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Résumé 

Les matériaux Heusser quaternaires présentant une demi-métallité (HM) et 

une température critique élevée TC émergent comme des candidats prometteurs 

pour les dispositifs spintroniques. La théorie de la fonctionnelle de la densité est 

utilisée pour étudier les propriétés structurelles, la structure électronique des 

nouveaux composés quaternaires de Heusler PrCoCrZ (Z = Al, Ga), PrCoMnZ (Z 

= Ga, In), et NdCoMnZ (Z = Al, In). Les énergies totales en fonction du volume 

des six matériaux ont été calculées pour formuler les caractéristiques de l'état 

fondamental. Nous avons utilisé le TB-MBJ pour estimer les structures des bandes 

et les densités d'états. Les résultats affirment que les alliages sont demi-

métalliques avec des écarts demi-métalliques considérables de 0,61 eV, 0,58 eV, 

0,56 eV, 0,51 eV 0,48 eV et 0,48 eV pour PrCoCrAl, PrCoCrGa, PrCoMnGa, 

PrCoMnIn NdCoMnAl et NdCoMnIn respectivement. Tous les alliages ont des 

moments magnétiques qui sont des entiers (5, 6 et 7 µB) et qui satisfont la règle 

de Pauli Mtot=Ztot-18. Notre calcul de la température de Curie TC a montré que les 

valeurs varient de 928 à 1290 K. Les moments magnétiques en fonction de la 

constante de réseau ont également été calculés pour tous les matériaux. Les 

propriétés thermoélectriques de tous les matériaux sont acquises grâce au code 

BoltzTraB basé sur la théorie du transport de Boltzmann semi-classique. 

L'investigation des caractéristiques thermoélectriques a montré que tous les 

alliages présentent des conductivités électriques plus élevées et des conductivités 

thermiques plus faibles. 

Mots clés : composés de Heusler quaternaires, théorie de la fonctionnelle de la 

densité (DFT), spintronique, propriétés de transport. 
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Abstract 

       Quaternary Heusler materials exhibiting half-metallicity (HM) and a high 

critical temperature TC are emerging as promising candidates for spintronic 

devices. Density functional theory is used to study the structural properties, 

electronic structure of the new quaternary Heusler compounds PrCoCrZ (Z = Al, 

Ga), PrCoMnZ (Z = Ga, In), and NdCoMnZ (Z = Al, In). The total energies as a 

function of volume for the six materials were calculated to formulate the 

characteristics of the ground state. We used TB-MBJ to estimate the band 

structures and densities of states. The results confirm that the alloys are half-

metallic with considerable half-metallic gaps of 0.61 eV, 0.58 eV, 0.56 eV, 0.51 

eV, 0.48 eV, and 0.48 eV for PrCoCrAl, PrCoCrGa, PrCoMnGa, PrCoMnIn, 

NdCoMnAl, and NdCoMnIn, respectively. All the alloys have magnetic moments 

that are integers (5, 6, and 7 µB) and satisfy the Pauli rule Mtot=Ztot-18. Our 

calculation of the Curie temperature TC showed that the values range from 928 to 

1290 K. The magnetic moments as a function of the lattice constant were also 

calculated for all materials. The thermoelectric properties of all materials are 

acquired using the BoltzTraB code based on the semi-classical Boltzmann 

transport theory. The investigation of thermoelectric characteristics showed that 

all alloys exhibit higher electrical conductivities and lower thermal conductivities. 

Key words: transport properties, spintronic, density functional theory (DFT), 

quaternary Heusler compounds ·  
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 ملخص

 ودرجة حرارة حرجة عالية (HM) التي تتميز بوجود نصف معدنية و الرباعية هسلر تظهر مواد 

Tc   ص الهيكلية، والهيكل الخصائ لدراسة الدالية لأجهزة السبينترونيك. تسُتخدم نظرية الكثافة  ةواعدكمواد

و  PrCoCrZ (Z = Al, Ga) ،PrCoMnZ (Z = Ga, In) الرباعية الجديدة هسلرلمركبات  الإلكتروني

NdCoMnZ (Z = Al, In).  تم حساب الطاقات الكلية مقابل الحجم للمواد الستة لصياغة خصائص الحالة

تظهر النتائج أن السبائك نصف  لتقدير هيكل النطاق وكثافة الحالات. TB-mBJ الأساسية. لقد استخدمنا

 eV 0.48  ،eV 0.48  ،eV 0.56  ،eV 0.51  ،eVمعدنية مع فجوات نصف معدنية ملحوظة تبلغ 

، NdCoMnAl ،NdCoMnIn ،PrCoMnGa ،PrCoMnIn لكل من eV 0.58و   0.61

PrCoCrAlو ،PrCoCrGa   و 6 ,5 صحيحةمغناطيسية  عزومعلى التوالي. جميع السبائك لديها Bµ 7 

و  928أن القيم تتراوح بين  CT أظهرت حساباتنا لدرجة حرارة كوري tot=ZtotM-18 قاعدة باولي تحققو

كلفن. تم حساب العزوم المغناطيسية كدالة لثابت الشبكة لجميع المواد. تم الحصول على الخصائص  1290

أظهرت . المستند إلى نظرية نقل بولتزمان BoltzTraB الحرارية الكهربائية لجميع المواد باستخدام كود

 .ية حرارية أقلموصلية كهربائية أعلى وموصلتع بمتت ائكدراسة الخصائص الكهروحرارية أن كل السب

 .خصائص النقل ،سبينترونيك ، (DFT) الداليةنظرية الكثافة · الرباعية  هسلرمركبات  :كلمات مفتاحية
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Ⅰntroduction générale  

La recherche de nouvelles sources d'énergie est extrêmement importante, 

en particulier les sources non polluantes pour la nature, car les combustibles 

fossiles s'épuisent à un rythme croissant.  

Les matériaux thermoélectriques sont parmi les matériaux qui suscitent le 

plus d'intérêt dans les domaines de la physique de l'état solide et des énergies 

renouvelables, en raison de leur capacité à convertir directement la chaleur en 

électricité. Cette conversion repose sur trois effets fondamentaux : l'effet Seebeck, 

l'effet Peltier et l'effet Thomson, qui sont des phénomènes reliant le flux 

thermique et la charge électrique à l'intérieur du matériau. 

Lorsqu'il y a un gradient thermique à travers un matériau thermoélectrique, 

une force électromotrice connue sous le nom de coefficient Seebeck se crée, 

permettant ainsi de générer de l'énergie électrique. Inversement, en utilisant un 

courant électrique, il est possible de créer un flux thermique, un principe exploité 

dans le refroidissement thermoélectrique. Les matériaux thermoélectriques sont 

généralement évalués par le coefficient de performance sans dimension ZT. 

Les matériaux thermoélectriques acquièrent une importance croissante 

dans les applications pratiques telles que la récupération de la chaleur perdue dans 

les industries et les automobiles, et représentent également un domaine de 

recherche actif.  

Les matériaux Heusler sont une nouvelle catégorie de matériaux contenant 

toutes les exigences précieuses adaptées à la situation actuelle. En général, les 

composés de Heusler se divisent en trois sous-groupes : (i) les full-Heusler avec 

un arrangement stœchiométrique de 2:1:1 (X2YZ), (ii) les half-Heuslers ayant un 

arrangement stœchiométrique de 1:1:1 (XYZ), et (iii) les Heuslers quaternaires 

avec un arrangement stœchiométrique de 1:1:1:1 (XX’YZ), où X1, X2, d’une 

manière générale sont des métaux de transition, Y est un élément magnétique, et 

l’élément Z appartient au groupe sp du tableau périodique [1–9]. Plus de 1000 

alliages de Heusler avec différents arrangements stœchiométriques ont été 
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explorés jusqu'à présent. De plus, les matériaux ferromagnétiques présentant un 

comportement demi-métallique, caractérisés par la propriété métallique pour les 

spins up alors que le deuxième canal est isolant [10], offrent une perspective 

intéressante pour les applications spintroniques [11–15]. 

Les matériaux ferromagnétiques demi-métalliques ont été présentés pour la 

première fois par de Groot et al. [16] et considérés comme une voie vers une forte 

polarisation de spin et des propriétés uniques qui peuvent être considérablement 

renforcées avec les dispositifs électroniques, en particulier la charge et le spin de 

l'électron, utilisés pour préserver les données. Ce type de systèmes se caractérise 

par un moment magnétique M et une température critique TC élevée [17, 18]. 

Plusieurs alliages à effet magnétocalorique ont été envisagés à cause de 

leurs températures de Curie qui sont comparables avec la température ambiante 

[19]. Leurs propriétés caractéristiques émergent de leur densité d'états 

électroniques, où la majorité des spins présente une structure de bande métallique, 

tandis que l'autre se comporte comme une structure de bande semi-conductrice, 

offrant une bande interdite d'énergie (gap) au niveau de Fermi, facilitant la 

fabrication des matériaux pour des applications avancées en ingénierie 

électronique [20]. 

De plus, ils ont été appliqués dans le filtrage par spin et les instruments 

magnétiques de petite taille, ainsi que dans la similarité structurelle avec les semi-

conducteurs binaires industriels, les jonctions magnétiques tunnel, les 

commutateurs, la géante magnétorésistance et le couple de transfert de spin [21, 

22]. 

Théoriquement, divers composés sont étudiés en raison de la facilité des 

calculs rapides pour prédire leurs propriétés structurelles, électroniques, 

magnétiques, élastiques, optiques, thermodynamiques et thermoélectriques [23–

27]. Récemment, les calculs ab initio sur certains composés à base de Co [28–30], 

de Mn [31, 32], de Fe [33, 34], de Ni [35, 36] et de Ti [37, 38] ont attiré une 

attention particulière dans le domaine de recherche pour découvrir de nouveaux 
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alliages présentant les propriétés mentionnées ci-dessus. Plusieurs investigations 

théoriques ont été menées sur la classe des EQH HMMs à base d'éléments des 

terres rares [39–47]. Par exemple, plusieurs auteurs [41, 43] ont montré que les 

composés de Heusler YCoCrSi, YCoCrGe, YCoCrAl, YCoCrGa, LuCoCrSi, 

LuCoCrGe, ScFeCrSi, et ScFeCrGe sont de nature demi-métallique. Bien que de 

nombreuses études sur les alliages de Heusler existent dans la littérature, la 

demande croissante pour des dispositifs spintroniques souligne la nécessité 

d'explorer davantage d'alliages possédant des caractéristiques supérieures.  

Dans cette recherche, nous avons examiné les caractéristiques des alliages de 

Heusler quaternaires PrCoCrAl, PrCoCrGa, PrCoMnGa, PrCoMnIn et 

NdCoMnAl, NdCoMnIn, dans le but d'obtenir de meilleurs résultats. À notre 

connaissance, aucune étude basée sur la DFT n'a été réalisée sur les alliages 

PrCoCrAl, PrCoCrGa, PrCoMnGa, PrCoMnIn et NdCoMnAl, NdCoMnIn. Cette 

étude comprend un examen approfondi des caractéristiques structurelles, demi-

métalliques, la structure électronique ainsi que des propriétés thermoélectriques 

des alliages PrCoCrAl, PrCoCrGa, PrCoMnGa, PrCoMnIn, NdCoMnAl et 

NdCoMnIn.  

Cette thèse est constituée de trois chapitres. Le débuter chapitre se consacre 

à diverses généralités concernant les matériaux Heusler, les matériaux 

magnétiques, la règle de Slater-Pauling, et quelques applications pour la 

spintronique et thermoélectrique. 

La dimension théorique de la méthode de calcul employée a été exposée 

dans le deuxième chapitre. Nous examinerons les principes fondamentaux de la 

"théorie de la fonctionnelle de la densité (DFT)", les différents fonctionnels pour 

gérer les interactions d'échange-corrélation (LDA, LSDA, GGA et TB-MBJ), 

ainsi que la technique FP-LAPW (ondes planes augmentées linéarisées à potentiel 

total) intégrée dans le programme Wien2k. 

Ce chapitre se termine par une présentation simple du programme de 

simulation Wien2k, utilisé pour déterminer et explorer les différentes propriétés 
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liées à cette étude, telles que les propriétés structurelles, électroniques, 

magnétiques et thermiques des nouveaux matériaux mentionnés précédemment. 

Notre objectif suprême dans le dernier chapitre était de transmettre 

clairement les résultats obtenus. Les propriétés structurelles ont été présentées en 

premier, puis les propriétés électroniques et magnétiques, et enfin les propriétés 

thermoélectriques. 
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Ⅰ.1 Les matériaux de Heusler 

L'innovation ou l'évolution technologique et industrielle repose largement 

sur l’exploration de nouveaux matériaux et alliages. Récemment, les chercheurs 

s'intéressent aux composés de Heusler en raison de leurs caractéristiques 

exceptionnelles telles que les dispositifs électroniques magnétiques et les 

applications thermoélectriques. 

Cette grande famille qui contient plus de1000 matériaux ont été découverts 

premièrement par Fritz Heusler en 1903 et ont été nommés d'après lui [9,48,49]. 

La Figure Ⅰ.1 suivante montre que les alliages de Heusler peuvent être obtenue 

par les combinaisons des différents atomes selon le code des couleurs. En général, 

les matériaux Heusler peuvent être classés en trois grandes classes, et c'est ce que 

nous allons expliquer. 

La nomenclature dans la littérature présente une grande diversité, allant de 

la classification des atomes de l’alliage par un ordre alphabétique, et des fois par 

l’électronégativité des éléments où bien d’une manière aléatoire. 

 

Figure Ⅰ.1: les alliages de Heusler peuvent être obtenue par les combinaisons 

des différentes atomes selon le code des couleurs [9]. 
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Ⅰ.1.1 Les matériaux full-Heusler 

Les Materiaux full-Heusler (régulière Heusler) présentent une 

configuration cristalline dont le type s’appelle  L21 (groupe d'espace Fm3̅m n° 

225), composée de quatre sous-réseaux atomiques dans un réseau  cubique à faces 

centrées (cfc) (voir figure Ⅰ.2). Le prototype de cette structure est comme le cas 

de matériau Cu2MnAl [50]. Ils sont généralement formulés X2YZ, où les deux 

éléments (X,Y) sont des métaux de transition. L’atome (Z) étant un élément de 

groupe sp dans le tableau de Mendeleive. Elle est non magnétique.  Dans cette 

structure cristalline, les sites tétraédriques 4c(1/4, 1/4, 1/4) et 4d(3/4, 3/4, 3/4) sont 

occupés par les éléments X, les sites 4a(0,0,0) par Z, alors que les sites 4b(0.5, 

0.5, 0.5) par (Y). L'atome Y possède moins d'électrons de valence que l'atome 

(X). Dans le cas contraire, i.e. : la valence de Y est supérieure à la valence de X, 

le matériau cristallise dans une structure s’appelée inverse-Heusler (voir figure 

I.2) dons les positions des atomes sont 4a(0,0,0) et 4c(1/4, 1/4, 1/4) pour Z et Y 

respectivement, alors que l’élément X occupe les site 4b(1/2,1/2,1/2) et 4d(3/4, 

3/4, 3/4). Le groupe spaciale des Inverse-Heusler est s’appelle F4̅3m qui 

corespond le n° 216. 

    

Figure Ⅰ.2 :arrangement atomique dans la structure cristalline des composés full 

(a)  et inverse-Heusler (b). 

Y 

X 

Z 

Fm3̅m (225) 

Z(X) > Z(Y) 

F4̅3m (216) 

Z(X) < Z(Y) 

(a) (b) 
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Ⅰ.1.2 Les matériaux demi-Heusler (half-Heusler) 

Les matériaux appartenant à cette classe, présentent une composition 

chimique sous la forme XYZ. Cette catégorie d'alliages se cristallise dans un 

groupe d'espace appelé F4 ̅3m (n° 216) alors que le type est C1b. Cette structure 

peut être définie par l'interpénétration de trois sous-réseaux cubiques à faces 

centrées (cfc), où chaque sous-réseau est occupé par les atomes X, Y et Z [51]. 

Les atomes X et Y sont des métaux de transition, cependant que Z représente un 

élément dans le groupe principal. Une comparaison avec les full-Heusler, ce type 

d’alliage possède un site vide dans leur structure cristalline (voir figure Ⅰ.3), Les 

propriétés électroniques et magnétiques sont fortement affectées par la présence 

de ce site vide. Pour cette famille, il existe trois possibilités pour arranger les 

atomes dans la structure cristalline C1b comme l'indiquent à la fois la figure Ⅰ.3 et 

le tableau Ⅰ.1 [7]. 

Figure Ⅰ.3 : différentes possibilités d’arrangé les atomes  pour les alliages demi-

Heusler XYZ (a) : cellule primitive (b) :cellule conventionnelle. 

Y 

X 

Z 

(b) 

(a) 

1er arrangement 2ème arrangement 3ème arrangement 
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Tableau Ⅰ.1: les possibilités d’arrangé les éléments X,Y et Z dans les différentes 

sites pour les matériaux  demi-Heusler. 

