DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5736

Titre: Nature-Inspired Metaheuristics Algorithm for Data Clustering
Auteur(s): Mekhelfi, Yasmine
Boutorh, Kounouz
Mots-clés: Unsupervised Learning
Clustering
K-Means
Metaheuristics
Black Hole Algorithm.
Date de publication: 2025
Résumé: In this work, we proposed an optimized version of the K-Means clustering algorithm. Specifically, we improved the random initialization step of the centroids by replacing it with a strategy guided by the Black Hole Algorithm (BHA), a metaheuristic inspired by astrophysics. This led to the development of a hybrid algorithm named KMBHA, which combines the strengths of both K-Means and BHA. Instead of randomly selecting initial centroids, BHA searches for optimal starting points, which K-Means then uses to perform clustering. A comparative evaluation between KMBHA and standard K-Means was conducted on both synthetic and real datasets. The results demonstrated that KMBHA consistently outperforms K-Means, especially on complex real-world datasets such as Digits, where the high dimensionality and overlapping clusters highlight the limitations of conventional K-Means. These findings confirm the potential of our approach for more robust unsupervised clustering tasks. However, further improvements are possible and are discussed in the general conclusion.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5736
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires