Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5739
|
Titre: | Fake image detection using deep learning |
Auteur(s): | Karouche, Naila Benghanem, Nour elyakin |
Mots-clés: | Fake image Deep learning |
Date de publication: | 2025 |
Résumé: | Detecting digital image forgery has become a major challenge in the field of cybersecurity
and visual content verification. This thesis presents a deep learning-based system for
detecting and localizing Copy-Move forgeries in images. The proposed model is built on a
hybrid architecture that combines Convolutional Neural Networks (CNNs) for local feature
extraction and Transformers for capturing global context. To enhance performance,
we integrated Focal Loss and the Mixup data augmentation technique during training. The
system was evaluated on the CoMoFoD dataset, demonstrating a high ability to detect
tampered images and accurately highlight the forged regions. Additionally, a user-friendly
local desktop application was developed, allowing users to upload an image, receive a prediction,
and clearly visualize the suspected manipulated zones. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5739 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|