|
Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5681
|
| Titre: | Harnessing Deep Learning to Bridge AI and Medical Imaging |
| Auteur(s): | Kahoul, Abdelhakim |
| Mots-clés: | Classification CNN Deep learning |
| Date de publication: | 2025 |
| Résumé: | Deep learning has revolutionized medical imaging by enabling automated detection of
complex patterns in histopathology slides. As a powerful subset of machine learning, it
is transforming diagnostic pathology by improving accuracy, efficiency, and scalability in
tissue analysis.
Precise classification of histopathological images remains a critical challenge in modern
medicine, directly impacting diagnosis and treatment planning. To address this, we
propose a novel deep learning framework that significantly improves the classification of
tissue samples.
Our approach introduces an advanced convolutional neural network (CNN) architecture,
optimized for high-resolution histopathology image analysis. This model achieves stateof-
the-art performance in disease detection, grading, and subclassification, supporting
pathologists in clinical decision-making. diagnostic precision in this domain |
| URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5681 |
| Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|