DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5624

Titre: Subject: Enhancing Speech Quality In Algerian Dialect Through Deep Learning-Based Denoising Methods
Auteur(s): Bouaissaoui, Sonia
Daas, Kaouther
Mots-clés: Speech Denoising
Algerian Dialect
Noisy Speech
Speech Enhancement
Deep Learning
Date de publication: 2025
Résumé: This thesis addresses the problem of speech noise reduction, which is one of the main challenges in the field of audio signal processing. Noisy speech signals can significantly degrade the performance of many speech-based applications, such as speech recognition, voice communication, and speech enhancement. In this context, this study explores deep learning-based methods to improve the quality of Algerian dialect speech using denoising techniques. A dataset of 1201 Algerian dialect audio recordings was used, and three deep learning models were developed. These models were tested using four types of noise. The results showed that the Denoising U-Net model outperformed the others in terms of speech clarity and overall denoising performance, making it an effective solution.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5624
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires