|
Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département de Physique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/6001
|
| Titre: | One-body spin-density matrix expansion and exchange energy in spin-current density functional theory |
| Auteur(s): | Kouache, Manel |
| Mots-clés: | Density functional theory (DFT) spin-density matrices Density matrix Spin-current density |
| Date de publication: | 2024 |
| Résumé: | Density functional theory (DFT) is an approach describing the properties of an interacting
many-fermion system. The DFT is applied in various elds of physics at the quantum level such
as the calculation of electronic structure and band structures in solid-state physics, and also
applied in quantum chemistry for molecules. In the primitive version of DFT, the local particle
density 0(~r) constitutes the basic variable to describe the properties of the systemof N interact-
ing particles. Including the spin and spin-orbit coupling the corresponding density-functional is
called spin-current DFT and requires additional basic set of variables
n
0;!j ;! ;!J
o
, namely
the particle density 0, the current density !j , the spin-vector density ! and the spin-currents
density !J . In this work we are interested in approximate functional of exchange energy Ex
within the spin-current-DFT. For that we perform an appropriate short range expansion of the
one-body spin-density matrix up to second order in relative distance. Using this expansion we
were able to derive an analytical exchange energy functional. This novel result is then used toexamine some particular situations known in the literature. In particular we nd an improved
exchange functional in the so-called gradient expansion approximation (GEA). We also show
that our general functional reduce for spin-orbit coupled systems to an exchange functional
used very recently |
| URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/6001 |
| Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|