|
Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5624
|
| Titre: | Subject: Enhancing Speech Quality In Algerian Dialect Through Deep Learning-Based Denoising Methods |
| Auteur(s): | Bouaissaoui, Sonia Daas, Kaouther |
| Mots-clés: | Speech Denoising Algerian Dialect Noisy Speech Speech Enhancement Deep Learning |
| Date de publication: | 2025 |
| Résumé: | This thesis addresses the problem of speech noise reduction, which is one of the main
challenges in the field of audio signal processing. Noisy speech signals can significantly
degrade the performance of many speech-based applications, such as speech recognition,
voice communication, and speech enhancement. In this context, this study explores
deep learning-based methods to improve the quality of Algerian dialect speech using
denoising techniques. A dataset of 1201 Algerian dialect audio recordings was used,
and three deep learning models were developed. These models were tested using four
types of noise. The results showed that the Denoising U-Net model outperformed
the others in terms of speech clarity and overall denoising performance, making it an
effective solution. |
| URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5624 |
| Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|