Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5600
|
Titre: | AI-Driven Fake News Detection: Applying Transformers /Large Language Models |
Auteur(s): | Dekkar, Raid Nedjm Eddine Bouchareb, Mohamed El Amine |
Mots-clés: | Fake news detection Algerian Dialect Natural Language Processing Transformers Large Language Models Social Media |
Date de publication: | 2025 |
Résumé: | The proliferation of fake news across digital platforms has emerged as a major concern,
particularly when misinformation is expressed in low-resource dialects such as Algerian
Arabic. The Algerian dialect poses specific challenges for automatic detection due to its
rich linguistic variability, lack of standardized orthography, and limited availability of
natural language processing (NLP) tools tailored to it. This thesis explores the problem
of fake news detection in the Algerian dialect, not only in social media content but also in
other digital sources such as online articles and news websites. We investigate the effectiveness
of transformer-based models and large language models (LLMs) for this task, conducting
extensive experiments using a variety of pre-trained models including AraGPT2,
DziriBERT, CaMelBERT, LLaMa3, Qwen and others. The experimental findings
confirm that transformer and LLM-based approaches provide promising performance for
fake news detection in under-resourced languages, with AraGPT2 achieving the highest
accuracy in our evaluation benchmarks. Additionally, we propose a hybrid strategy
that combines transformer-based embeddings with LLM inference to better capture the
contextual and linguistic nuances of the dialect. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5600 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|