DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5739

Titre: Fake image detection using deep learning
Auteur(s): Karouche, Naila
Benghanem, Nour elyakin
Mots-clés: Fake image
Deep learning
Date de publication: 2025
Résumé: Detecting digital image forgery has become a major challenge in the field of cybersecurity and visual content verification. This thesis presents a deep learning-based system for detecting and localizing Copy-Move forgeries in images. The proposed model is built on a hybrid architecture that combines Convolutional Neural Networks (CNNs) for local feature extraction and Transformers for capturing global context. To enhance performance, we integrated Focal Loss and the Mixup data augmentation technique during training. The system was evaluated on the CoMoFoD dataset, demonstrating a high ability to detect tampered images and accurately highlight the forged regions. Additionally, a user-friendly local desktop application was developed, allowing users to upload an image, receive a prediction, and clearly visualize the suspected manipulated zones.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5739
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires