|
Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5732
|
| Titre: | Option: Data Engineering and Web Technologies Deep Learning Image-based Plant Diseases Classification for Agricultural Systems |
| Auteur(s): | Guissi, Riheb Ouissale Meridja, Amina |
| Mots-clés: | Plant diseases Deep learning Image classification Custom dataset Convolutional Neural Network (CNN) |
| Date de publication: | 2025 |
| Résumé: | Plant diseases are a big problem for farming and the safety of food around the world.
We suggest a way to automatically classify plant diseases using deep learning and a
custom dataset made up of more than 24,000 images from different sources. To see how
color affects model performance, the dataset was preprocessed, augmented, and split
into two formats: colored and grayscale. We built a Convolutional Neural Network
(CNN) model from the base up and also improved two pretrained models, ResNet50
and VGG16, using transfer learning methods. Our tests show that the VGG16 model
was the best at classifying both colored and grayscale datasets. CNN worked well
on colored datasets, and RESNET worked well on grayscale datasets. The results
also show that grayscale images can work just as well, which shows how flexible deep
learning models are when it comes to different types of input. In general, this study
shows how important the model architecture, preprocessing strategy, and size and
design of the dataset are for making strong AI solutions for precision agriculture |
| URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5732 |
| Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|