Sites 4a(0,0,0) 4b(1/2,1/2,1/2) 4c(1/4,1/4,1/4) 

1er arrangement X Y Z 

2ème arrangement Z X Y 

3ème arrangement Y Z X 

Ⅰ.1.3 Les matériaux Heusler quaternaires  

Cette catégorie d'alliages est considérée comme nouvelle. Elle a été obtenue 

par la substitution de l’un des atomes X par un nouvel atome X' dans la structure 

cristalline des matériaux full-Heusler possédant la formule X2YZ. La nouvelle 

formule chimique est XX'YZ, où les éléments : X, X' et Y représentent des 

éléments des Bloc d (métaux de transition) et parfois l’un des atomes est un 

élément des terres rares. Z désigne un élément qui appartient au groupe sp dans le 

tableau périodique. Cette catégorie d'alliages se cristallise dans un groupe 

d'espace appelé F4 ̅3m (n° 216). On peut obtenir les mêmes structures à partir des 

alliages demi-Heusler : on fait remplir le site vide par un atome X’. Les alliages 

que nous étudions dans ce travail appartiennent à cette famille. Comme c'est le 

cas avec les alliages de demi-Heusler, les composés de Heusler quaternaires se 

cristallisent selon trois types possibles (voir la figure Ⅰ.4 et le tableau Ⅰ.2). Comme 

remarque, il est important de ne pas arranger de façon aléatoire les atomes pour 

obtenir les structures des trois types, car il est possible d’insérer la même structure 

sans le remarquer. La même remarque s'applique également aux matériaux demi-

Heusler dont nous avons parlé précédemment. 

Tableau Ⅰ.2: trois configurations de type structure non équivalentes possibles. 

Sites 4a(0,0,0) 4b(1/2,1/2,1/2) 4c(1/4,1/4,1/4) 4d(3/4,3/4,3/4) 

Ƭype Ⅰ X Y  X’ Z 

Ƭype Ⅱ X  X’ Y Z 

Ƭype Ⅲ  X’ X Y Z 
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Figure Ⅰ.4: différentes configurations d’arrangement atomique dans la structure 

cristalline des composés Heusler quaternaires : (a) cellule primitive (b) cellule 

conventionnelle. 

Ⅰ.2 Les matériaux magnétiques 

Ce type des matériaux jouent un rôle essentiel dans les technologies 

modernes et les applications industrielles tels que les dispositifs de stockage 

magnétique, l'énergie et les télécommunications. Ces matériaux peuvent être 

classés en plusieurs types selon leur réponse au champ magnétique externe. 

Ⅰ.2.1 Les matériaux diamagnétiques 

La caractéristique qui distingue les matériaux diamagnétiques la 

susceptibilité magnétique faible. En plus, elle présente une réponse négative 

lorsqu'un champ magnétique externe est appliqué. La susceptibilité χ de ce type 

de matériaux ne dépend pas de la température. 

X 

Y 

X’ 

 Z 

(a) 

(b) 

Type I Type II Type 

III 
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Figure Ⅰ.5: (a) représentation schématique de l’état diamagnétique sous 

l’influence et l’absence d’un champ magnétique extérieur H, (b) variation de 

l’aimantation magnétique avec le champ magnétique appliqué, (c) variation de 

la susceptibilité χ avec la température T. 

Ⅰ.2.2 Les matériaux ferromagnétiques 

L'existence d'un champ magnétique externe entraîne l'alignement des 

moments magnétiques des atomes dans une seule direction, ce qui caractérise les 

matériaux ferromagnétiques. Cet alignement reste inchangé après l'élimination du 

champ extérieur, ce qui donne au matériau des caractéristiques magnétiques 

permanentes. La susceptibilité magnétique de ce groupe de matériaux est élevée 

en plus, elle est positive. Le matériau perd son ferromagnétisme et devient 

paramagnétique lorsque la température se correspond de la température critique 

de Curie TC. 

 

Figure Ⅰ.6: illustration schématique de l' état ferromagnétique. 

(b)  
M  

 H 

χ  

 T 

χ  

(c)  (a)  
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Ⅰ.2.3 Les matériaux ferrimagnétiques 

 Les matériaux ferrimagnétiques présentent des moments magnétiques 

atomiques partiellement inversés, mais de magnitudes différentes. Ils présentent 

une susceptibilité magnétique élevée et positive, mais moins importante que les 

matériaux ferromagnétiques. En plus, ils perdent leur aimantation lorsque l’on 

dépasse la température de Curie TC. 

 

 

 

 

 

 

 

Figure Ⅰ.7: illustration schématique de l' état ferrimagnétique. 

Ⅰ.2.4 Les matériaux antiferromagnétiques 

L’alignement dans deux directions contraires des moments magnétiques 

des atomes est un critère pour distinguer l’état antiferromagnétiques, le deuxième 

critère est que l’aimantation totale est nulle. Ce type est caractérisé par une 

température, qui marque le point de passage de l'état antiferromagnétique à l'état 

paramagnétique. (température de Néel ƬN ). Les matériaux antiferromagnétiques 

ont une faible et positive susceptibilité magnétique. 

 

Figure Ⅰ.8: illustration schématique de l' état antiferromagnétique. 
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Ⅰ.2.5 Les matériaux paramagnétiques 

Un matériau paramagnétique est celui dans lequel les moments 

magnétiques au niveau microscopique s'alignent partiellement vers la même 

orientation que le champ magnétique appliqué. Contrairement aux matériaux 

ferromagnétiques, cet alignement se dissipe immédiatement avec la suppression 

du champ magnétique. 

  

 

 

 

 

Figure Ⅰ.9: illustration schématique de l' état paramagnétique en présence et en 

absence d'un champ magnétique externe. 

 

Figure Ⅰ.10: l'effet de la température sur la susceptibilité magnétique χ pour 

différents matériaux: l’état paramagnétique (noir), l’état ferromagnétique (vert) 

et l’état antiferromagnétique (rouge). 

 PM 
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χ  

 T  TC  TN 

H=0 
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Ⅰ.3 Les matériaux Heusler et le magnétisme   

Au début du XIXe siècle, Heusler a prédit que l’alliage Cu2MnAl possède 

une propriété ferromagnétique bien que ses atomes ne le soient pas [7], et les 

matériaux connus aujourd'hui sous le nom de matériaux Heusler n'ont pas reçu 

beaucoup d'attention dans le domaine de la recherche scientifique à cette époque.  

En 1980, Groot et al [15] ont prédit le ferromagnétisme demi-métallique 

dans l’alliage MnNiSb, tandis que Kübler et al ont anticipé la même 

caractéristique dans Co2MnSn en 1983 [52]. Cette découverte est celle qui a 

ravivé l'intérêt pour les matériaux de Heusler dans le domaine de la recherche 

pour explorer d’autres matériaux avec la même propriété (ferromagnétisme demi-

métallique).  

Pour les alliages demi-Heusler, le moment magnétique des atomes situés 

dans les sites octaédriques forme un sous-réseau magnétique, étant donné que 

seuls ces atomes sont capables de présenter un moment magnétique. La littérature 

indique que leur disponibilité est limitée à X=Mn et Re [53].  

Les composés de Heusler X2YZ présentent une configuration différente car 

les deux atomes X occupent des sites tétraédriques, facilitant les interactions 

magnétiques entre les atomes X et la formation d'une sous-réseau magnétique 

secondaire, permettant ainsi la présence de couplage ferromagnétique ou 

antiferromagnétique.  

Divers matériaux, en particulier les matériaux demi-métalliques 

magnétiques, sont à l'étude, cette propriété étant le sujet du paragraphe suivant. 
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Figure Ⅰ.11: Sous-réseaux magnétiques: (a) les alliages full-Heusler X2YZ, (b) 

les alliages semi-Heusler XYZ [7]. 

Ⅰ.3.1 Le ferromagnétisme demi-métallique 

Les matériaux de Heusler ont un bon potentiel pour montrer un 

ferromagnétisme demi-métallique. Certains matériaux Heusler présentent des 

caractéristiques métalliques en fonction de leur orientation de spin, alors qu'ils 

présentent simultanément des caractéristiques isolantes ou semi-conductrices 

dans l'orientation de spin opposée, et par conséquent une polarisation totale (100 

%) à l’énergie de Fermi. 

Selon De Groot et al [54] les demi-métaux peuvent être classés en trois 

catégories. Quels sont les matériaux qui ont une bande interdite covalente, les 

matériaux qui ont une bande interdite de transfert de charge et les matériaux avec 

une bande interdite d – d. 

La création du gap énergétique dans la 1èʳᵉ catégorie est fortement liée aux 

semi-conducteurs de type Ⅲ-ⅴ comme GaAs, c’est-à-dire que la structure de 

bande de spin-dn ressemble de près à celle des semi-conducteurs des colonnes Ⅲ-

V dans le tableau de Mendeleïev, par exemple, le cas de NiMnSb. Cette catégorie 

est caractérisée par de faibles aimants. 

La 2ème catégorie est caractérisée par les bandes d du métal de transition 

vides pour la direction de spin-dn et les électrons itinérants s, p du métal de 

(a) 

 

(b) 
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transition localisés sur les anions. Ces demi-métaux sont fortement magnétiques. 

Des exemples de cela, nous mentionnons, CrO2 et les doubles pérovskites. 

La 3ème catégorie est généralement présentée par des bandes interdites 

plutôt étroites comme le cas de Mn2VAl, la création du gap énergétique est 

principalement liée à la dégénérescence entre les orbitales d des métaux de 

transition. 

 

Figure Ⅰ.12: représentation schématique des différentes densités d'états : (a) 

pour un métal, (b) pour un métal spin-polarisé, (c) pour un matériau 

ferromagnétique, (d) pour un matériau ferromagnétique demi-métallique, et (e) 

pour un matériau ferrimagnétique demi-métallique [49]. 
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Ⅰ.3.2 La règle de Slater-Pauling (SP) 

Slater-Pauling démontre que le moment magnétique total Mt peut être 

approximé en fonction du nombre d'électrons de valence Zt. Le nombre total 

d'électrons Zt est déterminé par la somme de tous les électrons de spin-up et de 

spin-dn, tandis que le moment total Mt est calculé par leur différence. 

Zt = N↑ + N↓ , Mt = N↑ - N↓   →    Mt = Zt - 2N↓            (Ⅰ-1) 

Le moment magnétique global Mt, indicatif de la quantité de spins 

électroniques non compensés, est un entier dans les matériaux ferromagnétiques 

demi-métalliques. Ce principe est considéré comme un instrument efficace pour 

évaluer les caractéristiques demi-métalliques et magnétiques des matériaux. 

Pour les alliages demi-métalliques ferromagnétiques demi-Heusler, la règle 

SP est exprimée par la relation: 

Mt =Zt – 18                                        (Ⅰ-2) 

Dans la figure suivante nous présente le moment magnétique de quelque 

alliages demi-Heusler, il est clair que la règle de Slater-Pauli est vérifiée pour les 

alliages présentés.  Noté que CoTiSb possède un moment magnétique total de spin 

Mt nulle. 

Pour les demi-Heusler, il y a 9 états électroniques occupés dans la bande 

des spins minoritaires (4 électrons pour s et p, et 5 électrons pour d), Le gap 

énergétique est le résultat de l'hybridation intense entre les états dxz ,dxy et dyz (t2g) 

et les états dz2,dx2-y2, (eg) des atomes de métaux de transition. Le bande interdite 

est similaire au gap des semi-conducteurs comme du groupe Ⅲ-ⅴ [55]. L'écart 

d'énergie de spin-dn est déterminé par la disparité énergétique entre les états de 

liaison t2g remplis et les états antiliants eg vacants. 
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Figure Ⅰ.13: Moments de spin totaux pour quelque alliages demi-Heusler. La 

règle SP est indiqué par la ligne en pointillés. Les matériaux qui prennent leurs 

distances par rapport à la tracé SP sont présentés par des cercles vides [55]. 

Le gap énergétique pour les spin-dn est donné par l’écart énergétique entre 

les états triplement dégénérés liants t2g (remplis) et les états doublement dégénérés 

antiliants eg (vides). 

 

Figure Ⅰ.14: représentation schématique du gap de l’alliage NiMnSb [56]. 
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Pour les alliages demi-métalliques ferromagnétiques full-Heusler, la règle 

SP qui donne la relation entre le nombre des électrons de couche périphérique (Zt 

)et le moment magnétique total est exprimée par la relation : 

Mt =Zt – 24                                        (I-3) 

Dans la figure suivante nous présente le moment magnétique de quelque alliages 

full-Heusler demi-métallique. 

 

Figure Ⅰ.15: Moments de spin totaux pour quelque alliages full-Heusler. La 

règle SP est indiquée par la ligne en pointillés. Les cercles vides présentent les 

matériaux s'écartant de la courbe SP [55]. 

Dans ce cas, le nombre des états électroniques occupés dans la bande des 

spin-dn est 12 (4 électrons pour s et p, et 8 électrons pour d). Pour comprendre 

l’origine de la bande interdite des pin minoritaire nous présentons le diagramme 

des hybridations de l’alliage Co2MnGe sur la figure suivante. Premièrement on 

considère les interactions entre les deux atomes de Co, les orbitales d4 et d5 

génèrent des états eg (liants) et des états eu (antiliants) doublement dégénérées. 

Les orbitales d1, d2 et d3 génèrent des états liants t2g et des états antiliants t1u 

triplement dégénérées. Les orbitales obtenues sont hybridées avec un atome de 

Mn comme deuxième étape. 
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Les orbitales d4 et d5 (d1, d2 et d3) de Mn s’hybrident avec les orbitales eg 

(t2g). Enfin, l'écart d'énergie du spin-dn (la différence d'énergie) est exprimé 

comme la différence d'énergie entre les états t1u remplis (en dessous de Ef) et les 

états eu vacants non liants (au-dessus de Ef) [18]. 

 

Figure Ⅰ.16: illustration schématique du gap de l’alliage full-Heusler Co2MnGe 

[56]. 

Les différentes règles de SP pour les matériaux de Heusler inverses sont 

illustrées dans la figure suivante. 

 

Figure I.17: moments magnétiques totaux (de spin) pour plusieurs composés de 

Heusler inverses. Les composés dans les cadres qui suivent l'une des règles de 
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Slater-Pauling sont des demi-métaux parfaits, alors que le reste des alliages 

s'écarte légèrement et leur moment magnétique de spin total est indiqué par des 

cercles vides [57]. 

Selon la figure suivante, la relation de Slater-Pauling Mt = Zt – 24 est 

applicable à la majorité des matériaux demi-métalliques, y compris les matériaux 

Heusler quaternaires (alliages Heusler de type LiMgPdSn). Cela ne signifie pas 

qu'il n'y ait pas de matériaux soumis à la règle Mt =Zt – 18, car, dans le cas des 

matériaux étudiés, nous avons remarqué qu'ils sont satisfaisants à la règle Mt =Zt 

– 18. Par ailleurs, L. Y. Jia et ses collaborateurs [58] ont mis en évidence une 

relation supplémentaire à travers le composé CoMnZnGe, où le moment 

magnétique total est déterminé selon la règle SP : Mt = Zt – 28. Et donc, on peut 

dire que toutes les règles de Slater-Pauling sont réalisables. 

 

Figure Ⅰ.18: les moments magnétiques totaux (pour le spin) de plusieurs 

composés de Heusler quaternaires. Les lignes montrent les deux règles de SP 

[59]. 
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L’origine de la bande interdite pour les alliages de Heusler quaternaires 

dans la direction des porteurs minoritaires qui suivent la règle Mt = Zt – 24 est la 

même que pour les alliages full-Heusler, où le gap est déterminé par la disparité 

d'énergie entre les états eu (inoccupés) et les états t1u non liants (occupés). Un 

modèle similaire s'applique aux composés de Heusler quaternaires qui respectent 

la règle Mt = Zt − 18. Cependant, dans le cas de ces composés, les états t1u sont 

vides à cause de leurs énergies qui est relativement plus élevés. 

En fin de compte, nous déduisons que la bande interdite dans les matériaux 

Heusler est le résultat de l'hybridation entre les orbitales d des métaux de 

transition, tandis que l'élément du groupe principal Z est crucial pour assurer la 

stabilité de la structure cristalline [55]. 

Ⅰ.3.3 La température de Curie 

La température critique ƬC à laquelle un matériau ferrimagnétique ou bien 

ferromagnétique cesse d'être magnétisé de manière permanente est appelée point 

de Curie ƬC, ou température de Curie. Le matériau devient donc paramagnétique. 

C'est en 1895 que le physicien français Pierre Curie a fait la découverte de ce 

phénomène. La règle de Slater-Pauling peut être utilisée pour anticiper la 

température de Curie en calculant le moment magnétique total Mt. 

ƬC = 23 + 181Mt                                   (Ⅰ-4) 

Les hautes températures de Curie des alliages Heusler ont constamment suscité 

de l'intérêt [60-62]. La figure suivante montre quelques alliages de Heusler avec 

une température de Curie élevée. 
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Figure Ⅰ.19: La température TC des matériaux de Heusler à base de Co2. Une 

ligne est utilisée pour illustrer le comportement de Curie [53]. 

Ⅰ.4 Les matériaux Heusler et la spintronique  

La technologie qui utilise la charge et le spin des électrons s'appelle la 

spintronique. Dans les années 1980, on a découvert la magnétorésistance géante 

(MRG), ce qui a permis de la développer. La spintronique repose sur l'utilisation 

du spin pour affecter le mouvement des électrons dans des matériaux 

ferromagnétiques.  

Les alliages Heusler, en particulier les alliages Heusler demi-métalliques, 

jouent un rôle central à cause de leur polarisation en spin qui est essentielle pour 

les dispositifs spintroniques comme les jonctions tunnel magnétiques (TMR), leur 

stabilité structurelle, et de la haute température de Curie ce qui permet d’améliore 

la performance en spintronique. 
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Ⅰ.4.1 La magnétorésistance géante (GMR) 

Le prix Nobel de physique a été décerné à Albert Fert et Peter Grünberg en 

2007 pour leur découverte de la magnétorésistance géante en 1982 [63]. Ce 

phénomène est crucial dans les technologies contemporaines, en particulier dans 

le stockage des données, qui inclut les capteurs magnétiques et les disques durs. 

Le concept fondamental de ce phénomène réside dans la dépendance de la 

résistance électrique d'un matériau par la direction des moments magnétiques à 

l’intérieur des couches ferromagnétiques séparées par une couche non 

magnétique, sous l'influence d'un champ magnétique externe. Lorsque les 

moments magnétiques sont parallèles, la résistance est faible, tandis qu'elle est 

élevée dans le cas contraire. L'avènement de la spintronique, une nouvelle 

spécialité qui capitalise sur la charge électrique et le spin pour créer des dispositifs 

plus efficaces, a été facilité par la géante magnétorésistance. 

 

Figure Ⅰ.20: le principe de la GMR est illustré sous une forme schématique : 

l'inversion de la magnétisation d'une couche permet la circulation des deux types 

d'électrons, entraînant une variation de la résistance du composant multicouche 

[63]. 
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Ⅰ.4.2 La magnétorésistance tunnel (TMR) 

En 1975, Michel Jullière a été le premier à remarquer la magnétorésistance 

tunnel [63]. Cet effet peut être observé lorsque la couche métallique dans les 

dispositifs à magnétorésistance géante est remplacée par une autre couche 

isolante. Cela permet à la magnétorésistance d'être 10 fois plus élevée qu'avec les 

vannes à spin GMR [51]. Le tunnel quantique permet aux électrons de traverser 

la couche isolante électriquement. Si les électrodes sont alignées magnétiquement 

l'une par rapport à l'autre, leurs niveaux d'état électronique sont similaires. Cela 

facilite le déplacement des électrons à spin majoritaire entre eux, et donc une 

faible résistance. D'autre part, dans les états antiparallèles, les niveaux d'état ne 

correspondent pas, ce qui rend plus difficile le déplacement des électrons entre les 

états et provoque une résistance plus élevée. La probabilité de tunnel dépend 

également de la polarisation du spin des électrons [64]. Ces matériaux 

comprennent des éléments ferromagnétiques demi-métalliques. La 

magnétorésistance tunnel est utilisée dans la technologie pour fabriquer des 

dispositifs magnétiques, des têtes de lecture de disques durs avancées et de la 

mémoire à accès aléatoire magnétorésistive (MRAM) [65]. 
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Figure Ⅰ.21: illustration schématique du principe d’une jonction TMR (les 

électrodes sont identiques)[66]. 

Ⅰ.5 Les matériaux Heusler et la thermoélectricité  

L'efficacité d'un matériau est souvent mesurée par un chiffre nommé ZT. 

Ce chiffre se base sur trois caractéristiques importantes : la conductivité thermique 

« κ », la conductivité électrique « σ » et le coefficient de Seebeck « S ». Un 

matériau avec une valeur de ZT de ‘un’ ou plus est bon pour des usages 

thermoélectriques. Dans ce domaine, les matériaux Heusler sont considérés 

comme prometteurs. 

Un usage important des alliages de Heusler dans les thermoélectriques est 

de récupérer la chaleur perdue dans les secteurs automobile ou industriel (extraire 

de l’énergie des fumées d'échappement sous forme d'électricité), ses applications 

dans les générateurs thermiques électriques, ainsi que l'utilisation dans le 

refroidissement basé sur les effets thermoélectriques. 
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Ⅱ.1 Introduction 

Afin de comprendre les caractéristiques physiques des matériaux, il y a trois 

approches essentielles. 

Les méthodes empiriques : consistent à recourir à l'expérience afin 

d'acquérir une connaissance des caractéristiques des matériaux. 

Les méthodes semi-empiriques : Ils recourent à des données 

expérimentales et à des paramètres atomiques afin de prédire des caractéristiques 

qui n'ont pas encore été observées. 

Les méthodes ab initio : Ils résolvent l'équation de Schrödinger en utilisant 

uniquement des paramètres atomiques, sans recourir à des expériences. 

Les méthodes de simulation (ab initio) dont nous parlerons après sont très 

importantes pour comprendre différentes caractéristiques. Elles ont ajouté une 

nouvelle façon d'analyser beaucoup de phénomènes physiques et chimiques. Elles 

sont parfois utilisées à la place d'expériences trop chères qui ne peuvent pas se 

faire en laboratoire. 

Ⅱ.2 L’équation de Schrödinger 

Dans un contexte théorique, l'équation de Schrödinger constitue le point de 

départ ou le fondement pour examiner les caractéristiques électroniques des 

matériaux. Elle est immuable dans le temps et révèle les mystères de l'état 

fondamental du système. [63, 67], elle est formulée comme suit: 

  HΨ=EΨ                                         (Ⅱ-1)                         

Ψ, H : sont la fonction d'onde et l’opérateur hamiltonien du système 

respectivement. 

E : l’énergie propre du système dans l’état fondamental. 

Dans le cristal l’opérateur hamiltonien H est définie par l’expression suivant : 

H = Te+Tn + Un-n + Ue-n +Ue-e                      (Ⅱ-2) 
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Où : 

𝐓𝒆 : Energie cinétique des électrons. 

𝐓𝐞 = −
ħ𝟐

𝟐
∑

∆𝒓⃗ 𝒊

𝐦𝐞

𝐍𝐞
𝐢=𝟏                                               (Ⅱ-3)                       

𝐓𝐧 : Energie cinétique des noyaux. 

𝐓𝐧 = −
ħ𝟐

𝟐
∑

∆
𝑹⃗⃗ 𝛂

𝐌𝛂

𝐍𝐧
𝛂=𝟏                                             (Ⅱ-4)       

𝑼𝒏−𝒏 : Énergie d'interaction de Colomb entre tous les noyaux (force de répulsion 

entre les noyaux). 

𝐔𝐧−𝐧 =
𝟏

𝟖𝛑𝛆𝟎
∑

𝐙𝜶𝒁𝜷𝐞𝟐

|𝑹⃗⃗ 𝜶−𝐑⃗⃗ 𝜷|

𝐍𝐧
𝛂≠𝛃                                   (Ⅱ-5)      

    

 

𝐔𝐞−𝐧 : Énergie d'attraction de Colomb entre les noyaux et les électrons. 

𝐔𝐞−𝐧 = −
𝟏

𝟒𝛑𝜺𝟎
∑ ∑

𝒁𝛂𝒆𝟐

|𝑹⃗⃗ 𝛂−𝒓⃗ 𝒊|

𝑵𝒆
𝒊=𝟏

𝐍𝐧
𝛂=𝟏                        (Ⅱ-6) 

 

𝐔𝐞−𝐞 : Energie d’interaction entre les électrons (force répulsive entre les 

électrons). 

𝐔𝐞−𝐞 =
𝟏

𝟖𝛑𝛆𝟎
∑

𝐞𝟐

|𝒓⃗ 𝒊−𝐫 𝐣|

𝐍𝐞
𝐢≠𝐣                                       (Ⅱ-7)            

Où : 

Zα : le nombre global des électrons de l’atome α. 

Zβ : le nombre global des électrons de l’atome β. 

e : la charge élémentaire (1.69 10-19 C). 

me : la masse de l’électron. 

Mα : la masse de noyau α. 

Ne : le nombre global des électrons dans le système. 

Nn : le nombre global des noyaux dans le système. 
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𝐫 𝐢, 𝐫 𝐣 : les vecteurs position des électron i et j. 

 

𝐑⃗⃗ 𝛂, 𝐑⃗⃗ 𝛃 : représentent respectivement les vecteurs position des noyau α et β. 

Selon la physique quantique, l'équation de Schrödinger a des solutions 

précises seulement pour des systèmes avec deux particules, comme l'atome 

d'hydrogène. Pour un atome avec plusieurs électrons ou bien un groupe de 

particules qui s'influencent, il n'y a pas de solutions précises. Pour trouver des 

solutions, on fait quelques approximations. 

Ⅱ.3 L’approximation de Born-Oppenheimer 

On définit également l'approximation de Born-Oppenheimer sous le terme 

d'approximation adiabatique [67]. L'origine de cette approximation réside dans la 

considérable disparité de masse entre les noyaux et les électrons, ainsi que dans 

la vitesse nettement supérieure des électrons par rapport aux noyaux. Cette 

situation permet de négliger l'énergie cinétique des noyaux (Tn = 0) et de 

considérer l'énergie de répulsion entre les noyaux comme constante (Un-n = cte). 

Dans cette situation, on peut imaginer les électrons voguant à travers le champ 

magnétique des noyaux immobiles, ce qui conduit à la transformation de 

l'équation (II-2) en : 

He = Te +Ue-n +Ue-e                           (Ⅱ-8) 

𝐇𝒆 = −
ħ𝟐

𝟐
∑

∆𝒓⃗ 𝒊

𝐦𝐞
−

𝐍𝐞
𝐢=𝟏

𝟏

𝟒𝛑𝜺𝟎
∑ ∑

𝒁𝛂𝒆𝟐

|𝑹⃗⃗ 𝛂−𝒓⃗ 𝒊|

𝑵𝒆
𝒊=𝟏

𝐍𝐧
𝛂=𝟏 +

𝟏

𝟖𝛑𝛆𝟎
∑

𝐞𝟐

|𝒓⃗ 𝒊−𝐫 𝐣|

𝐍𝐞
𝐢≠𝐣        (Ⅱ-9) 

Dans cette situation, l’équation de Schrodinger est : 

HeΨe=EeΨe                                   (Ⅱ-10)       

Actuellement, le problème est essentiellement d'ordre électronique et ne prend 

pas en compte les perturbations causées par les vibrations du réseau. C'est ce qui 

confère à cette approximation le nom d'adiabatique. 
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Bien que cette approximation contribue à diminuer le niveau de complexité, 

l'équation électronique (II-10) reste encore trop complexe. Ce qui entraîne la 

transition vers le deuxième niveau d'approximation.    

Ⅱ.4 L’approximations de Hartree (électron libre)          

L'idée a été proposée par Hartree en 1928. Elle suppose que chaque électron 

dans un système avec plusieurs électrons peut être décrit par sa propre fonction 

d'onde. Les électrons sont considérés comme des entités indépendantes dans cette 

approximation. Cela simplifie le problème initial, qui comprend des forces de 

répulsion entre les électrons, en un problème plus simple où une particule se 

circule au sein d’un champ électrique moyen généré par d'autres électrons. 

La fonction d’onde globale Ψe (𝒓𝟏, 𝒓𝟐, … 𝒓𝑵) de N électrons est nommé par : 

la fonction d’onde de Hartree ΨH (𝒓𝟏, 𝒓𝟐 … . 𝒓𝑵) , elle est donnée par la formule 

suivante : 

ΨH(𝐫𝟏, 𝐫𝟐 … . 𝐫𝐍)= Ψ1(𝐫𝟏) Ψ2(𝐫𝟐) ……. ΨN(𝐫𝐍)            (Ⅱ-11) 

Avec: 

Ψ𝑖(𝒓𝒊) :  La fonction d’onde mono-électronique (de l’électron (i)). 

L'hamiltonien des électrons He se traduit par la somme des hamiltoniens mono-

électroniques Hi, comme le détaille l'expression suivante : 

𝐇𝐞 = ∑ 𝐇𝐢
𝐍
𝐢=𝟏 = 𝐇𝟏 + 𝐇𝟐 + … . . +𝐇𝐍                            (Ⅱ-12)   

Dans le cadre de cette approche, l'équation de Schrödinger relative à une 

particule est ordinairement appelée l'équation de Hartree. Elle peut être formulée 

à l'aide de l'équation suivante :  

Hi𝚿i = Ei𝚿i                                      (Ⅱ-13)                

Avec :                               

Hi = −
ħ2

2
 
∆i

me
+ Ui(𝐫i) + Vi(𝐫i)                              (Ⅱ-14)         

Où :    

Ui(ri) = −
1

4πε0
∑

Zke2

|𝐫𝐢−𝐑𝐤
𝟎|k                 (Ⅱ-15)                        
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Vi(𝐫i) = −
1

4πε0
∑

e2

|𝐫i−𝐫j|
j                   (Ⅱ-16)                         

                              

Ui(𝐫i): l’énergie potentielle de l’électron (i) au sein du champ généré par 

l'ensemble de tous les noyaux. 

Vi(𝐫i) : représente le potentiel effectif de Hartree. 

D'où l'équation que nous attendons pour révéler l'état fondamental du 

système dans ce cas est : 

 

[−
ħ2

2
 
∆i

me
+ Ui(𝐫i) + Vi(𝐫i)]Ψi(𝐫) = Ɛ𝐢Ψ𝐢(𝐫)                        (Ⅱ-17) 

L'énergie correspondant à l'état fondamental du système peut être formulée 

en tant que total des énergies liées à chaque état électronique. 

E = ∑ Ɛ𝐢i                                         (Ⅱ-18)    

       La méthode de Hartree ne respecte pas le principe d'exclusion de Pauli, lequel 

énonce que la fonction d'onde décrivant un système à plusieurs corps doit changer 

de signe lors de la permutation des coordonnées de deux électrons quelconques. 

Cela entraîne une surestimation de la répulsion coulombienne totale [67,70]. 

Dans le but de régler ce problème, une solution, désignée sous le terme d'approche 

Hartree-Fock, a été développée.                          

Ⅱ.5 L’approximations de Hartree-Fock 

En 1930, Fock [71] a amélioré l’approximation de Hartree en intégrant le 

principe d'exclusion de Pauli et a formulé la fonction d'onde à l'aide du 

déterminant de Slater. 

.ΨHF(𝐫𝟏, 𝐫𝟐 … . 𝐫𝐍) =
1

√N!
[

Ψ1(𝐫𝟏)  Ψ2(𝐫𝟏)
Ψ1(𝐫𝟐)  Ψ2(𝐫𝟐)

⋯
ΨN(𝐫𝟏)
ΨN(𝐫𝟐)

⋮ ⋱ ⋮
Ψ1(𝐫𝐍)  Ψ2(𝐫𝐍) ⋯ ΨN(𝐫𝐍)

]            (Ⅱ-19) 

Où 
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Ψi(𝐫𝐢): La fonction d'onde d'un seul électron dépend de sa position et de son 

spin. 

1

√N!
: Le facteur de normalisation. 

Parmi les difficultés rencontrées lors du calcul de la structure des bandes, 

c’est la détermination du potentiel à l'intérieur du cristal [68]. 

Ⅱ.6 La théorie de la fonctionnelle de densité (DFT) 

Le but principal de la DFT est décrire le système en fonction de sa densité 

électronique. Cette théorie a évolué à plusieurs étapes, et c'est ce dont nous allons 

parler. 

Ⅱ.6.1 La théorème de Thomas-Fermi 

Cette théorie a été proposée en 1927 par Fermi et Thomas [72-74], qui ont 

considéré que le système était un gaz homogène, et ils ont formulé l'énergie 

totale en fonction de la densité. 

L'énergie totale du système E s'écrit sous la forme : 

E = ∫Ɛi[ρ(𝐫)] d𝐫             (Ⅱ-20)    

La densité d'un gaz homogène s'écrit selon la relation suivante :  

𝛒 =
𝟏

𝟑𝛑𝟐 (
𝟐𝐦𝐞

ħ𝟐
𝐄𝐟)

𝟑

𝟐
                                    (Ⅱ-21) 

Où 

Ef : Représente l'énergie au niveau de Fermi. 

L'énergie cinétique d'un gaz homogène : 

𝐓𝒈𝒂𝒛 =
𝟑

𝟓
𝛒𝐄𝐟               (Ⅱ-22)                                                           

À partir des équations (II-21) et (II-22), nous trouvons : 

𝐄𝐟 =
ħ𝟐

𝟐𝐦𝐞
(𝟑𝛑𝟐𝛒)

𝟐

𝟑   ,         𝐓𝒈𝒂𝒛 =
𝟑

𝟓

ħ𝟐

𝟐𝐦𝐞
(𝟑𝛑𝟐)

𝟐

𝟑 𝛒
𝟓

𝟑          (Ⅱ-23)        

Donc l’énergie cinétique dans le théorème de Thomas-Fermi est présentée par : 
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TTF = ∫𝐓𝒈𝒂𝒛d𝐫     ⇒       TTF =
3

5

ħ2

2me
(3π2)

2

3  ∫ ρ
5

3 d𝐫                (Ⅱ-24) 

Et par conséquence l’énergie total de Thomas-Fermi s’écrit : 

ETF =
3

5

ħ2

2me
(3π2)

2

3  ∫ ρ
5

3 d𝐫 + ∫V(𝐫)ρ(𝐫)d𝐫 +
1

2
∫∫

ρ(𝐫)ρ(𝐫′)

|𝐫−𝐫′|
d𝐫d𝐫′   (Ⅱ-25) 

Pour cette méthode, les interactions entre les électrons liées à l'échange et à la 

corrélation sont négligées. En 1930, Dirac [10] a proposé une fonctionnelle de 

densité d'énergie d'échange : 

ETFD = ETF + 𝐶𝑥 ∫ρ
4

3 𝑑𝐫                            (Ⅱ-26)     

Avec : 

𝐶𝑥 = −3
(3/𝜋)

1
3

4
                                      (Ⅱ-27)                             

Alor que Vagins [2] propose une fonctionnelle de densité d'énergie de 

corrélation. 

 

𝐸𝐶[ρ] = −
0.056ρ

4
3

0.079+ρ
1
3

                                  (Ⅱ-28)                       

 

Ⅱ.6.2 La théorème de Hohenberg-Kohn 

En 1964, Hohenberg et Kohn [76] ont montré que l’énergie total des électrons en 

interaction dans un potentiel extérieur est une fonctionnelle de la densité 

électronique ρ(r), et cela signifie que : 

E = E[ρ(𝐫)]                                       (Ⅱ-29)                      

Où : 

E[ρ(𝐫)] = Te[ρ(𝒓)] + Ue−e[ρ(𝐫)] + Un−e[ρ(𝐫)]           (Ⅱ-30)   

Le terme Un-e[ρ(r)] représente l’interaction noyaux-électrons. Les autres 

termes sont regroupés dans une fonctionnelle indépendante du potentiel externe 

dite fonctionnelle universelle de Hohenberg et Kohn donnée par la formule 

suivante : 

F𝐻𝐾[ρ(𝐫)] = Te[ρ(𝐫)] + Ue−e[ρ(𝐫)]                    (Ⅱ-31)    
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De l’autre côté : 

U𝑛−𝑒[ρ(𝐫)] = ∫𝑉𝑒𝑥𝑡(𝒓)ρ(𝐫)𝑑𝒓                   (Ⅱ-32)   

Donc, en conséquence :            

E[ρ(𝐫)] = F𝐻𝐾[ρ(𝐫)] + ∫𝑉𝑒𝑥𝑡(𝒓)ρ(𝐫) 𝑑𝒓              (Ⅱ-33)    

Pour décrire toutes les propriétés de l’état fondamental, il faut trouver la 

densité de l’état fondamental. Cependant, la difficulté réside dans la manière dont 

nous pouvons déterminer avec certitude si une densité donnée correspond à la 

densité de l'état fondamental. 

Pour répondre à cette question, Hohenberg et Kohn montrent que la 

fonctionnelle E[ρ(r)] est minimale lorsque la densité ρ(r)  est égale à la densité 

exacte ρ0(r) de l’état fondamental. 

E0 = E(ρ0) = minE[ρ(𝐫)]                         (Ⅱ-34)       

L'équation (II-31) n'a pas pu être utilisée dans les calculs pratiques en 

raison de l'incertitude concernant la forme mathématique de la fonctionnelle 

globale. 

Ⅱ.6.3 L’équation de Kohn-Sham 

En 1965, Kohn et Sham [77] proposent une solution pour la fonctionnelle 

F𝐻𝐾 où ils donnent la fonctionnelle suivante : 

 

F[ρ(𝐫)] = Tgaz[ρ(𝐫)] + EH[ρ(𝐫)] + Exc[ρ(𝐫)]                (Ⅱ-35) 

Avec : 

Tgaz[ρ(𝐫)] : L’énergie cinétique d’un gaz d’électrons. 

EH[ρ(𝐫)] : L’énergie l’interaction coulombienne d’Hartree. 
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Exc[ρ(𝐫)] : L’énergie d’échange-corrélation (dans l'approximation de Hartree, ce 

terme n'est pas considéré). 

À partir des équations (II-28) et (II-33), nous trouvons : 

Te[ρ(𝐫)] + Ue−e[ρ(𝐫)] = Tgaz[ρ(𝐫)] + EH[ρ(𝐫)] + Exc[ρ(𝐫)]      (Ⅱ-36) 

Et par conséquence : 

Exc[ρ(𝐫)] = {Te[ρ(𝐫)] − Tgaz[ρ(𝐫)]} + {Ue−e[ρ(𝐫)] − EH[ρ(𝐫)]}  (Ⅱ-37) 

 Ex = Te[ρ(𝐫)] − Tgaz[ρ(𝐫)]                    (Ⅱ-38)                           

Ec = Ue−e[ρ(𝐫)] − EH[ρ(𝐫)]                  (Ⅱ-39)      

Le potentiel effectif peut être défini comme la somme du différent potentiel  

Veff[ρ(𝐫)] = V𝑒𝑥𝑡 + V𝐻[ρ(𝐫)] + V𝑥𝑐[ρ(𝐫)]           (Ⅱ-40)        

 

VH[ρ(𝐫)] =
1

2
∫

ρ(𝐫′)

|𝐫−𝐫′|
 d𝐫′ : le potentiel de Hartree. 

Vxc[ρ(𝐫)] =
∂Exc[ρ(𝐫)]

∂ρ(𝐫)
 : le potentiel d'échange-corrélation. 

La fonctionnelle d’énergie total est donne par : 

E[ρ(𝐫)] = Tgaz[ρ(𝐫)] + EH[ρ(𝐫)] + Exc[ρ(𝐫)] + 𝑉𝑒𝑥𝑡            (Ⅱ-41) 

                          = Tgaz[ρ(𝐫)] + Veff[ρ(𝐫)] 

 

Dans les équations de Schrödinger mono-électroniques, Kohn et Sham 

utilisent le potentiel effectif afin d'obtenir la fonction d'onde pour chaque électron. 

L’équation de Kohn-Sham est la suivante : 

[−
1

2
▽2+ Veff(𝐫)]𝜙𝑖(𝒓) = Ɛ𝑖  𝜙𝑖(𝒓)           (Ⅱ-42)                             

Où : 

𝜙𝑖(𝒓) : La fonction d’onde propre à une particule. 

 Ɛ𝑖  : l’énergie d’une orbitale Kohn- Sham. 

Pour calculer la densité on utilise les N fonctions mono-électroniques. 
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ρ(𝐫) = ∑ |𝜙𝑖(𝒓)|
2𝑁

𝑖=1                               (Ⅱ-43)  

 

Ⅱ.6.4. La résolution des équations de Kohn-Sham 

Pour établir l’énergie de l'état fondamental du système, il est nécessaire de 

résoudre les équations de Kohn-Sham de manière auto-cohérente. La première 

étape consiste à introduire une densité initiale dont le but est de calculer les 

fonctionnelles pour trouver Veff (r) ce qui permet de résoudre l’équation (Ⅱ-42), 

ensuite on utilise les fonctions d’onde obtenues afin de déterminer la nouvelle 

densité nécessaire pour le calcul d'un potentiel actualisé... et ainsi de suite. 

L'itération se poursuivit jusqu'à ce que la convergence soit obtenue. Les 

différentes étapes sont regroupées dans le schéma suivant. Le problème 

maintenant concerne la fonctionnelle d’échange-corrélation qui est le but des 

paragraphes suivants.
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Figure Ⅱ.1: illustration simplifiée de la technique utilisée pour la résolution des 

équations de Kohn-Sham [63]. 
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Ⅱ.6.5 Les fonctionnelles d’échange et corrélation 

Dans la fonctionnelle de l’énergie totale (équation (II-41)), la fonctionnelle 

d’échange-corrélation Exc [ρ(r)] est inconnue. Pour pouvoir appliquer la DFT, il 

est nécessaire d’approximer ce potentiel d’échange-corrélation. 

Ⅱ.6.5.1 L’approximation de la densité locale (LDA) 

Cette approximation a été proposée par Kohn et Sham. Cette approche 

consiste à supposer que, en un point donné r, le gaz d'électrons peut être considéré 

comme homogène. De plus, elle postule que les influences d'échange et de 

corrélation sont principalement déterminés par la densité électronique en ce même 

point r. 

La fonctionnelle de l’énergie dans cette approximation est : 

Exc
LDA[ρ(𝐫)] = ∫ρ(𝐫)Ɛxc

LDA[ρ(𝐫)] d𝐫                      (Ⅱ-44) 

Ɛxc
LDA[𝜌(𝑟)] : L'énergie d'échange-corrélation par particule dans le gaz 

d'électrons homogène. 

Il est possible de séparer l’énergie d'échange et de corrélation de la manière 

suivante : 

Ɛ𝑥𝑐 = Ɛ𝑥 + Ɛ𝑐                                           (Ⅱ-45)                             

Ɛ𝑥 : l’énergie d’échange qui est ignorée dans l’approximation Hartree. 

Ɛ𝑐  : l’énergie de corrélation qui est ignorée par Hartree-Fock. 

Pour terme relatif à l’échange, il est donné par la formule de Dirac [10] : 

Ɛx
LDA[ρ(𝐫)] = −

3

4
(
3

𝜋
)

1

3
ρ

1

3 = −
3

4
(

9

4𝜋2)

1

3 1

𝑟𝑠
             (Ⅱ-46) 

Avec : 

𝑟𝑠 = (
4𝜋

3
 ρ)

−
1
3

 

rs : le rayon de Wigner-Seitz [13] (le rayon de la sphère qui contient un 

électron). 
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Alors que le terme qui concerne la corrélation ne peut être défini de façon 

précise. En 1980, Ceperley et Alder [79] font des simulations de type Monte-

Carlo pour des gaz d'électrons homogènes afin d’obtenir l'énergie de corrélation. 

Dans le cas d’un spin polarisé (spin ρ↑ et ρ↓), la fonctionnelle de l'échange 

et de la corrélation est sous la forme: 

Exc
LSDA[ρ ↑, ρ ↓] = ∫ρ(𝐫)Ɛxc

LSDA[ρ ↑, ρ ↓] d𝐫                          (Ⅱ-47)  

Ⅱ.6.5.2 L’approximation du gradient généralisé (GGA) 

Cette approximation est une amélioration de LDA et LSDA. En réalité, le 

gaz d'électrons est inhomogène, c'est-à-dire que la densité varie dans l'espace, ce 

qui nécessite de prendre en compte le gradient de densité ▽ρ(r). Et dans ce cas, 

l’énergie d’échange-corrélation est de la forme : 

Exc
GGA[ρ(𝐫)] = ∫ρ(𝐫)Ɛxc

GGA[ρ(𝐫),▽ ρ(𝐫)] d𝐫                         (Ⅱ-48) 

Si l'on considère une polarisation des spins, on peut décrire l'énergie d'échange-

corrélation par la formule suivante : 

Exc
GGA[ρ ↑, ρ ↓, ] = ∫ ρ(𝐫)Ɛxc

GGA[ρ ↑, ρ ↓,▽ ρ ↑,▽ ρ ↓] d𝐫       (Ⅱ-49) 

Différentes formulations des énergies d'échange-corrélation ont été 

proposés. Au cours de cette étude, nous avons choisi la version de Perdew-Burke-

Ernzerhof (PBE). 

Parmi les inconvénients des approximations LDA, LSDA et GGA est de 

prédire de manière assez précise l'énergie de bande interdite des semi-

conducteurs et des isolants à l'aide de différentes méthodes de calcul, cependant, 

il arrive parfois que ces prédictions sous-estiment la valeur réelle de cette énergie. 

Ⅱ.6.5.3 Potentiel de Becke et Johnson modifié (TB-MbJ) 

En 2006, Becke et Johnson [80] ont introduit une version du potentiel 

d'échange, appelée potentiel d'échange BJ, pour décrire l'énergie de la bande 

interdite des matériaux tels que les semi-conducteurs et les isolants. La version 

est la suivante : 
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Vx,σ
BJ (𝑟) = Vx,σ

BR(𝑟) −
1

2

▽2ρσ(𝑟)

ρσ(𝑟)
                            (Ⅱ-50)    

En 2009, Tran et Blaha [81] modifient ce potentiel (II-50), il est connu 

sous le nom de MBJ (modified Becke Johnson Potentiel), il s'exprime avec 

l’expression suivante : 

Vx,σ
TB−mBJ(𝒓) = cVx,σ

BR(𝒓) + (3𝑐 − 2)
1

𝜋
√

5

6
√

𝑡σ(𝑟)

ρσ(𝑟)
       (Ⅱ-51) 

 

Avec: ρσ(𝑟) 

ρσ(𝑟) = ∑ |𝜙𝑖,σ(𝑟)|
2𝑁σ

𝑖=1                            La densité des électrons. 

𝑡σ(𝑟) =
1

2
∑ ▽ 𝜙𝑖,σ

∗𝑁σ
𝑖=1 (𝑟) ▽ 𝜙𝑖,σ(𝑟)        La densité de l’énergie cinétique. 

𝑐 = 𝛼 + 𝛽 [
1

𝑉𝑐𝑒𝑙𝑙
∫

|▽ρ(𝑟′)|

ρ(𝑟′)𝑐𝑒𝑙𝑙
 𝑑𝑟′]

1

2
   

𝑉𝑐𝑒𝑙𝑙, α et β sont le volume de la maille élémentaire, - 0.012 et 1.023 Bohr1/2 

respectivement. 

Vx,σ
BR(𝑟) : le potentiel de Becke-Roussel [82]. 

Ⅱ.7 La méthode FP-LAPW 

Parmi les méthodes les plus précises pour calculer la structure électronique 

d’un solide cristallin est la méthode des ondes planes augmentées linéarisées à 

potentiel complet FP-LAPW [83]. Cette méthode est une amélioration de la 

méthode ondes planes augmentées (APW) développée par Slater [84]. Dans les 

paragraphes suivants, nous allons parler de l'évolution de cette méthode. 

Ⅱ.7.1 La méthode des ondes planes augmentées (APW) 

En 1937, Slater [84] a considéré que la solution de l'équation de 

Schrödinger pour un potentiel constant est une onde plane, alors que dans le cas 

où le potentiel a une symétrie sphérique (ne dépond que de r), la solution est une 
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fonction radiale. Afin d’écrire les fonctions d’onde des électrons, Slater introduit 

la notion de Muffin tin (MT) qui divise la cellule primitive en deux régions (figure 

Ⅱ.2). 

 La 1er région : est à l’intérieur des sphères atomiques (MT) de rayon Rα. 

Dans cette zone, le potentiel est caractérisé par une symétrie sphérique et 

les solutions de l'équation de Schrödinger associées à ce potentiel sont des 

fonctions qui ne dépendent que de la distance par rapport à l'origine, 

autrement dit ce sont des fonctions radiales. 

 La 2ème  région : elle est à l’extérieur des sphères (MT), i.e. dans la région 

interstitielle. Dans cette zone, le potentiel est considéré constant, alors que 

les solutions sont des ondes planes. 

 

Figure Ⅱ.2: Répartition d’une cellule primitive en une région des sphères (MT) 

et une région interstitielle. 

Dans ces deux régions, la fonctions d’onde est défini par : 

𝞅(𝐫) = {
∑ 𝐀𝐥𝐦𝐔𝐥(𝐫)𝐘𝐥𝐦(𝐫)              𝐫 < 𝐑𝛂𝐥𝐦

𝟏

𝛀𝟏/𝟐
∑ 𝐂𝐆𝐞

𝐢(𝐆+𝐊)𝐫
𝐆                   𝐫 > 𝐑𝛂

          (Ⅱ-52) 

Alm, CG : les coefficients de développement. 

Ω : le volume de la maille primitive. 

Ylm(r) : les harmoniques sphériques. 
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G, K : sont respectivement le vecteur de réseau réciproque et le vecteur d'onde 

dans la zone de Brillouin irréductible (IBZ). 

𝐔𝐥(𝐫) : La solution radiale de l’équation de Schrödinger qui est donné par la forme 

suivante : 

(−
𝐝𝟐

𝐝𝐫𝟐
+

𝐥(𝐥+𝟏)

𝐫𝟐
+ 𝐕(𝐫) − 𝐄𝐥) 𝐫𝐔𝐥(𝐫) = 𝟎              (Ⅱ-53) 

Avec : 

𝐕(𝐫) : le potentiel sphérique (à l’intérieur de sphère (MT)). 

𝐄𝐥 : l’énergie de linéarisation. 

Les fonctions radiales 𝐔𝐥(𝐫) mentionnées par l’équation (II-53) sont 

orthogonales à n'importe quel état propre du cœur. En limite de sphère(MT), cette 

orthogonalité disparaît. 

Pour les fonctions radiales U1et U2 correspondant aux valeurs propres E1 et 

E2, l'équation de Schrödinger devient : 

(E2 − E1)rU1U2 = U2
d2𝑟U1

dr2
− U1

d2𝑟U2

dr2
        (Ⅱ-54)                

Pour garantir la continuité aux limites des sphères (MT) les coefficients de 

développement 𝐀𝐥𝐦 sont définis en fonction de 𝑪𝑮 des ondes planes. L'expression 

suivante donne la relation entre ces coefficients : 

Alm =
4𝜋𝑖𝑙

Ω1/2Ul(𝑅α)
∑ 𝐶𝐺𝑗𝑙(|𝐾 + 𝐺|Rα)𝑌𝑙𝑚

∗ (𝐾 + 𝐺)𝐺        (Ⅱ-55) 

Avec 𝑗𝑙 est la fonction de Bessel. 

Rα : le rayon de la sphère (MT). 

Les fonctions individuelles, représentées par les fonctions radiales à 

l’intérieur des sphères (MT) et par G dans la zone interstitielle, sont appelées 

ondes planes augmentées (APW). 

Parmi les difficultés de cette méthode (APW) est que dans le cas de 

diminution des coefficients Alm, les U1(Rα) deviennent nulles à la surface de la 
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sphère (MT), et donc les fonctions dans les deux régions sont séparées (pas de 

continuité) [63,68,85]. Afin de résoudre ce problème, Andersen et Koelling 

[83,86] ont introduit un ensemble de modifications à la méthode des ondes planes 

augmentées (APW). 

Ⅱ.7.2 La méthode des ondes planes augmentées linéarisées (LAPW) 

En l'année 1975, Anderson [83] a introduit la méthode des ondes planes 

augmentées linéarisées (LAPW) comme une approche pour résoudre les équations 

de Kohn et Sham. Cette méthode permet également de calculer la densité de l'état 

fondamental d'un système donné. 

Il a reformulé la fonction radiale proposée par Slater dans la méthode 

(APW) où il a écrit la fonction radiale à l'intérieur de la sphère (MT) sous forme 

d’une combinaison linéaire contenant la fonction elle-même 𝐔𝐥(𝐫)𝐘𝐥𝐦(𝐫) ainsi 

que ses dérivées par rapport à l'énergie 𝑼̇𝒍(𝐫)𝐘𝐥𝐦(𝐫). Et donc la fonction (II-50) 

devient : 

𝞅(𝐫) = {
∑ [𝐀𝐥𝐦𝐔𝐥(𝐫) + 𝐁𝐥𝐦𝑼̇𝒍(𝐫)]𝐘𝐥𝐦(𝐫)          𝐫 < 𝐑𝛂𝐥𝐦

𝟏

𝛀𝟏/𝟐
∑ 𝐂𝐆𝐞

𝐢(𝐆+𝐊)𝐫
𝐆                                        𝐫 > 𝐑𝛂

       (Ⅱ-56) 

Les coefficients 𝐁𝐥𝐦 sont de même nature que les coefficients 𝐀𝐥𝐦  et la 

fonction 𝑼̇𝒍(𝐫)𝐘𝐥𝐦(𝐫) soumis à la condition suivante : 

(−
𝐝𝟐

𝐝𝐫𝟐
+

𝐥(𝐥+𝟏)

𝐫𝟐
+ 𝐕(𝐫) − 𝐄𝐥) 𝐫𝑼̇𝒍(𝐫) = 𝐫𝐔𝐥(𝐫)           (Ⅱ-57)  

Pour cette méthode, les fonctions d’onde dans la zone interstitielle sont des 

ondes plane comme dans la méthode APW. Il est possible de développer la 

fonction Ul(r) en fonction de l’énergie de linéarisation El, et sa dérivée 𝑼̇𝒍(𝐫) par 

la relation : 

Ul(E, r) = Ul(E𝑙 , r) + (𝐸 − 𝐸𝑙)𝑼̇𝒍(𝐄, 𝐫) + 𝟎((𝐄 − 𝑬𝒍)
𝟐)     (Ⅱ-58) 

Avec : 

𝟎((𝐄 − 𝑬𝒍)
𝟐) : signifie l’erreur quadratique énergétique. 
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Ⅱ.7.3 La méthode des ondes planes augmentées linéarisées à potentiel total 

(FP-LAPW) 

La méthode des ondes planes augmentées linéarisées à potentiel total FP-

LAPW [68,87] est une nouvelle méthode intégrée à la méthode LAPW afin de 

garantir la continuité du potentiel à la surface de la sphère MT. Les fonctions de 

base pour la méthode FP-LAPW sont les mêmes données par la méthode LAPW, 

i.e. des solutions radiales à l’intérieur de la sphère Muffin-Tin et des ondes planes 

dans la zone interstitielle. 

Le potentiel dans cette méthode est donné par la formule suivante: 

𝐕(𝐫) = {
∑ 𝐕𝐥𝐦(𝒓)𝐘𝐥𝐦(𝐫)              𝐫 < 𝐑𝛂𝐥𝐦

∑ 𝐕𝐊𝐞𝐢𝐊𝐫
𝐊                             𝐫 > 𝐑𝛂

              (Ⅱ-59) 

Alor que la densité de charge est présentée par la manière suivante : 

𝛒(𝐫) = {
∑ 𝛒𝐥𝐦(𝒓)𝐘𝐥𝐦(𝐫)              𝐫 < 𝐑𝛂𝐥𝐦

∑ 𝛒𝐊𝐞𝐢𝐊𝐫
𝐊                             𝐫 > 𝐑𝛂

              (Ⅱ-60) 

Le calcul de l'énergie totale d'un système implique de prendre en compte 

différentes valeurs du paramètre d'énergie El. Ensuite, il est nécessaire de classer 

ces valeurs de l'énergie totale obtenues en ordre décroissant pour pouvoir les 

comparer et analyser leur impact sur le système étudié. Le choix du paramètre El 

correspond à l'énergie la plus faible.  

Parmi les problèmes fondamentaux de la méthode FP-LAPW réside dans 

la contrôle des états semi-cœur qui sont des états intermédiaires entre les états de 

valence et les états de cœur [63]. Pour résoudre ce problème, il existe deux 

méthodes : 

La première méthode divise le spectre énergétique en fenêtres, chaque 

fenêtre est caractérisée par une énergie El, dont le but est de séparer entre les 

électrons de la bande de valence et les électrons de la bande de conduction. Cela 

nécessite de réaliser deux calculs pour le même potentiel. 

La deuxième méthode, proposée par Singh [88] et connue sous le nom de 

LAPW+LO, consiste à établir des arrangements linéaires pour deux fonctions 
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d'onde correspondant à différentes énergies et à une dérivée par rapport à l'énergie 

de l'une de ces fonctions ce qui implique la mise en œuvre d'une autre catégorie 

de fonctions de base. 

𝞅(𝐫) = {
[𝐀𝐥𝐦(𝐫, 𝑬𝒍) + 𝐁𝐥𝐦𝑼̇𝒍(𝐫, 𝑬𝒍) + 𝐂𝐥𝐦(𝐫, 𝑬𝑳𝑶)]𝐘𝐥𝐦(𝐫)  𝐫 < 𝐑𝛂

𝟎                                                                                           𝐫 > 𝐑𝛂
    (Ⅱ-61) 

Où les coefficients 𝐂𝐥𝐦  sont similaires aux coefficients 𝐀𝐥𝐦et 𝐁𝐥𝐦. 

Ⅱ.7.5 Les fonctions de base 

Ⅱ.7.5.1 Les fonctions radiales non relativistes 

Les solutions de l’équation de Schrödinger radiale dans le cas non 

relativiste sont des solutions radiales pour un potentiel sphérique V(r) et une 

énergie El. On a : 

(−
d2

dr2
+

l(l+1)

r2
+ V(r) − El) rUl(r) = 0                         (Ⅱ-62) 

V(r) représente la partie radiale du potentiel pour l = 0. 

Lorsque on applique la condition aux limites rUl(0) = 0, la dérivée de la 

fonction précédente par rapport à l'énergie El est donnée par : 

(−
d2

dr2
+

l(l+1)

r2
+ V(r) − El) r𝑈̇𝑙(r) = rUl(r)                    (Ⅱ-63) 

À l’intérieur des sphères MT, les solutions radiales doivent être normalisées 

∫ [𝑟𝑈𝑙(𝑟)]
2𝑅𝛼

0
𝑑𝑟 = 1                              (Ⅱ-64)    

Ul : est une solution homogène de l’équation inhomogène (II-63). Elle est sous la 

forme : 

ℎ𝑙𝑈̇𝑙 − 𝐸𝑈̇𝑙 = Ul                                    (Ⅱ-65)             

 

Lorsque en utilisant les conditions de normalisation, les fonction Ul et U̇l sont 

orthogonales. 

∫ 𝑟2𝑈𝑙(𝑟)𝑈̇𝑙
𝑅𝛼

0
(𝑟)𝑑𝑟 = 0                              (Ⅱ-66) 

Et la  fonction U̇l(r) normalisé : 
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𝑁𝑙 = ∫ [𝑟𝑈̇𝑙(𝑟)]
2𝑅𝛼

0
𝑑𝑟 = 1                          (Ⅱ-67) 

On peut substituer cette condition de normalisation par l'équation ci-dessous : 

𝑅𝛼
2[𝑈′

𝑙(𝑅𝛼)𝑈̇𝑙(𝑅𝛼) − 𝑈𝑙(𝑅𝛼)𝑈′̇ 𝑙(𝑅𝛼)] = 1           (Ⅱ-68) 

 Avec :            𝑈′
𝑙(𝐸, 𝑟) ≡ [

𝜕𝑈𝑙(𝐸,𝑟)

𝜕𝑟
]                𝑈̇𝑙(𝐸, 𝑟) ≡ [

𝜕𝑈𝑙(𝐸,𝑟)

𝜕𝐸
] 

L’équation (II-64) permet de calculer numériquement les fonctions 

𝑈𝑙(𝑟) 𝑒𝑡 𝑈̇𝑙(𝑟). La fonction  𝑈𝑙(𝑟) peut être développée de la manière suivante : 

𝑈𝑙(𝐸, 𝛿) = 𝑈𝑙(𝐸) + 𝛿𝑈̇(𝐸) + ⋯                    (Ⅱ-69) 

La normalisation de 𝑈̇𝑙(𝑟) donne une indication sur l’intervalle de l’énergie 

de linéarisation El. Selon Andersen [83] l’erreur de l’énergie El est acceptable 

lorsque cette condition est vérifiée : 

‖𝑈̇𝑙‖|𝐸𝑙 − Ɛ| ≤ 1                               (Ⅱ-70)         

         Dans le cas contraire, l'intervalle d'énergie sera divisé en différentes fenêtres 

et traité individuellement. Et on utilisait un développement des orbitales locales. 

Ⅱ.7.5.2 Les fonctions radiales relativistes 

La méthode FP-LAPW prend en compte les effets relativistes à l'intérieur 

de la zone sphérique de muffin-tin et ignore la région interstitielle [68,87]. Les 

corrections relativistes ne sont importantes que lorsque la vitesse de l'électron 

approche celle de la lumière. Pour la 2ème région, la vitesse de l'électron est limitée 

par l’énergie de coupure cut-off dans l'espace k.  

Dans le cas relativiste, les équations (II-63) et (II-64) sont remplacés dans 

l'équation de Dirac [85]. L’Hamiltonien de Dirac est donné par : 

 HD = Cαp + (β − 1)mc2 + V(r)                  (Ⅱ-71) 

 Où :                                 α = [
0  𝜎
𝜎  0

]                β = [
1       0
0  − 1

] 

et la fonction d’onde :     Ψ = [
𝜙
𝜒
] 
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𝜙 𝑒𝑡 𝜒 : sont la grande et la petite composante de la fonction d'onde 

respectivement. 

L’équation de Schrödinger devient : 

𝑐(𝜎𝑝)𝜒 = (Ɛ − 𝑉)𝜙                                           (Ⅱ-72)                          

𝑐(𝜎𝑝)𝜙 = (Ɛ − 𝑉 + 2𝑚𝑐2)𝜒                             (Ⅱ-73) 

Et donc : 

1

2𝑚
(𝜎𝑝) (1 +

Ɛ−𝑉

2𝑚2)
−1

(𝜎𝑝)𝜙 + 𝑉𝜙 = Ɛ𝜙           (Ⅱ-74) 

Lorsque on utilise l’approximation suivante : 

(1 +
Ɛ−𝑉

2𝑚2)
−1

≈ 1 −
Ɛ−𝑉

2𝑚2
                             (Ⅱ-75)        

Et la relation : 

𝑝𝑉 = 𝑉𝑝 − 𝑖 ħ ▽ 𝑉                                (Ⅱ-76)     

Nous trouvons :       

(𝜎 ▽ 𝑉)(𝜎𝑝) = (𝜎 ▽ 𝑝) + 𝑖𝜎[▽, 𝑝]                       (Ⅱ-77) 

Et par conséquence l’équation de ϕ suivante : 

[(1 −
Ɛ−𝑉

2𝑚2)
𝑝2

2𝑚
− 𝑉]𝜙 −

ħ2

4𝑚2𝑐2
(▽ 𝑉 ▽ 𝜙) +

ħ2

4𝑚2𝑐2
𝜎[▽ 𝑉, 𝑝]𝜙 = Ɛ𝜙(Ⅱ-78) 

Dans le cas où le potentielle est sphérique : 

[
𝑝2

2𝑚
+ 𝑉 −

𝑝4

8𝑚3𝑐2
−

ħ2

4𝑚2𝑐2

𝑑𝑉

𝑑𝑟

𝜕

𝜕𝑟
+

1

2𝑚2𝑐2

1

𝑟

𝑑𝑉

𝑑𝑟
(𝐿⃗ , 𝑆 )  ] 𝜙 = Ɛ𝜙             (Ⅱ-79) 

La solution de l’équation de Dirac dans la sphère MT est : 

𝜙𝑘𝜇 = [
𝑔𝑘𝜒𝑘𝜇

−𝑖𝑓𝑘𝜎𝑟𝜒𝑘𝜇
]                         (Ⅱ-80)                       

Où 

K : le nombre quantique relativiste. 

𝜒𝑘𝜇: les deux composantes spin-orbite. 

Les fonctions fk et gk doivent satisfaire les équations radiales suivantes : 

𝑑𝑓𝑘

𝑑𝑟
≡ 𝑓𝑘

′ =
1

𝑐
(𝑉 − 𝐸)𝑔𝑘 + (

𝑘−1

𝑟
)  𝑓𝑘            (Ⅱ-81) 
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𝑑𝑔𝑘

𝑑𝑟
≡ 𝑔𝑘

′ = −
(𝑘−1)

𝑟
𝑔𝑘 + 2𝑀𝑐𝑓𝑘                    (Ⅱ-82) 

Ⅱ.7.6 Détermination des potentiels 

Selon l’équation de Kohn et Sham (voir (II-42)), le potentiel est constitué 

d'un terme coulombien VC(r) et un autre pour l'échange et la corrélation. 

Ⅱ.7.6.1 Le potentiel coulombien 

Ce potentiel VC(r) est définie par la somme du potentiel de Hartree et du 

potentiel nucléaire. Il peut être calculer par la relation de poisson suivante: 

▽2 𝑉𝑐(𝑟) = 4𝜋𝜌(𝑟)                               (Ⅱ-83) 

La résolution de l’équation de poisson est possible seulement dans l’espace 

réciproque [68, 87], la méthode utilisée s’appelle pseudo-charge [89,90]. 

La densité de charge présente une continuité, avec une variation lente au 

sein de la région interstitielle, tandis que dans la région sphérique, cette variation 

s'effectue de manière rapide.  

Dans la zone interstitielle, le potentiel de Coulomb VC(r) est déterminé non 

seulement par la charge interstitielle, mais également par le multipôle de la charge 

à l'intérieur de la sphère. L'élaboration de la densité de charge dans la zone 

interstitielle se fait à l'aide d'une série de Fourier.  

𝛒(𝐫) = 𝛒𝐆𝐞
𝐢𝐆𝐫                                            (Ⅱ-84)                     

Alors que les ondes planes  𝐞𝐢𝐆𝐫 sont représentées à l’aide des fonctions de Bessel. 

∫ 𝒓𝒍+𝟐𝒋𝒍(𝑮𝒓)𝒅𝒓
𝑹

𝟎
= {

𝑹𝒍+𝟑𝑱𝒍(𝑮𝒓)

𝑮𝒓
         𝑮 ≠ 𝟎

𝑹𝟑

𝟑
𝛅𝒍,𝟎               𝐆 = 𝟎

              (Ⅱ-85)                                 

𝐞𝐢𝐆𝐫 = 𝟒𝝅𝐞𝐢𝐆𝐫𝜶 ∑ 𝒊𝒍𝒋𝒍(|𝑮||𝒓 − 𝒓𝜶|)𝒀𝒍𝒎
∗ (𝑮)𝒀𝒍𝒎𝒍𝒎 (𝒓 − 𝒓𝜶)    (Ⅱ-86) 

Avec r et rα sont la coordonnée radiale et la position de la sphère α respectivement. 

𝑉𝑐(𝐺) =
4𝜋𝜌(𝐺)

𝐺2
                                               (Ⅱ-87)  

Dans la zone interstitielle, le potentiel noter Vpw est donné par :                             

𝑽𝒑𝒘 = ∑ 𝑽𝒍𝒎
𝒑𝒘

(𝒓)𝒀𝒍𝒎(𝒓) = ∑ 𝑽𝒗
𝒑𝒘

(𝒓)𝑲𝒗(𝒓)𝒗𝒍𝒎        (Ⅱ-88) 
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𝐾𝑣(𝑟) : représente les harmoniques sphériques du réseau. 

𝑲𝒗(𝒓) = ∑ 𝑪𝒗𝒎𝒀𝒍𝒎(𝒓)𝒎                    (Ⅱ-89)      

Donc :                

𝑽𝒗
𝒑𝒘(𝒓) = ∑ 𝑪𝒗𝒎𝑽𝒍𝒎

𝒑𝒘(𝒓)𝒍𝒎                            (Ⅱ-90)              

Pour le porentiel dans la sphère MT le traitement se fait par la fonction de Green 

: 

𝑽𝒓(𝒓) = 𝑽𝒍𝒎
𝒑𝒘(𝒓) {

𝒓

𝑹
}
𝒍
+

𝟒𝝅

𝟐𝒍+𝟏
{

𝟏

𝒓𝒍+𝟏 ∫ 𝒅𝒓′𝒓′𝒍+𝟐𝝆𝒗(𝒓
′) +

𝒓

𝟎

𝒓𝒍 ∫ 𝒅𝒓′𝒓′𝒍−𝟏𝝆𝒗(𝒓
′)  −

𝑹

𝒓

𝒓𝒍

𝑹𝟐𝒍+𝟏 ∫ 𝒅𝒓′𝒓′𝒍+𝟐𝝆𝒗(𝒓
′)

𝑹𝒓

𝟎
}   

(Ⅱ-91) 

 𝜌𝑣(𝑟) : représente la densité de charge (seulement pour les parties radiales). 

Ⅱ.7.6.2 Le potentiel d’échange et de corrélation 

Le potentiel VXC est calculé séparément dans chaque région. Pour les 

sphères il est calculé en fonction de la densité dans les sphères en utilisant les 

harmoniques sphériques, Cela signifie que VXC ne dépend que du rayon r. Le 

traitement se fais dans l’espace réel, où on calcule ρ(r) à chaque point dans la 

sphère et puis l’application des approximations LDA ou GGA pour déterminer 

EXC et par conséquence VXC. 

Pour la deuxième zone, le traitement se fais selon les étapes suivantes : 

 Transformation de la densité électronique vers l’espace réciproque par 

l’utilisation de la transformation de Fourier. 

 Calcul de VXC dans l’espace réciproque : en utilisant ρ(G), et les 

approximations LDA ou GGA. 

 Après avoir calculé VXC dans l’espace réciproque, on peut appliquer une 

transformation de Fourier inverse pour revenir à l’espace réel. 

Finalement, on combine le potentiel d’échange et de corrélation VXC des 

deux régions avec le potentiel coulombien pour obtenir le potentiel effectif total 

Veff. 
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Ⅱ.8 Description du code Wien2k 

Le Wien2k est un code de calcul créé par Peter Blaha et all [91]. Ce 

programme est écrit en fortran et exécuté avec Linux. Il repose sur la 

DFT et la technique FP-LAPW. Il est composé de plusieurs petits 

programmes secondaires différents liés par un script C-SHEL qui sert à faire des 

calculs cohérents. 

Avant d'effectuer n'importe quel calcul, nous créons un fichier appelé 

case.struct dans lequel nous saisissons: 

 Le réseau et le numéro du groupe spatial. 

 Les différents paramètres de maille a, b et c (en Bohr ou Å).  

 Les positions des différents atomes dans la structure cristalline. 

 Les différents angles (α, β et γ). 

 Le rayon de muffin-tin (Rmt) pour chaque atome. 

La structure peut être visualisée en utilisant le programme Xcrysden [92] ou 

Vista [93]. Une fois que case.struct est disponible, nous procédons à la première 

étape qui s’appelle l'initialisation en lançant la commande init_lapw afin exécuter 

les programmes suivants : 

 NN : pour déterminer la distance entre chaque atome et son voisin le plus 

proche et d'établir les rayons atomiques des sphères pour contrôler 

l’intersection. 

 SGROUP: pour identifie le groupe spatial de la structure et l'insérer dans le 

fichier case.struct. 

 SYMMETRY: pour génère les différentes opérations de symétrie et calcule 

l'ensemble des points de localisation des atomes, ainsi que génère les deux 

nombres quantiques (l, m) pour les Ylm et calcul de la matrice de rotation 

locale. 

 LSTART : pour générer la densité atomique et calculer la différence 

d'énergie des orbitales pour déterminer la structure des bandes. Pendant 
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l’exécution de ce programme, il est nécessaire de définir la valeur de 

l'énergie (cut-off) qui sépare les états de valence et ceux du cœur. 

 KGEN: pour générer une k-mesh dans la première zone de Brillouin (Z.B). 

 DSTART: Le rôle de ce programme est principalement pour le cycle SCF, 

où il permet de créer la densité initiale, en se basant sur les densités des 

différents atomes générées par LSTART. 

Après avoir terminé les procédures d'initialisation, les différentes opérations 

du cycle SCF sont alors lancés et itérés jusqu’à la convergence de la solution. La 

commande de ligne « run_lapw » permet d'invoquer ce cycle. Pour les cas 

impliquant un spin polarisé, le processus est activé en utilisant la commande « 

runsp_lapw ». Le SCF se déroule selon les démarches suivantes : 

 LAPW0: pour générer un potentiel à partir de la densité. 

 LAPW1: pour calculer les bandes de valence et déterminer les vecteurs 

propres ainsi que les valeurs propres. 

 LAPW2: pour calculer les densités de valence à partir des vecteurs propres. 

 LCORE: pour obtenir les états de cœur ainsi que les densités. 

 MIXER: pour mélanger les densités d'entrée et de sortie. 

Après avoir terminé le calcul auto-cohérent (« SCF ») avec succès, il est 

possible de déterminer diverses propriétés, telles que la structure des bandes, les 

densités des états total et partiel, les propriétés thermoélectriques, optiques, etc.
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Figure II.3: principe de fonctionnement de Wien2k [91]. 
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Ⅲ.1 Introduction 

Dans le présent chapitre, nous rapportons tous les résultats de calculs 

obtenus pour les nouveaux alliages de Heusler quaternaires, PrCoCrZ (Z = Al, 

Ga), PrCoMnZ (Z = Ga, In) et NdCoMnZ (Z = Al, In). 

Ⅲ.2 Méthodes et détails de calcul 

Dans le contexte de cette étude, la méthode FP-LAPW, intégrée dans la 

structure du code Wien2k, a été appliquée en se basant sur le concept fondamental 

de la théorie de la fonctionnelle de la densité (DFT) [94,95] pour étudier les 

matériaux PrCoCrZ (Z = Al, Ga) NdCoMnZ (Z = Al, In) et PrCoMnZ (Z = Ga, 

In). Avant de faire des calculs sur les propriétés physiques des matériaux étudiés, 

nous avons fait un test de convergence pour les paramètres RMTKMAX et Kpoints. Où 

nous avons calculé les variations d'énergie de NdCoMnAl en fonction de 

RMTKMAX en fixant la valeur de Kpoints à 1000. Le paramètre RMTKMAX contrôle la 

taille de la base d’ondes planes utilisée dans la région interstitielle. RMT est le plus 

petit rayon Muffin-Tin parmi toutes les atomes alors que KMAX est la plus grande 

valeur du vecteur d’onde dans la base des ondes planes.  

 Sur la courbe obtenue (voir figure III.1), nous remarquons une diminution 

de l'énergie en fonction de RMTKMAX, qui se stabilise à une valeur constante à 

partir de la valeur RMTKMAX= 9. 
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Figure Ⅲ.1: l'énergie totale de l’alliage NdCoMnAl avec la variation du 

paramètre RMTKMAX à Kpoints =1000. 
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Après avoir déterminé la valeur de RMTKMAX, nous avons effectué un autre 

calcul pour voir les variations d'énergie en fonction des Kpoints tout en maintenant 

la valeur de RMTKMAX à 9. 

D'après les résultats présentés dans la figure Ⅲ.2, nous constatons que 

l'énergie se stabilise à partir de 3000 Kpoints. 
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Figure Ⅲ.2: l'énergie totale de l’alliage NdCoMnAl en lien avec Kpoints pour 

une valeur de RMTKMAX =9. 

Il est important de noter que le test de convergence a été réalisé seulement 

pour le matériau NdCoMnAl, et comme les autres matériaux sont similaires, les 

mêmes valeurs de RMTKMAX et Kpoints ont été utilisés.  

En se basant sur ces résultats, le plan de la fonction d'onde est étendu dans 

la région interstitielle en prenant en compte une coupure de RMTKMAX= 9.0. Le 

potentiel Veff et Gmax = 14 dans la région interstitielle montrent comment la densité 

de charge de Fourier est plus élevée, tandis que l'harmonique sphérique possède 

une valeur de lmax = 10. Il converge ensuite sans intersecter les sphères atomiques 

à -6,0 Ry, ce qui détermine la séparation des états de cœur et de valence. Le 

nombre de Kpoints employé était de 3000 Kpoints (20 × 20 × 20) pour améliorer la 

convergence énergétique. Le tableau Ⅲ.1 montre les valeurs RMT pour chaque 

atome utilisé dans le calcul.  
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Nous faisons appel à la fonctionnelle GGA-PBE ( Perdew-Burke-

Ernzerhof) [96] ainsi qu'au potentiel TB-MBJ (The Tran and Blaha modified 

Becke-Johnson) [81] pour traiter le terme qui concerne les interactions d'échange 

et de corrélation. 

Les propriétés de thermoélectrique telles que la conductivité électrique, la 

conductivité thermique, le coefficient de Seebeck et la figure de mérite sont 

obtenues en utilisant le code Boltztrap2, où nous avons utilisé le temps de 

relaxation  τ = 5 × 10–15 s [97]. 

Tableau Ⅲ.1: les valeurs de RMT pour chaque atome employé dans le calcul. 

Alliage Co Pr, Nd Cr, Mn Al, Ga, In 

PrCoCrAl 2.42 2.50 2.35 2.29 

PrCoCrGa 2.43 2.50 2.36 2.43 

PrCoMnGa 2.47 2.50 2.47 2.47 

PrCoMnIn 2.43 2.50 2.43 2.49 

NdCoMnAl 2.39 2.50 2.39 2.27 

NdCoMnIn 2.39 2.50 2.39 2.45 
 

 

La configuration électronique des éléments chimiques est : 

[Al]: [Ne] 3s23p1 

[Ga]: [Ar] 3d104s24p1 

[In]: [Kr] 4d105s25p1 

[Cr]: [Ar] 3d54s1 

[Mn]: [Ar] 3d54s2 

[Co]: [Ar] 3d74s2 

[Pr]: [Xe] 4f 36s2 

[Nd]: [Xe] 4f46s2 
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Ⅲ.3 Les propriétés structurales 

Reconnaître les atomes à leur place assignée peut être obtenu en examinant 

les propriétés structurelles, qui fournissent des informations descriptives. XX'YZ 

a des atomes dans la configuration de réseau cubique à faces centrées F43m (nᵒ 

216), qui appartient au Heusler complet. Le diagramme de la structure du cristal 

est montré dans la figure III.3. En raison des positions distinctes des atomes au 

sein de la structure cristalline, il existe trois types [10,18,98] d'arrangements de 

coordonnées atomiques répertoriés dans le tableau III.2.  

Figure III.3: types de structure cristalline des composés Heusler quaternaires 

(a) cellule primitive (b) cellule conventionnelle. 

Tableau Ⅲ.2: trois configurations de type structure non équivalentes possibles. 

Site 4a(0,0,0) 4c(1/4,1/4,1/4) 4b(1/2,1/2,1/2) 4d(3/4,3/4,3/4) 

Type I Pr/Nd Cr/Mn Co Al/Ga/In 

Type Ⅱ Pr/Nd Co Cr/Mn Al/Ga/In 

Type Ⅲ Co Pr/Nd Cr/Mn Al/Ga/In 
 

Nous avons déterminé l'énergie totale de tous les alliages en fonction du 

volume de la maille unitaire pour les trois types sous état paramagnétique (PM). 

L'état stable parmi les trois est testé en phase ferromagnétique. La structure avec 

la plus basse énergie a été identifiée et montrée dans la figure Ⅲ.4.  

Pr/Nd 

Co 

Cr/Mn 

Al/Ga/In 

(a) 

(b) 

Type I Type II Type III  
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Figure Ⅲ.4.1: optimisation du volume des matériaux de Heusler quaternaires 

PrCoMnGa et PrCoMnIn grâce à l'approche GGA. 
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Figure Ⅲ.5.2: optimisation du volume des matériaux de Heusler quaternaires 

PrCoCrAl et PrCoCrGa grâce à l'approche GGA. 
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Figure Ⅲ.6.3: optimisation du volume des matériaux de Heusler quaternaires 

NdCoMnAl et NdCoMnIn grâce à l'approche GGA. 
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Par conséquent, la structure de Type Ⅲ des PrCoCrZ (Z = Al, Ga), 

PrCoMnZ (Z = Ga, In) et les alliages NdCoMnZ (Z = Al, In) est le plus stable. 

En appliquant l'équation d'état (III.1) [99] sur les résultats de calcul, nous 

avons réussi à déterminer différents paramètres de réseau ainsi que le coefficient 

de compressibilité des composés PrCoCrZ (Z = Al, Ga), PrCoMnZ (Z = Ga, In), 

et du matériau NdCoMnZ (Z = Al, In). L'équation d'état de Birch-Murnaghan est 

: 

E(V) = E0 +
B

B′(B′−1)
[V (

V0

V
)
B′

− V0] +
B

B′
(V − V0)      (Ⅲ.1) 

Dans cette formulation, V0 et E0, indiquent respectivement le volume et 

l’énergie qui correspond l’état d'équilibre, tandis que B et B' se réfèrent au module 

de compressibilité et à sa dérivée par rapport à la pression. 

B = V
∂2E

∂V2
                                      (Ⅲ.2)                             

Dans le tableau III.3, nous pouvons voir les différents facteurs de la maille 

d'équilibre, y compris l'énergie de l'état fondamental (E), le module de 

compressibilité (B) et sa dérivée par rapport à la pression (B'). Nous ne 

connaissons aucune donnée ou calculs réels ou théoriques montrant le paramètre 

de réseau, le module de compressibilité, ou comment ces valeurs changent avec 

la pression pour ces alliages. Nous avons également inclus les informations sur le 

paramètre de réseau et le module de compressibilité pour le matériau NdCoMnGa 

[100] dans le tableau III.3 pour la comparaison. 

Tableau Ⅲ.3: le paramètre de réseau a (Å), le module de volume B (GPa),  sa 

dérivée par rapport à la pression B' et l’énergie E(Ry) qui corresponde l’état 

fondamental pour les composés de Heusler quaternaires. 

Alliage a (Å) B (GPa) B' E(Ry) 

PrCoCrAl Type Ⅰ PM 6.320 113.180 4.620 -23859.802860 

FM 6.480 75.840 4.470 -23859.862243 
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Type Ⅱ PM 6.380 112.770 4.610 -23859.814717 

FM 6.560 75.440 4.530 -23859.891931 

Type 

Ⅲ  

PM 6.250 135.680 4.610 -23859.932228 

FM 6.420 98.160 4.260 -23859.951373 

PrCoCrGa 

 

 

 

Type Ⅰ PM 6.350 119.330 4.870 -27262.416017 

FM 6.490 81.930 5.090 -27262.481494 

Type Ⅱ PM 6.400 114.290 4.250 -27262.433797 

FM 6.580 78.730 5.010 -27262.517477 

Type 

Ⅲ  

PM 6.250 145.340 5.450 -27262.525892 

FM 6.410 93.870 4.940 -27262.556351 

PrCoMnGa 

 

Type Ⅰ PM 6.340 123.080 4.940 -27477.959402 

FM 6.510 85.050 5.630 -27478.052023 

Type Ⅱ PM 6.360 121.260 4.760 -27477.975368 

FM 6.590 80.400 4.130 -27478.077272 

Type 

Ⅲ 

PM 6.240 141.510 4.630 -27478.081885 

FM 6.430 90.380 3.810 -27478.092060 

PrCoMnIn 

 

Type Ⅰ PM 6.590 104.090 4.000 -35356.247008 

FM 6.780 69.120 4.720 -35356.365433 

Type Ⅱ PM 6.610 104.870 4.490 -35356.257792 

FM 6.860 66.100 4.090 -35356.389035 

Type 

Ⅲ 

PM 6.460 125.720 4.620 -35356.394987 

FM 6.660 84.360 4.220 -35356.430865 

NdCoMnAl 

 

Type Ⅰ PM 6.520 115.120 4.450 -24849.836137 

FM 6.520 73.590 4.860 -24849.984642 

Type Ⅱ PM 6.300 114.750 4.350 -24849.846591 

FM 6.600 72.760 4.480 -24850.007030 

Type 

Ⅲ 

PM 6.210 137.580 4.450 -24849.974595 

FM 6.450 87.150 3.970 -24850.041168 

NdCoMnIn 

 

Type Ⅰ PM  6.550 106.270 4.610 -36130.736026 

FM 6.810 65.340 5.060 -36130.923387 

Type Ⅱ PM 6.550 105.500 4.720 -36130.743622 

FM 6.880 66.130 4.870 -36130.949718 

Type 

Ⅲ 

PM 6.430 125.780 4.860 -36130.876240 

FM 6.660 83.840 4.670 -36130.981970 

NdCoMnGa 

[100] 

Type I FM 6.3243 81.3007 6.4796 -28252.604878 

Type Ⅱ FM 6.6181 74.7673 4.7488 -28252.632618 

Type 

Ⅲ 

FM 6.3621 85.7208 4.9863 -28252.672787 
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Il est remarqué que les modules de compressibilité pour les alliages de 

Heusler sont comparables avec de légères diminutions de NdCoMnIn à 

NdCoMnGa [100] à NdCoMnAl. Il est connu qu'il existe une forte corrélation 

entre le module de compressibilité et la dureté des matériaux ; par conséquent, les 

matériaux considérés ici possèdent pratiquement le même degré de dureté. Le 

module de compressibilité de l’alliage NdCoMnAl est supérieur à celui du 

NdCoMnIn. Cela signifie que NdCoMnAl est un matériau plus dur que 

NdCoMnIn. 

 

Les valeurs maximales de l'énergie de l'état fondamental, le paramètre de 

réseau et du module de compressibilité sont NdCoMnIn (− 36130.981970), 

PrCoMnIn (6.66) et  PrCoCrAl (98.16) et les valeurs minimales PrCoCrAl                   

(− 23859.951373), PrCoCrGa (6.41) et NdCoMnIn (83.84) respectivement. Les 

résultats réussis sont compatibles aux résultats rapportés précédemment.  

En utilisant la relation suivante, nous avons calculé l'énergie cohésive pour 

évaluer le degré de liaison de tous les composés d'intérêt : 

 

Ecoh = EXX’YZ – (Eiso
X + Eiso

X’+ Eiso
Y +Eiso

Z )           (Ⅲ.3) 

 

Avec :  

Eiso
X, Eiso

X’, Eiso
Y, Eiso

Z sont les énergies des atomes isolés X, X’, Y et Z 

respectivement. 

 EXX’YZ  : est l’énergie total du matériau à l’équilibre théorique.  

Concernant l'énergie de formation(Efor) qui est la quantité d’énergie 

nécessaire pour former un composé solide à partir de ses éléments purs. C’est un 

critère essentiel en physique de l’état solide pour évaluer la stabilité 

thermodynamique d’un matériau, elle est donnée par la relation : 

                Efor = EXX’YZ – (EX + EX’+ EY +EZ )                       (Ⅲ.3) 

Où : 
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EXX’YZ  : est l’énergie total du matériau. 

EX , EX’, EY, EZ sont les énergies des éléments dans leurs états de référence. 

 

Pour cette étude, nous utilisons la base de données  open materials 

quantum  (OQMD) [101] directement pour Efor. Les résultats des calculs se 

trouvent dans le tableau III.4. Le signe négatif des valeurs obtenues confirme que 

les matériaux sont thermodynamiquement stables dans leurs états 

ferromagnétique (FM) et peuvent donc être fabriqués dans des conditions 

normales. 

Tableau III.4: energie de formation (Efor) et de cohésion (Ecoh) des alliages 

PrCoCrZ (Z=Al, Ga), PrCoMnZ (Z=Ga, In) et NdCoMnZ (Z=Al, In). 

Alliage Ecoh (eV) Efor (eV) 

PrCoCrAl -22.385 -0.303 

PrCoCrGa -21.473 -0.306 

PrCoMnGa -16.486 -0.306 

PrCoMnIn -15.679 -0.257 

NdCoMnAl -17.150 -0.303 

NdCoMnIn -15.390 -0.258 

Ⅲ.4 Les propriétés électroniques 

La théorie des bandes est utilisée pour prédire les structures électroniques 

dans les solides. Les bandes d'énergie peuvent expliquer un certain nombre de 

propriétés physiques fondamentales des solides [102–109]. 

Les densités d'états totales (TDOS) et partielles (PDOS), ainsi que les 

structures de bandes électroniques (SB) sont les principaux paramètres de ce 

travail pour exposer les dispersions électroniques des matériaux PrCoCrZ (Z=Al, 

Ga), PrCoMnZ (Z=Ga, In) et NdCoMnZ (Z=Al, In). 

Les figures : III.5 et III.6, présentent à la fois les bandes d'énergie SB, 

TDOS et PDOS calculés dès l'alliages. Les bandes d'énergie SB des matériaux de 

Heusler sont présentées le long de la direction de symétrie élevée W − L − Γ − X 
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– W dans la 1er  zone de Brillouin. Présentant à la fois les deux composants de 

spin (up et dn), en employant à la fois les fonctionnels GGA-PBE et TB-MBJ. 

Les bandes de spin-up présentent un comportement métallique car elles se 

chevauchent avec le niveau de Fermi, tandis qu'un gap de bande émerge au sein 

des bandes de spin-down, résultant en une structure de bande demi-métallique 

avec une polarisation de spin de 100 % qui peut être calculée par la relation 

suivante: 

𝑷 =
𝝆𝒖𝒑(𝑬𝑭)−𝝆𝒅𝒏 (𝑬𝑭 )

𝝆𝒖𝒑(𝑬𝑭)+𝝆𝒅𝒏 (𝑬𝑭 )
× 𝟏𝟎𝟎%                          (III.4) 

où  𝝆𝒖𝒑 (𝑬𝑭 ) et 𝝆𝒅𝒏 (𝑬𝑭 ) sont les densités d’états à l’énergie de Fermi (EF) pour 

les  deux orientations de spin (up et dn) respectivement. 

L'écart de demi-métal calculé de PrCoCrAl, PrCoCrGa, PrCoMnGa, 

PrCoMnIn, NdCoMnAl, NdCoMnIn est respectivement de 0.61, 0.58, 0.56, 0.51, 

0.48 et 0.48 eV avec la méthode GGA-PBE (voir tableau III.5), augmentant 

significativement à 0.67, 0.67, 0.70, 0.61, 0.67 et 0.66 eV respectivement avec la 

méthode TB-MBJ. 

Le bande interdite pour tous les alliages de Heusler est indirecte. L'origine 

de la bande interdite peut être expliquée par l'hybridation d-d des atomes de 

métaux de transition. Il est confirmé que l'hybridation d-d exerce une influence 

essentielle dans la formation de la bande interdite [110]. Pour tous les QHA 

étudiés, l'écart de demi-métal calculé (GAP) est contrôlée par les états 4f et (t2g, 

eg) des atomes de Nd, Pr, et (Mn, Cr, Co) avec une petite participation des états p 

et s des atomes de Al, Ga, et In. (Voir figure III.6). On peut également constater 

que la contribution des états de liaison d’hybridation t2g est grande par rapport à 

eg pour tous les alliages. La même observation s'applique aux méthodes GGA-

PPE et TB-MBJ. 
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Tableau III.5: les valeurs des écartes énergétiques( gaps) pour les alliages de 

Heusler quaternaires étudiés : PrCoCrZ, PrCoMnZ, et NdCoMnZ (où Z = Al, Ga 

ou In) a l’équilibre théorique. 

Alliage Méthode BVmax (eV) BCmin 

(eV) 

GAP 

(eV) 

Direction 

De          à 

PrCoCrAl 

 

GGA -0.45 0.16 0.61 ∆ ∆ 

TB-MBJ -0.45 0.22 0.67 ∆ ∆ 

PrCoCrGa GGA -0.40 0.17 0.58 ∆ ∆ 

TB-MBJ -0.43 0.24 0.67 ∆ ∆ 

PrCoMnGa 

 

GGA -0.50 0.06 0.56 ∆ ∆ 

TB-MBJ -0.57 0.13 0.70 Ʌ ∆ 

PrCoMnIn 

 

GGA -0.36 0.14 0.51 ∆ L 

TB-MBJ -0.29 0.32 0.61 Ʌ ∆ 

NdCoMnAl 

 

GGA -0.36 0.11 0.48 ∆ L 

TB-MBJ -0.42 0.25 0.67 ∆ ∆ 

NdCoMnIn 

 

GGA -0.16 0.31 0.48 ∆ L 

TB-MBJ -0.11 0.54 0.66 L ∆ 
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Figure Ⅲ.7.1: les structures de bandes (polarisées en spin) pour le matériau 

PrCoCrAl ont été déterminées en employant à la fois les approches GGA et TB-

MBJ. L'énergie de Fermi est indiquée par les lignes horizontales en pointillés. 

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

W         L     L     G       D     X  Z W   K W         L     L     G       D     X  Z W   K

E
n

er
g

ie
(e

V
)

EF

GGA PrCoCrAl-dnPrCoCrAl-up

EF

E
n

er
g

ie
(e

V
)

GGA

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6
PrCoCrAl-dn

W         L     L    G       D     X  Z W   K

E
n

er
g

ie
(e

V
)

EF

TB-MBJPrCoCrAl-up

W         L   L     G       D     X  Z W   K

E
n

er
g

ie
(e

V
)

EF

TB-MBJ



 
 

68 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure Ⅲ.8.2: les structures de bandes (polarisées en spin) pour le matériau 

PrCoCrGa ont été déterminées en employant à la fois les approches GGA et TB-

MBJ. L'énergie de Fermi est indiquée par les lignes horizontales en pointillés. 

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6
PrCoCrGa-dn

W         L     L     G       D     X  Z W   K

E
n

er
g

ie
(e

V
)

EF

GGAPrCoCrGa-up

W         L     L     G       D     X  Z W   K

E
n

er
g

ie
(e

V
)

EF

GGA

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6
PrCoCrGa-dn

W         L     L    G       D      X  Z W   K

E
n

er
g

ie
(e

V
)

EF

TB-MBJPrCoCrGa-up

W         L     L    G       D      X  Z W   K

E
n

er
g

ie
(e

V
)

EF

TB-MBJ



 
 

69 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure Ⅲ.9.3: les structures de bandes (polarisées en spin) pour le matériau 

PrCoMnGa ont été déterminées en employant à la fois les approches GGA et 

TB-MBJ. L'énergie de Fermi est indiquée par les lignes horizontales en 

pointillés. 
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Figure Ⅲ.10.4: les structures de bandes (polarisées en spin) pour le matériau 

PrCoMnIn ont été déterminées en employant à la fois les approches GGA et TB-

MBJ. L'énergie de Fermi est indiquée par les lignes horizontales en pointillés. 
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Figure Ⅲ.11.5: les structures de bandes (polarisées en spin) pour le matériau 

NdCoMnAl ont été déterminées en employant à la fois les approches GGA et 

TB-MBJ. L'énergie de Fermi est indiquée par les lignes horizontales en 

pointillés. 
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Figure Ⅲ.12.6: les structures de bandes (polarisées en spin) pour le matériau 

NdCoMnIn ont été déterminées en employant à la fois les approches GGA et 

TB-MBJ. L'énergie de Fermi est indiquée par les lignes horizontales en 

pointillés. 
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Figure Ⅲ.13.1: les densités d'états totales et partielles (polarisées en spin) pour 

le matériau PrCoCrAl ont été déterminées en employans à la fois les approches 

GGA et TB-MBJ. L'énergie de Fermi est indiquée par les lignes verticales en 

pointillés. 
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Figure Ⅲ.14.2: les densités d'états totales et partielles (polarisées en spin) pour 

le matériau PrCoCrGa ont été déterminées en employans à la fois les approches 

GGA et TB-MBJ. L'énergie de Fermi est indiquée par les lignes verticales en 

pointillés. 
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Figure Ⅲ.15.3: les densités d'états totales et partielles (polarisées en spin) pour 

le matériau PrCoMnGa ont été déterminées en employans à la fois les approches 

GGA et TB-MBJ. L'énergie de Fermi est indiquée par les lignes verticales en 

pointillés. 
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Figure Ⅲ.16.4: les densités d'états totales et partielles (polarisées en spin) pour le 

matériau PrCoMnIn ont été déterminées en employans à la fois les approches 

GGA et TB-MBJ. L'énergie de Fermi est indiquée par les lignes verticales en 

pointillés. 
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Figure Ⅲ.17.5: les densités d'états totales et partielles (polarisées en spin) pour le 

matériau NdCoMnAl ont été déterminées en employans à la fois les approches 

GGA et TB-MBJ. L'énergie de Fermi est indiquée par les lignes verticales en 

pointillés. 
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Figure Ⅲ.18.6: les densités d'états totales et partielles (polarisées en spin) pour le 

matériau NdCoMnIn ont été déterminées en employans à la fois les approches 

GGA et TB-MBJ. L'énergie de Fermi est indiquée par les lignes verticales en 

pointillés. 
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Ⅲ.5 Les propriétés magnétiques 

Le moment magnétique global d'un matériau demi-métallique doit être un 

nombre entier et suivre la règle de Pauli. La magnétisation totale (Mt ) est reliée 

au nombre d'électrons de valence (Zt) par l'une des relations suivantes [18,112] : 

   Mt = Zt – 18  ,  Mt = Zt – 24 ou  Mt = Zt – 28                               (Ⅲ.5)   

Pour le tableau suivant, nous donnons les moments magnétiques totaux et partiels 

(en μB) pour les matériaux Heusler quaternaires PrCoCrZ (Z= Al, Ga), PrCoMnZ 

(Z=Ga, In) et NdCoMnZ (Z=Al, In) au l’équilibre théorique. 

Tableau Ⅲ.6: résultat de calcul des moments magnétiques totaux et partiels 

(exprimés en μB) pour les matériaux Heusler quaternaires PrCoCrZ (Z= Al, Ga), 

NdCoMnZ (Z=Al, In) et PrCoMnZ (Z=Ga, In). 

Alliages mCo mPr/Nd mCr/Mn mAl/ Ga/ In mInt Mt 

PrCoCrAl GGA 0.189 1.697 2.910 -0.050 0.250 5 

TB-MBJ 0.439 1.601 2.949 -0.066 0.074 5 

PrCoCrGa GGA 0.051 1.747 2.993 -0.060 0.260 5 

TB-MBJ 0.205 1.662 3.112 -0.081 0.101 5 

PrCoMnGa 

 

GGA 0.886 1.609 3.450 -0.026 0.071 6 

TB-MBJ 1.218 1.404 3.575 -0.051 -0.148 6 

PrCoMnIn 

 

GGA 0.877 1.582 3.526 -0.033 0.010 6 

TB-MBJ 1.400 1.265 3.647 -0.051 -0.259 6 

NdCoMnAl GGA 0.677 2.937 3.343 -0.052 0.088 7 

TB-MBJ 0.989 2.874 3.414 -0.082 -0.192 7 

NdCoMnIn 

 

GGA 0.420 2.992 3.549 -0.048 0.081 7 

TB-MBJ 1.049 2.844 3.572 -0.088 -0.378 7 

Il apparaît clairement que Mt (voir tableau Ⅲ.6) est un nombre entier. Tous 

les matériaux calculés sont soumis à la règle de Pauli suivante Mt = Zt – 18. Pour 

NdCoMnAl, la valeur de moment magnétique de Mn ( mMn= 3.343 µB) est grande 

par rapport aux autres atomes (mCo=0.677 µB, mNd= 2.937 µB,). La contribution 

de l’atome d’aluminium est négligeable, et c’est logique car ce n’est pas un 

matériau magnétique. Des résultats comparables sont également obtenus par la 

méthode de calcul TB-MBJ. Pour NdCoMnIn, PrCoMnGa et PrCoMnIn, la plus 
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grande contribution vient de l'atome de Mn, suivi des atomes de terres rares. Alors 

que dans PrCoCrAl et PrCoCrGa, L'origine du moment magnétique est l'atome de 

Cr. 

Pour la température de Curie (TC), on utilise la relation linéaire entre la 

température et le moment magnétique total (Mt)[113]: 

TC = 23 + 181 Mt                              (Ⅲ.6) 

Nous avons estimé TC pour PrCoCrZ (Z= Al, Ga) à 928 K, 1109 K pour 

PrCoMnZ (Z=Ga, In) et 1 290 K pour NdCoMnZ (Z=Al, In). Ces températures 

sont jugées suffisamment élevées pour les applications spintroniques. 

Sur la figure Ⅲ.7, nous présentons le moment magnétique total et atomique 

en fonction du paramètre de réseau pour tous les alliages. Pour NdCoMnAl, Nous 

observons une croissance du moment magnétique global en fonction de 

l'augmentation de la constante de réseau, avant qu'il ne se stabilise à 7.00 μB. Les 

moments magnétiques des atomes de Mn et Co ont augmenté, ce qui est la cause 

de cette augmentation ; le moment magnétique de l'atome Nd est presque stable. 

Pour NdCoMnIn, le moment magnétique global est stable à une valeur de 7.00 μB 

dans tout le champ d'étude, les moments des atomes restant approximativement 

constants. Pour PrCoMnGa, les moments magnétiques se comportent comme les 

moments magnétiques pour NdCoMnAl mais Mt se stabilise à une valeur de 6.00 

μB. Pour PrCoMnIn, le moment magnétique augmente également, mais 

légèrement, qui se stabilise également à une valeur de 6.00 µB. Des valeurs 

positives pour le moment des atomes dans les alliages que nous avons mentionnés 

indiquent qu'ils sont ferromagnétiques demi-métalliques [114]. 

Pour PrCoCrAl et PrCoCrGa, le moment magnétique total se stabilise à 

5.00 μB. Nous observons également une diminution du moment magnétique de Co 

à mesure que la constante de réseau augmente, pour finalement devenir négative. 

Cela indique qu'une transition du ferromagnétique au ferrimagnétique peut être 

obtenue en faisant varier la constante de réseau.
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Figure Ⅲ.19.1: les moments magnétiques calculés en fonction du paramètre de 

réseau pour les alliages PrCoCrAl et  PrCoCrGa. Les lignes pointillées verticales 

indiquent les paramètres des réseaux à l’équilibre théorique. 
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Figure Ⅲ.20.2: les moments magnétiques calculés en fonction du paramètre de 

réseau pour les alliages PrCoMnGa et  PrCoMnIn. Les lignes pointillées 

verticales indiquent les paramètres des réseaux à l’équilibre théorique. 
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Figure Ⅲ.21.3: les moments magnétiques calculés en fonction du paramètre de 

réseau pour les alliages NdCoMnAl et  NdCoMnIn. Les lignes pointillées 

verticales indiquent les paramètres des réseaux à l’équilibre théorique. 
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Ⅲ.6 Les propriétés thermoélectriques 

À cause de la croissance de la perte de chaleur à l'ère technologique 

actuelle, les scientifiques envisagent de transformer la chaleur résiduelle en 

énergie électrique. Étant donné que déterminer le comportement thermoélectrique 

d'un composé est crucial, la théorie semi-classique de Boltzmann est incluse dans 

le package BoltzTraP. Parce que les électrons portent des qualités, la structure de 

bande n'affecte pas les caractéristiques de transport. 

La figure de mérite ZT est utilisé pour déterminer la performance des 

dispositifs thermoélectriques, qui est sans dimension. ZT est définie par la relation 

suivante : 

ZT = S²σT/κ                                  (Ⅲ.7)                              

 

Avec : 

κ : la conductivité thermique. 

T : la température. 

σ : la conductivités électrique. 

S : le coefficient de Seebeck. 

Nous montrons la variation du coefficient de Seebeck (S) pour trois 

températures différentes sur la figure Ⅲ.8. Le S a une valeur maximale à 300 K; 

sa valeur diminue avec l'augmentation des températures. En comparaison avec 

certains alliages, les valeurs obtenues sont grandes. Haleoot et Hamad [2], par 

exemple, ont observé une valeur de -483.2 µVK-1(429.0 µVK-1) dans CoFeCuPb, 

mais à 300 K, nous avons découvert des valeurs allant de -816,59 µVK-1 (754,77 

µVK-1) pour NdCoMnIn à -977.26 µVK-1(1085.67 µVK-1) pour PrCoCrAl. La 

valeur S de type n pour PrCoMnZ (Z = Ga, In), NdCoMnZ (Z = Al, In) est élevée 

par rapport à celle de type p, tandis que nous remarquons l'inverse pour les 

matériaux PrCoCrZ (Z = Al, Ga).  
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Le matériau de type p avec plus de trous est indiqué par un coefficient de 

Seebeck positif, tandis que le matériau de type n avec la plupart des électrons est 

indiqué par un coefficient de Seebeck négatif. Il devient clair que les matériaux 

ont des coefficients de Seebeck positifs et sont de type p. La concentration de 

porteurs dans les semi-conducteurs peut varier avec la température en raison de la 

stimulation thermique. À mesure que la température augmente, davantage de 

porteurs de charge sont thermiquement stimulés du bande de valence (BV) au 

bande de conduction (BC), ce qui entraîne une concentration plus élevée de 

porteurs. Cette variation de la concentration des porteurs pourrait affecter le 

coefficient de Seebeck. 

Les phonons sont des vibrations du réseau qui dispersent les porteurs de 

charge dans un matériau. À des températures plus élevées, les phonons dispersent 

les porteurs de charge de manière plus significative. Cela peut affecter le 

coefficient de Seebeck dans les matériaux ayant des configurations de réseau 

comparables. 

La période de relaxation est généralement influencée par une variété de 

processus de diffusion, y compris la diffusion par défauts et impuretés, les 

interactions électron-phonon, la diffusion magnétique et les interactions électron-

électron [115]. Le temps de relaxation de 5 × 10−15 s est couramment utilisé pour 

calculer les caractéristiques thermoélectriques, car il est considéré comme 

indépendant de l'énergie. 

 Les conductivités thermiques électroniques, notées σ, sont affichées dans 

la figure Ⅲ.9. À température normale, PrCoCrGa présente une conductivité 

électrique supérieure à celle des matériaux NdCoMnAl, NdCoMnIn, PrCoMnGa, 

PrCoMnIn et PrCoCrAl. La conductivité électrique dans la bande interdite a une 

valeur minimale de 9.47, 12.5, 3.04, 3.77, 0.46 et 0.84 Ω−1m−1 à T = 300 K et une 

valeur maximale de 1.7 × 104, 1.85 × 104, 1.25 × 104, 1.18 × 104, 6.95 × 103, 7.21 

× 103 à 900 K pour NdCoMnAl, NdCoMnIn, PrCoMnGa, PrCoMnIn, PrCoCrAl 
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et PrCoCrGa) respectivement. Les résultats de calcul que nous avons réalisés sont 

en accord avec les résultats de l’alliage NdCoMnGa (voir réf [100]). 

Un aspect essentiel dans l'évaluation des caractéristiques thermoélectriques 

(TE) d'un matériau est son facteur de puissance (FP), qui mesure son efficacité à 

transformer la chaleur en électricité. Mathématiquement, le FP est exprimé par : 

FP = S²σ                                             (Ⅲ.8) 

Avec : 

          S : le coefficient de Seebeck. 

σ : la conductivités électrique. 

À mesure que la température passe de 300 à 900 K, le facteur de puissance 

thermoélectrique PF de tous les composés augmente de manière spectaculaire, et 

la concentration optimale de trous augmente légèrement. Les matériaux à PF élevé 

sont reconnus pour être des matériaux thermoélectriques efficaces ayant la 

capacité de générer une plus grande quantité d'énergie. Le coefficient de Seebeck 

et la conductivité devraient tous deux avoir de bonnes valeurs pour un PF élevé. 

Dans la figure Ⅲ.10, nous présentons le facteur de puissance calculé selon le 

changement du potentiel chimique pour tous les alliages à l'équilibre. À 

température ambiante, le facteur de puissance atteint sa valeur maximale, estimée 

à 4.25 × 10³, 2.52 × 10³, 2.98 × 10³, 2.61 × 10³, 2.95 × 10³ et 3.44 × 10³μW/(K2m1) 

pour PrCoCrAl, PrCoCrGa, PrCoMnGa, PrCoMnIn, NdCoMnAl et NdCoMnIn 

respectivement. Pour PrCoMnZ (Z = Ga, In) et NdCoMnZ (Z = Al, In), le type n 

montre un facteur de puissance thermoélectrique plus élevé que le type p, tandis 

que nous observons l'inverse dans les alliages PrCoCrAl et PrCoCrGa. 

Nous avons calculé la conductivité thermique électronique pour chaque 

alliage et l'avons tracée pour différentes valeurs du potentiel chimique dans la 

figure Ⅲ.11. À mesure que la température augmente, nous observons que cette 

quantité physique augmente également. PrCoCrAl, PrCoCrGa, PrCoMnGa, 
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PrCoMnIn, NdCoMnAl et NdCoMnIn ont des conductivités thermiques 

respectives de 6.4 Wm-1K-1s-1, 6.3 Wm-1K-1s-1, 5.2 Wm-1K-1s-1, 4.9 Wm-1K-1s-1, 7.5 

Wm-1K-1s-1 et 7 Wm-1K-1s-1 à température ambiante. À 900 K, les valeurs 

respectives de conductivité thermique des matériaux sont de 15.1 Wm-1K-1s-1, 14.9 

Wm-1K-1s-1,14.8 Wm-1K-1s-1, 15.7 Wm-1K-1s-1 20.2 Wm-1K-1s-1 et 19.3 Wm-1K-1s-1  

à la température plus élevée. Pour obtenir une haute efficacité thermoélectrique 

(haute figure de mérite ZT), une haute conductivité électrique et une faible 

conductivité thermique sont des propriétés couramment recherchées des 

matériaux thermoélectriques. Le matériau peut ainsi transformer efficacement la 

chaleur en électricité ou vice versa. Les phonons, ou vibrations du réseau, sont la 

principale cause de la conductivité thermique dans les matériaux cristallins. Les 

processus de diffusion des phonons peuvent varier avec la température. La 

conductivité thermique augmente en raison d'interactions phonon-phonon plus 

fortes à des températures plus élevées. Le mécanisme de diffusion d'Umklapp est 

une méthode courante pour expliquer le lien entre la conductivité thermique et la 

température. Il joue un rôle considérable dans l'augmentation de la conductivité 

thermique à des températures croissantes. Les variations des poids atomiques, des 

forces de liaison et des structures de réseau de tous les matériaux, PrCoCrAl, 

PrCoCrGa, PrCoMnGa, PrCoMnIn, NdCoMnAl et NdCoMnIn à trois 

températures différentes, peuvent être à l'origine des différences de leur 

conductivité thermique à 900 K. Ces paramètres affectent l'efficacité du transfert 

des vibrations du réseau du matériau. 

La valeur ZT sert de quantité sans dimension, évaluant l'efficacité des 

matériaux thermoélectriques (TE) en fonction de caractéristiques clés. Il quantifie 

l'efficacité de transformer la chaleur en électricité pour un matériau. ZT est défini 

par ZT=S2σT/ κ [116, 117]. Les matériaux TE ayant un ZT supérieur ou presque 

égal à 1.0 sont considérés comme prometteurs [118], atteints lorsque S2σ est élevé 

et κ/τ est faible. Il est important de savoir que quand la température augmente, la 
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valeur de ZT diminue. Les valeurs de la figure de mérite électrique sont presque 

égales à l’unité dans les plages de potentiel chimique où S est maximisé. 

Spécifiquement, à 300 K, la valeur de ZTe est d'environ 0.97 pour tous les 

alliages. Le motif initial variable (comme illustré dans la figure Ⅲ.12) du ZT est 

attribué aux tendances fluctuantes de S, car celles-ci sont étroitement liées selon 

l'équation du ZT. Au-delà de cette température, La conductivité thermique 

présente une augmentation plus que celle de la conductivité électrique., entraînant 

une baisse du ZT. Ce comportement est courant dans de nombreux matériaux 

thermoélectriques et met en évidence l'interaction complexe entre les différentes 

caractéristiques de transport et la température dans l'optimisation des 

performances thermoélectriques. Par conséquent, ces matériaux de Heusler 

quaternaires étudiés ont un potentiel pour l'utilisation de la chaleur résiduelle et 

les solutions énergétiques durables. 
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Figure Ⅲ.22.1: résultat du calcul du coefficient de Seebeck S en lien avec le 

potentiel chimique des matériaux PrCoCrAl et PrCoCrGa à trois températures 

différentes. 
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Figure Ⅲ.23.2: résultat du calcul du coefficient de Seebeck S en lien avec le 

potentiel chimique des matériaux PrCoMnGa et PrCoMnIn à trois températures 

différentes. 
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Figure Ⅲ.24.3: résultat du calcul du coefficient de Seebeck S en lien avec le 

potentiel chimique des matériaux NdCoMnAl et NdCoMnIn à trois températures 

différentes. 
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Figure Ⅲ.25.1: résultat du calcul de la conductivité électrique  en lien avec le 

potentiel chimique des alliages des matériaux PrCoCrAl et PrCoCrGa à trois 

températures différentes. 
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Figure Ⅲ.26.2: résultat du calcul de la conductivité électrique  en lien avec le 

potentiel chimique des alliages des matériaux PrCoMnGa et PrCoMnIn à trois 

températures différentes. 
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Figure Ⅲ.27.3: résultat du calcul de la conductivité électrique  en lien avec le 

potentiel chimique des alliages des matériaux NdCoMnAl et NdCoMnIn à trois 

températures différentes. 
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Figure Ⅲ.28.1: résultat du calcul du facteur de puissance (FP) en lien avec le 

potentiel chimique des matériaux PrCoCrAl et PrCoCrGa à trois températures 

différentes. 
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Figure Ⅲ.29.2: résultat du calcul du facteur de puissance (FP) en lien avec le 

potentiel chimique des matériaux PrCoMnGa et PrCoMnIn à trois températures 

différentes. 
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Figure Ⅲ.30.3: résultat du calcul du facteur de puissance (FP) en lien avec le 

potentiel chimique des matériaux NdCoMnAl et NdCoMnIn à trois températures 

différentes. 
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Figure Ⅲ.31.1: résultat du calcul de la conductivité  thermique en lien avec le 

potentiel chimique des matériaux PrCoCrAl et PrCoCrGa à trois températures 

différentes. 
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Figure Ⅲ.32.2: résultat du calcul de la conductivité  thermique en lien avec le 

potentiel chimique des matériaux PrCoMnGa et PrCoMnIn à trois températures 

différentes. 
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Figure Ⅲ.33.3: résultat du calcul de la conductivité  thermique en lien avec le 

potentiel chimique des matériaux NdCoMnAl et NdCoMnIn à trois températures 

différentes. 
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Figure Ⅲ.34.1: résulta de calcul de la figure de mérite électrique (ZTe)  en lien 

avec le potentiel chimique des matériaux PrCoMnGa et PrCoMnIn à trois 

températures différentes.
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Figure Ⅲ.35.2: résulta de calcul de la figure de mérite électrique (ZTe)  en lien 

avec le potentiel chimique des matériaux PrCoCrAl et PrCoCrGa à trois 

températures différentes.
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Figure Ⅲ.36.3: résulta de calcul de la figure de mérite électrique (ZTe)  en lien 

avec le potentiel chimique des matériaux NdCoMnAl et NdCoMnIn à trois 

températures différentes.
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Conclusion générale & perspectives 

Nous avons présenté les caractéristiques physiques polarisées par le spin 

des alliages Heusler quaternaires, PrCoCrZ (Z=Al, Ga), PrCoMnZ (Z=Ga, In) et 

NdCoMnZ (Z=Al, In) dans le cadre de la DFT en utilisant le code de calcul 

Wien2k.  

L’optimisation de l’état fondamental montre que tous les alliages sont plus 

stables dans la structure cristalline FM-TYPE III. Le signe négatif des valeurs des 

énergies de formation confirme que les matériaux sont thermodynamiquement 

stables dans leurs états FM et peuvent donc être fabriqués dans des conditions 

normales. 

Un comportement demi-métallique est observé avec les deux potentiels 

d'échange et de corrélation. En utilisant le potentiel TB-MBJ, nous observons une 

bande d'énergie de 0,679, 0,661, 0,700, 0,614, 0,673 et 0,674 eV, dans le cas spin-

dn pour NdCoMnAl, NdCoMnIn, PrCoMnGa, PrCoMnIn, PrCoCrAl et 

PrCoCrGa, respectivement. Leur spin est totalement polarisé à 100 % et leurs 

propriétés magnétiques se conforment à la règle de Slater-Pauling., montrant ainsi 

leur potentiel d'applicabilité dans les domaines de l'électronique.  

Pour la température de Curie, nous avons estimé 928 K pour PrCoCrZ 

(Z=Al, Ga), 1109 K pour PrCoMnZ (Z=Ga, In) et 1290 K pour les alliages 

NdCoMnZ (Z=Al, In). La combinaison d'une conductivité électrique élevée, d'un 

coefficient de Seebeck élevé et d'un ZT approchant l'unité suggère le potentiel du 

matériau étudiés pour des applications thermoélectriques. 

Les perspectives de ce présent travail sont résumées dans les points suivants : 

 Explorer des nouveaux matériaux demi-métallique. 

 Étude de l'effet des impuretés et des lacunes sur l'énergie de la bande 

interdite (gap). 

 Effectuer des calculs pour améliorer le facteur de mérite des alliages demi-

métalliques pour les applications thermoélectriques. 

 Effectuer le calcul en utilisant la méthode DFT+U.  
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Figure : représentation 3D des propriétés thermoélectriques pour l’alliage 

NdCoMnAl. 



  

 

 
 

Nomenclature 

 Abréviations les plus couramment utilisées : 

DFT : Théorie de la Fonctionnelle de la Densité « En anglais : Density Functional 

Theory ». 

SCF : Auto-Cohérente « En Anglais : Self-Consistent Field ». 

LDA: Approximation de la Densité Locale « En Anglais : Local Density 

Approximation ». 

LSDA: Approximation de la Densité de Spin Locale « En anglais: Local Spin 

Density 

Approximation ». 

GGA: Approximation du Gradient Généralisé « En anglais : Generalized Gradient 

Approximation). 

mBJ : Potentiel de Becke et Johnson modifié « En anglais : modified Becke 

Johnson Potentiel). 

APW : Ondes Planes Augmentées « En anglais : Augmented Plane Wave ». 

BZ : Zone de Brillouin « En anglais Brillouin Zone ». 

EXC : Energie d’échange-corrélation « En anglais: exchange-correlation energy ». 

LAPW : Ondes Planes Augmentées Linéarisées « En anglaiis : Linearized 

Augmented Plane wave ». 

FP-LAPW : Ondes Planes Augmentées Linéarisées à Potentiel Total « En 

anglais: Full Potential Linearized Augmented Plane Waves ». 

SB : Structures des Bandes. 

DOS : Densités des Etats «En anglais : Density Of States DOS ». 

TDOS/PDOS: Densité d’états totale / partielle « En anglais: total / partial density 

of states ». 

QHAs: Alliages Heusler quaternaires «En anglais : Quaternary Heusler alloys». 

FM:  Ferromagnétique «En anglais: Ferromagnetic». 

PM: Paramagnétique «En anglais : Paramagnétic». 

Mtot: Moment magnétique totale «En anglais : Magnetic moment total». 

TE : thermoelectrique «En anglais : thermoelectric». 

SP : Slater – Pauling                          
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