Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5729
|
Titre: | Deep learning models to improve Variant calling in next generation sequencing data |
Auteur(s): | Doudou, Ayat Errahmane Adjal, Sofia |
Mots-clés: | Variant calling Deep learning Pileup images Next-generation sequencing Semi-supervised learning Multi-label classification |
Date de publication: | 2025 |
Résumé: | Next-generation sequencing (NGS) technologies have transformed genomic research by
enabling high-throughput and cost-effective DNA analysis, unlocking new possibilities
in understanding genetic variation. However, the accurate detection of genomic variantsespecially
in clinical and cancer-related contextsremains a persistent challenge due
to issues such as sequencing noise, low coverage, and complex variant patterns. Overcoming
these limitations is critical to achieving the full potential of precision medicine.
In recent years, artificial intelligenceparticularly deep learninghas emerged as a powerful
approach for modeling and interpreting complex biological data. This thesis investigates
deep learning-based solutions for improving variant calling from NGS data, with a focus
on image-based representations. We propose two pipelines: the first reconstructs a
complete variant calling workflow using public datasets (e.g., NCBI SRA), from raw sequencing
reads to pileup image generation and classification with convolutional neural
networks (CNNs). The second pipeline leverages clinical BAM and VCF files, integrating
Oncomine annotations to create a multimodal model that combines visual and genomic
features for variant classification and interpretation. We further incorporate multi-label
and semi-supervised learning techniques to enhance model performance on noisy and partially
labeled datasets. Experimental results demonstrate that our deep learning models
outperform traditional variant calling approaches in both accuracy and interpretability.
This work contributes to the field of computational genomics by demonstrating the value
of integrating deep learning, image-based data, and structured clinical annotations in
building scalable and clinically relevant variant detection tools. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5729 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|