Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5581
|
Titre: | Federated Learning-Based Anomaly Detection Framework for Enhancing Security in Smart Grid Environments |
Auteur(s): | Talhi, Chaima Dehli, Nesrine |
Mots-clés: | Smart Grid Anomaly Detection Federated Learning, Machine Learning |
Date de publication: | 2025 |
Résumé: | The growing integration of smart grids into modern energy infrastructures presents both
unprecedented opportunities for intelligent power management and serious concerns regarding
data privacy and cyber-security. Traditional anomaly detection methods, although
effective, often rely on centralized data collection, thereby increasing the risk
of exposing sensitive user information. To overcome these limitations, this thesis introduces
FED-XID, a novel Federated Learning-based framework for privacy-preserving
anomaly detection in smart grid systems. The framework enables decentralized model
training using the XGBoost algorithm and incorporates embedded Intrusion Detection
Systems (IDS) at the edge level, ensuring localized monitoring while safeguarding user
data confidentiality. In addition, advanced deep learning techniques based on Temporal
Convolutional Networks (TCN) and Long Short-Term Memory (LSTM) are applied to
handle missing or incomplete smart meter data. The proposed model is both robust and
efficient, leveraging a hybrid edge–cloud architecture and a lightweight classification core
to ensure high performance, low latency, and scalable deployment in real-world smart
grid environments. FED-XID achieved an AUC of 93.60 and a training time of only 25.97
seconds, demonstrating strong detection capability and computational efficiency. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5581 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|