Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5597
|
Titre: | Automatic spice classification application by image recognition |
Auteur(s): | Karfa, Maamar Haddad, Mohamed Yacine |
Mots-clés: | Shape recognition Deep learning Spice classification EfficientNetB3 |
Date de publication: | 2025 |
Résumé: | This thesis investigates the integration of shape recognition and deep learning techniques to
develop a mobile-based spice classification system. Addressing the challenges of visual
similarity and texture variability among spices, the research utilizes EfficientNetB3 as a
transfer learning backbone, achieving a classification accuracy of 93.78%. The system
combines Flutter for cross-platform frontend development with Django for backend
processing, ensuring real-time performance and scalability. Key contributions include a curated
dataset of 24 spice categories, optimized preprocessing pipelines, and mobile-specific model
compression techniques. The thesis also discusses ethical considerations in AI deployment and
potential future enhancements, such as augmented reality guidance. The results demonstrate
that shape recognition can be effectively adapted for culinary applications, establishing a
benchmark for mobile computer vision systems. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5597 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|