Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5710
|
Titre: | Towards the Integration of Artificial Intelligence and Advanced Bioinformatics Tools for Selecting miRNA Molecular Signatures in Type 1 Diabetes |
Auteur(s): | Keriou, Kaouther Nouha Achouri, Ilhem |
Mots-clés: | Type 1 Diabetes MiRNA Bioinformatics Machine Learning Multi- Omics Deep Learning |
Date de publication: | 2025 |
Résumé: | Type 1 Diabetes (T1D) is an autoimmune condition characterized by the destruction
of pancreatic beta-cells, frequently diagnosed during childhood or adolescence.
Recent research has identified microRNAs (miRNAs) as critical molecular regulators
involved in the disease’s pathogenesis, suggesting their potential as biomarkers
and therapeutic targets. Traditional biological investigations of miRNAs are often
costly and time-consuming; thus, this thesis proposes a cost-efficient, bioinformaticsdriven
framework as a first-line strategy for narrowing the scope of experimental
validation. We integrate advanced in silico methods with machine learning (ML)
and deep learning (DL) algorithms to identify and classify T1D-associated miRNA
signatures based on gene expression and miRNA expression profiles. This work
simulates a multi-omics analytical approach—despite the absence of matched multiomics
datasets from the same individuals—by merging heterogeneous data sources
to extract biologically meaningful insights. The proposed pipeline ultimately delivers
two major outcomes: a biologically interpretable pool of candidate miRNAs,
and high-performing classification models capable of clinically distinguishing miRNA
signatures relevant to T1D. Our models were validated on both murine and human
datasets and demonstrated consistent and optimized performance, supporting the
potential of integrative computational pipelines in accelerating translational miRNA
biomarker discovery. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5710 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|