Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5618
|
Titre: | IoT-based Smart Agriculture System for Precision Farming |
Auteur(s): | Khaled, Douaa Benarar, Khadidja |
Mots-clés: | Internet of Things Smart Agriculture Machine Learning Crop Prediction |
Date de publication: | 2025 |
Résumé: | The integration of Internet of Things (IoT) technologies in agriculture has led to
the emergence of smart farming systems that enable real-time monitoring, data collection,
and precision decision-making. However, the growing complexity of these interconnected
systems presents two major challenges; the need for accurate agricultural
prediction and the risk of cybersecurity threats targeting vulnerable IoT devices. To
address these challenges, this work proposes two machine learning-based solutions a
Random Forest-assisted wrapper (RFA-Wrapper) method for predicting crop productivity
using time-series and environmental data, and AgriStackIDS, an ensemble intrusion
detection system for securing smart agriculture networks. Both models were
evaluated on real-world datasets using key performance metrics, including accuracy,
F1-score, and recall. The results show that RFA-Wrapper outperforms traditional
models in prediction tasks, while AgriStackIDS achieves high detection performance
in both binary and multi-class classifications. These contributions demonstrate the
effectiveness of machine learning in enhancing both productivity and cybersecurity in
IoT-based agricultural environments. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5618 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|