Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5582
|
Titre: | SecureMed-LLM: A Privacy-Preserving Framework for Safeguarding Clinical Language Models |
Auteur(s): | Boumezbeur, Aya Dib, Maria |
Mots-clés: | Large Language Models Healthcare Security Safeguard SecureMed- LLM Differential Privacy |
Date de publication: | 2025 |
Résumé: | The rapid advancement of Large Language Models (LLMs) has transformed applications
of artificial intelligence (AI), particularly in critical domains such as healthcare. However,
their widespread adoption introduces significant challenges, including tampering,
malicious interference, and data privacy violations. Traditional safeguards often fail to address
these risks comprehensively, leaving LLMs vulnerable to adversarial attacks, prompt
injections, and privacy breaches.
In this work, we propose SecureMed-LLM using BioMedCLIP, a robust framework
designed to protect LLMs in clinical settings through a multi-tiered defense strategy. Our
approach integrates local data anonymization via the Med-Guard module, differential privacy
training (DP-SGD), medical compliance validation, and encrypted inference using
the Elliptic Curve Integrated Encryption Scheme (ECIES) with Curve25519. The framework
is evaluated on the OPEN-I Chest X-ray dataset, demonstrating resilience against
adversarial attacks (e.g., FGSM, PGD) with minimal performance degradation (BLEU
score > 0.63 under perturbation), Image anonymization with controlled noise (σ = 15)
preserves diagnostic utility (BLEU score = 0.70) while enhancing privacy, and differential
privacy (ϵ = 3.0) reduces membership inference attack success rates by 45%.
The results emphasize the balance between security and the utility of SecureMed-LLM
in generating clinical reports with 78.3% accuracy while safeguarding sensitive patient
data. This work provides an extensible solution for privacy-preserving AI in healthcare,
addressing both technical and regulatory challenges in LLM deployment. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5582 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|