Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5628
|
Titre: | Development of Conversational Systems Based on RAG and LLM for Prophetic-Herbal Medicine |
Auteur(s): | Chenni, Nour El houda |
Mots-clés: | Prophetic Medicine Herbal Medicine Conversational Systems Retrieval-Augmented Generation Large Language Models NLP |
Date de publication: | 2025 |
Résumé: | Prophetic and herbal medicine represent rich, traditional knowledge which is
often underrepresented in modern digital systems but with recent advancements
in large language models (LLMs), it became possible to build intelligent systems
capable of understanding and responding to user queries in this specialized
domain. Retrieval Augmented Generation (RAG) frameworks have further enhanced
these capabilities by grounding language models in external knowledge
sources.
This work presents the development of conversational systems focused on
Prophetic and herbal medicine in both Arabic and English independently. The
English systems include a fine-tuned Mistral-7B model trained on a domainspecific
dataset,with two RAG pipelines one using Mistral and another using
DeepSeek. The Arabic systems include two RAG implementations as well: one
using the Allam model and another based on DeepSeek, both adapted to handle
Arabic language queries with high contextual accuracy. These systems aim to
facilitate knowledge access, learning, and interaction with culturally significant
medical content through modern NLP architectures. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5628 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|