. If the assumptions (H1) and (H2) are fulfilled, then the mapping A is

(i) hemicontinuous, (ii) monotone and (iii) coercive.

Proof. (i) The hemicontinuity follows from the Hölder inequality. In fact,

∣∣〈Au,ϕ
〉∣∣≤ ∣∣∣∣d ∫

QT

∇u∇ϕ
∣∣∣∣+ ∣∣∣∣∫

ΣT

β (t, x) ũϕ̃
∣∣∣∣+ ∣∣∣∣∫

ΣT

g (t, x, ũ) ϕ̃
∣∣∣∣

which implies

∣∣〈Au,ϕ
〉∣∣ ≤

[(
d+1+ 1

β1

)
‖u‖V + 1√

β1
‖ξ‖L2(QT )

]∥∥ϕ∥∥
V

‖Au‖∗ ≤
(
d+1+ 1

β1

)
‖u‖V + 1√

β1
‖ξ‖L2(ΣT )

(ii) According to (H2), the function s 7→ g (t, x, s) is nondecreasing with respect to s

for a.e. (t, x). So, ∫
ΣT

[g (t, x, ũ)− g (t, x, ũ)] (ũ− ṽ)> 0

then 〈Au− Av,u−v〉 > 0, which shows the strict monotony of A.

(iii) According to (H2), we have g (t, x, ũ) ũ ≥ 0. Then

〈Au,u〉 ≥ d
∫

QT

|∇u|2 +
∫
ΣT

β (t, x) |ũ|2

which implies lim
‖u‖V →+∞

〈Au,u〉
‖u‖V

=+∞; hence the coercivity. �

Besides that, let G ∈ V ∗ be the linear functional defined as follows.〈
G,ϕ

〉=−σ
∫

QT

|∇w|pϕ, ∀ϕ ∈W (0,T)
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then, problem (6.2) can be reformulated in the following abstract form

(6.3) Lu+ Au =G

Now we state the main result of this section, it is the following proposition.

Proposition 6.2. Let w ∈ V be given and assuming (H1) and (H2),then the problem (6.3)

has a unique weak periodic solution.

Proof. The existence of weak periodic solution descends from Theorem 6.1. Unique-

ness is a consequence of the strict monotonicity. Indeed, suppose that u1, u2 are

solutions of problem (6.3). So, Lu1 + A (u1) = G and Lu2 + A (u2) = G, which implies

〈Lu1 + A (u1)−Lu2 − A (u2) ,u1 −u2〉 = 0. It is a contradiction because of the strict mono-

tonicity. �

6.4 Proof of the main result

Now we can prove Theorem 6.2 based on previous results.

of Theorem 6.2 The existence of weak solutions to (6.1) will be based on the research

of fixed points for the following mapping

Ψ : V → V with w 7→Ψ (w)= u

where u is the unique weak periodic solution of the following problem

(6.4)



∂u
∂t

−d∆u+σ |∇w|p = 0 in QT

u (0, .)= u (T, .) in Ω

−∂u
∂ν

=β (x, t)u+ g (t, x,u) on ΣT

The existence and uniqueness of the weak periodic solution is clear, which shows that

the application is well defined.
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(i) Continuity of Ψ : We will prove some very important estimates and convergences.

Let wn ∈ V be a sequence strongly converges to w in V . Moreover, let un denote the weak

periodic solution of the problem

(6.5)
−

〈
un,

∂ϕ

∂t

〉
+d

∫
QT

∇un∇ϕ+

+σ∫
QT

|∇wn|pϕ+∫
ΣT
β (t, x)unϕ+∫

QT
g (t, x,un)ϕ= 0

Setting ϕ= un as a test function in (6.5), we have

d
∫

QT

|∇un|2 +
∫
ΣT

β (t, x) |un|2 ≤ σ

2ε

∫
QT

(|∇wn|p
)2 + ε

2

∫
QT

|un|2

≤ σ

2ε

∫
QT

(|∇wn|p
)2 + ε

2
‖un‖L2(0,T;H1(Ω))

and taking into account the equivalence of the norms in V , we have

d
∫

QT

|∇un|2 +
∫
ΣT

β (t, x) |un|2 − ε

2
c (T,Ω)‖un‖V ≤ σ

2ε

∫
QT

(|∇wn|p
)2

which give (
min {1,d}− ε

2
c (T,Ω)

)
‖un‖V ≤ σ

2ε

∫
QT

(|∇wn|p
)2 ≤ c′ (ε)

We choose ε small enough to obtain the following classical energy estimate

(6.6) ‖un‖V ≤ c′′

where the positive real constant c′′ is independent of n. From (6.5) and the energy esti-

mate (6.6), we get that
(
∂un

∂t

)
is bounded in the V ∗ norm; which proves the boundedness

of un in W (0,T), i.e., ‖un‖W (0,T) ≤ c′′, for all n ∈N. Thus, we can extract a subsequence

denoted un such that un * u weakly in V as n →+∞. By Aubin’s theorem in [112], the

sequence un is precompact in L2 (QT). So, un → u in L2 (QT) and a.e. in QT . Furthermore,

according to the trace theorem, see (Morrey [75], Theorem 3.1.4), we have un → u in

L2 (ΣT) and a.e. in ΣT .

Now, we prove that the sequence ∇un strongly converges to ∇u in L2 (QT).

We have

(6.7) d lim
n→+∞

∫
QT

|∇un|2 =−
∫
ΣT

β (t, x)u2 −
∫

QT

g (t, x,u)u−σ
∫

QT

|∇w|p u
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Moreover, setting ϕ= u as a test function in (6.5), it comes

(6.8) d
∫

QT

|∇u|2 =−
∫
ΣT

β (t, x)u2 −
∫

QT

g (t, x,u)u−σ
∫

QT

|∇w|p u

and by comparing (6.7) and (6.8), it results lim
n→+∞

∫
QT

|∇un|2 = ∫
QT

|∇u|2. Consequently,

the mapping Ψ is continuous.

(ii) Compactness of Ψ : Let (wn) be a bounded sequence in V and we denote un

=Ψ (wn). As in the previous step (up to a subsequence), we have

wn * w weakly in V

un * u weakly in V

∂un

∂t
*

∂u
∂t

weakly in V ∗

un → u strongly in L2 (QT) and a.e. in QT

un → u strongly in L2 (ΣT) and a.e. in ΣT

It suffices to prove the strong convergence of (∇un) in L2 (QT). Note that the absence

of almost everywhere convergence of (∇wn) in QT poses a difficulty, but we can overcome

it. It is obvious that

lim
n→+∞

∫
QT

∇u (∇un −∇u)= 0

Now, let (wn) be a bounded sequence in V and we denote un =Ψ (wn). By the same

reasoning of the first step, we have

wn * w weakly in V

un * u weakly in V

∂un

∂t
*

∂u
∂t

weakly in V ∗

un −→ u strongly in L2 (QT) and a.e. in QT

un −→ u strongly in L2 (ΣT) and a.e. in ΣT
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To get the compactness of Ψ, it suffices to prove the strong convergence of (∇un) in

L2 (QT), noting that the difficulty is presented by the absence of the almost everywhere

convergence of (∇wn) in QT , but we can overcome this problem by observing that∫
QT

|∇un −∇u|2 =
∫

QT

∇un (∇un −∇u)−
∫

QT

∇u (∇un −∇u)

Thanks to the weak convergence of (un) in V , we get

−
〈

un,
∂un

∂t

〉
+

∫
QT

|∇un|2 +
∫

QT

|∇wn|p un +
∫
ΣT

β (t, x)u2
n +

∫
QT

g (t, x,un)un = 0

which leads to

σ

∫
QT

∣∣|∇wn|p (un −u)
∣∣ ≤ σ

(∫
QT

(|∇wn|p
)2

) 1
2
(∫

QT

|un −u|2
) 1

2

= σ

(∫
QT

(|∇wn|p
)2

) 1
2 ‖un −u‖L2(QT )

then

lim
n→+∞

∫
QT

∣∣|∇wn|p (un −u)
∣∣= 0

Note that
(∫

QT
(|∇wn|p)2

) 1
2 is convergent because wn ∈ V . Also note that the periodicity

and the weak convergence of
(
∂un

∂t

)
in V ∗ yields

lim
n→+∞

〈
∂un

∂t
,un −u

〉
=− lim

n→+∞

〈
∂un

∂t
,un

〉
− lim

n→+∞

〈
∂un

∂t
,u

〉
= 0

Now, we pass to the limit, it results

lim
n→+∞

∫
QT

∇un (∇un −∇u)= 0

which ensures the compactness of Ψ.

(iii) Ψ send the ball of V of R radius to itself. Indeed, we get the existence of a

constant R > 0 such that Ψ (B (0,R))⊂ B (0,R) where B (0,R) is the ball of V with radius

R. Let w ∈ V and u =Ψ (w), by taking u as test function in the equation satisfied by u,

we easily find

‖u‖V ≤
(∫

QT

(|∇wn|p
)2

) 1
2

:= R

This is what ends the proof of our theorem. �
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CONCLUSION AND PERSPECTIVES

This study focuses on the analysis and mathematical modeling of reaction-
diffusion systems that are frequently used in the modeling of diffusion
phenomena in various natural sciences, especially in biology, ecology

and medicine.

• The aim of this thesis was to study several biological and medical prob-
lems via reaction-diffusion systems in order to assess their effect to the
resolution of problems despite the complexity of the matter, presence of
many constraints and multitude of parameters. We choose the quasilin-
ear and degenerate problem because it’s the closer to reality biological
and medical.

• Many important results have been obtained with additional assumptions
that can be applied to several models in biology, ecology, physics and
others as appropriate.

• We have developed original methods to overcome certain difficulties, and
despite the complexity of the models studied, we have managed to obtain
several important results, original and solve very difficult news prob-
lems.
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APPENDIX A. CONCLUSION AND PERSPECTIVES

In addition to this work, we can address the following interesting ques-
tions :

(i) The mathematical analysis of anisotropic system, which consists in adding
diffusion coefficients to the studied system depending on (t, x) or more
generally depending on (t, x,u,∇u).

(ii) The asymptotic behavior of the solutions of the studied problems.

(iii) We would like to implement some numerical simulations in order to get
a better understanding of the solutions at large times

(iv) It is important to study the same model with other conditions.

(v) We would like to develop work on modeling the diffusion of the Coron-
avirus.

This list of loose themes corresponds to work in progress or prospective.
Some are a continuation of the work already done, and some are new
research projects.

This not only makes it possible to tackle current reality and its fears, but
also to go beyond the theoretical framework by developing models and tools
that can be used and transferred to different sciences.
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KNOWN NAMES IN THE FIELD OF REACTION-DIFFUSION

SYSTEMS

The purpose of this page is to present some mathematicians who, through
their works, have contributed to the development of reaction-diffusion sys-
tems.

Jacques-Louis Lions, (born in Grasse on May 3, 1928 and died in Paris on May

17, 2001) is a French mathematician, member of the Academy of Sciences. He

was a lecturer then professor at the Faculty of Sciences of Nancy (1954-1963),

professor at the Faculty of Sciences of Paris (1963-1972), professor of digital analysis

at the École Polytechnique (1966-1986) and finally professor at the college of France

(1973-1998). His work mainly focused on the theory of partial differential equations and

their applications, and in particular on variational problems, control theory and systems

of partial differential inequalities.
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James Dickson Murray, (born January 2, 1931 in Moffat, Scotland) is a British

mathematician, Professor Emeritus of Applied Mathematics at the University of

Washington and the University of Oxford. He is best known for his authoritative

book “Mathematical Biology”. Its research is characterized by its great variety and depth:

an early example is its fundamental contribution to understanding the biomechanics of

the human body when launched from an aircraft into an ejection seat. He has contributed

to many other areas, ranging from understanding and preventing severe scarring; the

formation of fingerprints; the determination of the sex, the modeling of the animal’s coat

and the formation of the territory of populations in interaction wolf-deer.

M ichel Pierre, is a french mathematician, born in 1949 in France. Professor at

ENS Cachan Bretagne (since 1996) and researcher at IRMAR, Digital Analysis

team. Research topics: optimization of forms and reaction-diffusion systems.

He is author and co-author of a very large number of scientific papers in various branches

of applied mathematics. He has greatly contributed to the development of many methods

of dealing with reaction-diffusion systems.

Noureddine Alaa, is a moroccan mathematician, born in 1961 in Marrakesh.

He is the pupil of Michel Pierre. He has numerous scientific publications in

various branches of mathematics, in particular reaction-diffusion systems and

its applications. He is currently a mathematics professor in the Marrakesh university.

He is credited with the development of several analytical and numerical methods in

applied mathematics.
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FIGURE B.1. Jacques-Louis Lions (1928-2001).

Mokhtar Kirane, is an algerian mathematician, received a PhD in Mathematics

from the University of Pierre et Marie Curie, Paris VI, France in 1983, and

a Habilitation to conduct research from the University of Picardie, France, in

2000. He is currently a mathematics professor in La Rochelle University, France. He has

a very large number of scientific papers in various branches of applied mathematics. He

is well known for his works on reaction-diffusion systems.

Ammar Youkana, is an algerian mathematician, born June 11, 1958 in Batna,

Algeria. He graduated in applied mathematics from the Jacques-Louis Lions

Laboratory, Pierre and Marie Curie University - Paris VI, France in 1986. He

is well known for his works on reaction-diffusion systems and its applications. He is

currently a mathematics professor in the Mathematics Department of the Mustapha Ben

Boulaïd University of Batna.
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FIGURE B.2. James Dickson Murray (1931).

FIGURE B.3. Michel Pierre (1949).

FIGURE B.4. Noureddine Alaa (1961).
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FIGURE B.5. Mokhtar Kirane.

FIGURE B.6. Ammar Youkana (1958).
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