DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5626

Titre: A Deep Model For Forest Fire Risk Estimation In Algeria
Auteur(s): Boussahel, Mohamed Islam
Mots-clés: Algeria
Wildfires
Prediction
MODIS
Long Short Term Memory (LSTM)
Date de publication: 2025
Résumé: Algeria is one of the most affected Mediterranean countries by wildfires, often leading to devastating consequences. However, unlike its neighbors (Spain, Portugal, Greece, and Italy) it has not yet developed a sophisticated and reliable wildfire prevention system. In this study, we are going to use MODIS Collection 6.1 fire data, GLOH2O weather data, elevation data from DIVA-GIS, Land Cover Map from ESA, and the study area’s shape file from GADM to estimate wildfire risk. Our approach relies on the application of different algorithms (Logistic Regression, Support Vector Machines (SVM) with an RBF kernel, long short term memory networks (LSTMs), Random Forest, and XGBoost) to predict wildfire occurrences based on the available data. The study aims to find the optimal combination of predictor model and preprocessing techniques that gives the most accurate wildfire predictions.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5626
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires