Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5697
|
Titre: | Deep Learning for Facial Expression Recognition : Advancing Artificial Intelligence in Emotional Understanding |
Auteur(s): | Berarma, Amira Bendemagh, Amani |
Mots-clés: | Facial Expression Recognition Transfer Learning VGG16 GPU Data Augmentation |
Date de publication: | 2025 |
Résumé: | Facial expressions are a primary channel for non-verbal communication, making their automatic
recognition a critical task in advancing human-computer interaction (HCI), robotics,
and affective computing. While deep learning has shown promise, developing models that
are both accurate and robust across diverse conditions remains a significant challenge. This
study proposes a high-performance approach for Facial Expression Recognition (FER) by
leveraging deep learning and transfer learning. Our method utilizes a transfer learning model
based on the VGG16 architecture, which was selected for its proven success in complex
image recognition tasks. The model was fine-tuned using transfer learning and implemented
with the TensorFlow and Keras libraries. To validate its effectiveness, the system was
rigorously evaluated on two standard benchmarks : the Cohn-Kanade (CK+) and the Facial
Expression Recognition 2013 (FER2013) datasets. The proposed model achieved an
outstanding accuracy of 96% on the CK+ dataset and a competitive accuracy of 69% on
the more challenging, in-the-wild FER2013 dataset. These results demonstrate the efficacy
of our transfer learning-based approach and highlight its potential for creating reliable and
practical FER systems. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5697 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|