DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5581

Titre: Federated Learning-Based Anomaly Detection Framework for Enhancing Security in Smart Grid Environments
Auteur(s): Talhi, Chaima
Dehli, Nesrine
Mots-clés: Smart Grid
Anomaly Detection
Federated Learning,
Machine Learning
Date de publication: 2025
Résumé: The growing integration of smart grids into modern energy infrastructures presents both unprecedented opportunities for intelligent power management and serious concerns regarding data privacy and cyber-security. Traditional anomaly detection methods, although effective, often rely on centralized data collection, thereby increasing the risk of exposing sensitive user information. To overcome these limitations, this thesis introduces FED-XID, a novel Federated Learning-based framework for privacy-preserving anomaly detection in smart grid systems. The framework enables decentralized model training using the XGBoost algorithm and incorporates embedded Intrusion Detection Systems (IDS) at the edge level, ensuring localized monitoring while safeguarding user data confidentiality. In addition, advanced deep learning techniques based on Temporal Convolutional Networks (TCN) and Long Short-Term Memory (LSTM) are applied to handle missing or incomplete smart meter data. The proposed model is both robust and efficient, leveraging a hybrid edge–cloud architecture and a lightweight classification core to ensure high performance, low latency, and scalable deployment in real-world smart grid environments. FED-XID achieved an AUC of 93.60 and a training time of only 25.97 seconds, demonstrating strong detection capability and computational efficiency.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5581
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires