DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5681

Titre: Harnessing Deep Learning to Bridge AI and Medical Imaging
Auteur(s): Kahoul, Abdelhakim
Mots-clés: Classification
CNN
Deep learning
Date de publication: 2025
Résumé: Deep learning has revolutionized medical imaging by enabling automated detection of complex patterns in histopathology slides. As a powerful subset of machine learning, it is transforming diagnostic pathology by improving accuracy, efficiency, and scalability in tissue analysis. Precise classification of histopathological images remains a critical challenge in modern medicine, directly impacting diagnosis and treatment planning. To address this, we propose a novel deep learning framework that significantly improves the classification of tissue samples. Our approach introduces an advanced convolutional neural network (CNN) architecture, optimized for high-resolution histopathology image analysis. This model achieves stateof- the-art performance in disease detection, grading, and subclassification, supporting pathologists in clinical decision-making. diagnostic precision in this domain
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5681
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires