DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5727

Titre: Securing IoT networks using Machine Learning
Auteur(s): Bouguetaia, Akram Abdelghafour
Seggane, Achraf Ramouane
Mots-clés: Internet of Things (IoT),
Intrusion Detection System (IDS),
Convolutional Neural Network (CNN),
Machine Learning
Random Forest (RF)
Date de publication: 2025
Résumé: The Internet of Things (IoT) network represents a dynamic yet vulnerable environment, exposed to numerous cybersecurity threats. This thesis proposes an effective solution for intrusion detection in IoT using machine learning techniques. Two supervised models, Random Forest (RF) and Convolutional Neural Network (CNN), are developed and evaluated using the UNSW-NB15 dataset from the Kaggle platform. Experimental results show that the RF model offers better accuracy (98tion time, making it suitable for real-time applications. On the other hand, the CNN model provides good performance (95RF model is then integrated into a simulated IoT environment via Node-RED, with real-time alerts delivered through a WhatsApp bot. This architecture demonstrates the feasibility of an intelligent, lightweight, and effective intrusion detection system for protecting connected devices.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5727
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires