DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département de Physique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/6001

Titre: One-body spin-density matrix expansion and exchange energy in spin-current density functional theory
Auteur(s): Kouache, Manel
Mots-clés: Density functional theory (DFT)
spin-density matrices
Density matrix
Spin-current density
Date de publication: 2024
Résumé: Density functional theory (DFT) is an approach describing the properties of an interacting many-fermion system. The DFT is applied in various elds of physics at the quantum level such as the calculation of electronic structure and band structures in solid-state physics, and also applied in quantum chemistry for molecules. In the primitive version of DFT, the local particle density 0(~r) constitutes the basic variable to describe the properties of the systemof N interact- ing particles. Including the spin and spin-orbit coupling the corresponding density-functional is called spin-current DFT and requires additional basic set of variables n 0;􀀀!j ;􀀀! ;􀀀!J o , namely the particle density 0, the current density 􀀀!j , the spin-vector density 􀀀! and the spin-currents density 􀀀!J . In this work we are interested in approximate functional of exchange energy Ex within the spin-current-DFT. For that we perform an appropriate short range expansion of the one-body spin-density matrix up to second order in relative distance. Using this expansion we were able to derive an analytical exchange energy functional. This novel result is then used toexamine some particular situations known in the literature. In particular we nd an improved exchange functional in the so-called gradient expansion approximation (GEA). We also show that our general functional reduce for spin-orbit coupled systems to an exchange functional used very recently
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/6001
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires