DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5618

Titre: IoT-based Smart Agriculture System for Precision Farming
Auteur(s): Khaled, Douaa
Benarar, Khadidja
Mots-clés: Internet of Things
Smart Agriculture
Machine Learning
Crop Prediction
Date de publication: 2025
Résumé: The integration of Internet of Things (IoT) technologies in agriculture has led to the emergence of smart farming systems that enable real-time monitoring, data collection, and precision decision-making. However, the growing complexity of these interconnected systems presents two major challenges; the need for accurate agricultural prediction and the risk of cybersecurity threats targeting vulnerable IoT devices. To address these challenges, this work proposes two machine learning-based solutions a Random Forest-assisted wrapper (RFA-Wrapper) method for predicting crop productivity using time-series and environmental data, and AgriStackIDS, an ensemble intrusion detection system for securing smart agriculture networks. Both models were evaluated on real-world datasets using key performance metrics, including accuracy, F1-score, and recall. The results show that RFA-Wrapper outperforms traditional models in prediction tasks, while AgriStackIDS achieves high detection performance in both binary and multi-class classifications. These contributions demonstrate the effectiveness of machine learning in enhancing both productivity and cybersecurity in IoT-based agricultural environments.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5618
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires