DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département de Physique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5829

Titre: Image Registartion And Object detection using Deep Learning In Radiotherapy
Auteur(s): Benaddad, Abdesselem
Mots-clés: Image Registration
Object Detection
Medical Imaging
Deep Learning
Radiotherapy
Multi-Modality
Date de publication: 2024
Résumé: Image registration and object detection are pivotal processes in the domain of radiotherapy, significantly enhancing the precision and effectiveness of treatment planning and delivery. This study leverages the capabilities of deep learning to address the challenges inherent in these tasks, particularly focusing on the complexities of anatomical variations and deformations. We propose and evaluate two deep learning models: VoxelMorph and a Sequential Model. VoxelMorph is tested on two datasets: the CTCBCT and Retinal FIRE datasets, achieving Cross Correlation (CC) values of 0.009 and 0.14, and Dice Similarity Coefficients (DiceSoccer) of 0.1 and 0.2, respectively. These results indicate that VoxelMorph demonstrates moderate performance in image registration, with better outcomes on the Retinal FIRE dataset compared to the CTCBCT dataset. The Sequential Model, designed for detecting and classifying tumor images in MRI datasets, demonstrates superior performance with a training loss of 0.191, training accuracy of 93%, validation accuracy of 98%, and test accuracy of 97%. These metrics underscore the model’s robustness and effectiveness in accurately identifying and classifying tumors. This study underscores the potential of deep learning, particularly convolutional neural networks (CNNs), in overcoming traditional challenges in image registration and object detection in radiotherapy.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5829
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires