Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5626
|
Titre: | A Deep Model For Forest Fire Risk Estimation In Algeria |
Auteur(s): | Boussahel, Mohamed Islam |
Mots-clés: | Algeria Wildfires Prediction MODIS Long Short Term Memory (LSTM) |
Date de publication: | 2025 |
Résumé: | Algeria is one of the most affected Mediterranean countries by wildfires, often leading to
devastating consequences. However, unlike its neighbors (Spain, Portugal, Greece, and Italy)
it has not yet developed a sophisticated and reliable wildfire prevention system.
In this study, we are going to use MODIS Collection 6.1 fire data, GLOH2O weather data,
elevation data from DIVA-GIS, Land Cover Map from ESA, and the study area’s shape file
from GADM to estimate wildfire risk. Our approach relies on the application of different
algorithms (Logistic Regression, Support Vector Machines (SVM) with an RBF kernel, long
short term memory networks (LSTMs), Random Forest, and XGBoost) to predict wildfire
occurrences based on the available data.
The study aims to find the optimal combination of predictor model and preprocessing
techniques that gives the most accurate wildfire predictions. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5626 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|