Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5736
|
Titre: | Nature-Inspired Metaheuristics Algorithm for Data Clustering |
Auteur(s): | Mekhelfi, Yasmine Boutorh, Kounouz |
Mots-clés: | Unsupervised Learning Clustering K-Means Metaheuristics Black Hole Algorithm. |
Date de publication: | 2025 |
Résumé: | In this work, we proposed an optimized version of the K-Means clustering algorithm.
Specifically, we improved the random initialization step of the centroids by replacing it
with a strategy guided by the Black Hole Algorithm (BHA), a metaheuristic inspired
by astrophysics.
This led to the development of a hybrid algorithm named KMBHA, which combines the
strengths of both K-Means and BHA. Instead of randomly selecting initial centroids,
BHA searches for optimal starting points, which K-Means then uses to perform clustering.
A comparative evaluation between KMBHA and standard K-Means was conducted on
both synthetic and real datasets. The results demonstrated that KMBHA consistently
outperforms K-Means, especially on complex real-world datasets such as Digits, where
the high dimensionality and overlapping clusters highlight the limitations of conventional
K-Means. These findings confirm the potential of our approach for more robust
unsupervised clustering tasks. However, further improvements are possible and are discussed
in the general conclusion. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5736 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|