Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département de Physique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5829
|
Titre: | Image Registartion And Object detection using Deep Learning In Radiotherapy |
Auteur(s): | Benaddad, Abdesselem |
Mots-clés: | Image Registration Object Detection Medical Imaging Deep Learning Radiotherapy Multi-Modality |
Date de publication: | 2024 |
Résumé: | Image registration and object detection are pivotal processes in the domain of
radiotherapy, significantly enhancing the precision and effectiveness of treatment
planning and delivery. This study leverages the capabilities of deep learning to
address the challenges inherent in these tasks, particularly focusing on the complexities
of anatomical variations and deformations. We propose and evaluate two deep
learning models: VoxelMorph and a Sequential Model. VoxelMorph is tested on
two datasets: the CTCBCT and Retinal FIRE datasets, achieving Cross Correlation
(CC) values of 0.009 and 0.14, and Dice Similarity Coefficients (DiceSoccer) of 0.1
and 0.2, respectively. These results indicate that VoxelMorph demonstrates moderate
performance in image registration, with better outcomes on the Retinal FIRE dataset
compared to the CTCBCT dataset. The Sequential Model, designed for detecting and
classifying tumor images in MRI datasets, demonstrates superior performance with a
training loss of 0.191, training accuracy of 93%, validation accuracy of 98%, and test
accuracy of 97%. These metrics underscore the model’s robustness and effectiveness
in accurately identifying and classifying tumors. This study underscores the potential
of deep learning, particularly convolutional neural networks (CNNs), in overcoming
traditional challenges in image registration and object detection in radiotherapy. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5829 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|