Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5725
|
Titre: | Deep Learning for Cyber Attacks Detection in IoT Networks |
Auteur(s): | Hamouda, Mohamed Islem Draidi, Moncef Imed Eddine |
Mots-clés: | Internet of Things (IoT) Cybersecurity (CS) Deep Learning (DL) CICIoT2023 dataset Convolutional Neural Networks (CNN) Long Short-Term Memory Networks (LSTM) |
Date de publication: | 2025 |
Résumé: | The rapid expansion of Internet of Things (IoT) devices introduces new cybersecurity
challenges. Their limited computational power and basic security mechanisms expose
them to various attacks such as Distributed Denial of Service (DDoS), spoofing, bruteforce,
and reconnaissance.
This work investigates deep learning techniques for detecting malicious behavior in
IoT networks. We use the CICIoT2023 dataset to simulate IoT traffic and known attacks,
and evaluate three neural network architectures: Convolutional Neural Network (CNN)
(for spatial features), Long Short-Term Memory (LSTM) (for temporal patterns), and a
hybrid CNN-LSTM model.
To address class imbalance in the dataset, we apply the SMOTE (Synthetic Minority
Oversampling Technique) to generate synthetic samples for underrepresented attacks.
Experimental results show that the CNN-LSTM model achieved the best performance
with 98.51% accuracy and a 93% F1-score without SMOTE. After applying SMOTE,
CNN and LSTM achieved 97.65% and 97.56% accuracy respectively.
The hybrid model proved to be the most robust, leveraging spatial and temporal
features for effective multi-stage attack detection. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5725 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|