| 
                
                
  
 
Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
 
Faculté des Sciences >
 
Département de Physique >
 
Mémoires de master >
 
    
        
            
                
                Veuillez utiliser cette adresse pour citer ce document :
                http://dspace.univ-setif.dz:8888/jspui/handle/123456789/6287
             | 
         
     
     
    
    
| Titre:  | Experimental and simulation study of thononic crystal sensors for petroleum troducts characterization |  
| Auteur(s):  | Slimani, Ikram |  
| Mots-clés:  | Experimental and simulation Thononic Crystal Petroleum |  
| Date de publication:  | 2025 |  
| Résumé:  | In this master thesis, a numerical and experimental investigation on the properties of a
two-dimensional phononic crystal composed of a steel/air structure with square symmetry
and a central filled defect hole was conducted. The application of the proposed phononic
crystal as a liquid sensor for the characterization of complex hydrocarbon mixtures has
also been discussed.
The main objective of this project was to explore the use of phononic crystals as sensors
for determining the bulk properties of hydrocarbon blend mixtures, such as ethanolgasoline
and diluent-gasoil. The key findings of this work can be summarized as follows:
• COMSOL Multiphysics optimization enables the definition of the edges of the
phononic band gap, which can be adapted to accommodate different liquid analytes.
• Volumetric properties such as the density and acoustic velocity of hydrocarbon
mixtures can be determined using the proposed phononic crystal sensor.
• The acoustic transmission of the resonant peak localized within the phononic
band gap is directly related to the defined concentrations of the mixtures, including
ethanol and diluent.
• The shift in resonant frequencies as a function of concentration allows the construction
of a calibration curve for the sensor.
• The proposed phononic crystal-based sensor demonstrates a high quality factor,
which is a dependent parameter of the bulk physical properties of the hydrocarbon
blends.
In future work, we aim to employ artificial intelligence tools, particularly machine
learning models, to predict the acoustic resonant peak corresponding to unknown concentrations
using a limited set of input parameters such as transmission data. |  
| URI/URL:  | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/6287 |  
| Collection(s) : | Mémoires de master
  |  
  
Fichier(s) constituant ce document : 
 |   
    
    
     
    
    
    Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés. 
                    
                      
                 |