DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5597

Titre: Automatic spice classification application by image recognition
Auteur(s): Karfa, Maamar
Haddad, Mohamed Yacine
Mots-clés: Shape recognition
Deep learning
Spice classification
EfficientNetB3
Date de publication: 2025
Résumé: This thesis investigates the integration of shape recognition and deep learning techniques to develop a mobile-based spice classification system. Addressing the challenges of visual similarity and texture variability among spices, the research utilizes EfficientNetB3 as a transfer learning backbone, achieving a classification accuracy of 93.78%. The system combines Flutter for cross-platform frontend development with Django for backend processing, ensuring real-time performance and scalability. Key contributions include a curated dataset of 24 spice categories, optimized preprocessing pipelines, and mobile-specific model compression techniques. The thesis also discusses ethical considerations in AI deployment and potential future enhancements, such as augmented reality guidance. The results demonstrate that shape recognition can be effectively adapted for culinary applications, establishing a benchmark for mobile computer vision systems.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5597
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires