DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5725

Titre: Deep Learning for Cyber Attacks Detection in IoT Networks
Auteur(s): Hamouda, Mohamed Islem
Draidi, Moncef Imed Eddine
Mots-clés: Internet of Things (IoT)
Cybersecurity (CS)
Deep Learning (DL)
CICIoT2023 dataset
Convolutional Neural Networks (CNN)
Long Short-Term Memory Networks (LSTM)
Date de publication: 2025
Résumé: The rapid expansion of Internet of Things (IoT) devices introduces new cybersecurity challenges. Their limited computational power and basic security mechanisms expose them to various attacks such as Distributed Denial of Service (DDoS), spoofing, bruteforce, and reconnaissance. This work investigates deep learning techniques for detecting malicious behavior in IoT networks. We use the CICIoT2023 dataset to simulate IoT traffic and known attacks, and evaluate three neural network architectures: Convolutional Neural Network (CNN) (for spatial features), Long Short-Term Memory (LSTM) (for temporal patterns), and a hybrid CNN-LSTM model. To address class imbalance in the dataset, we apply the SMOTE (Synthetic Minority Oversampling Technique) to generate synthetic samples for underrepresented attacks. Experimental results show that the CNN-LSTM model achieved the best performance with 98.51% accuracy and a 93% F1-score without SMOTE. After applying SMOTE, CNN and LSTM achieved 97.65% and 97.56% accuracy respectively. The hybrid model proved to be the most robust, leveraging spatial and temporal features for effective multi-stage attack detection.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5725
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires