DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5576

Titre: Graph Neural Networks for Botnet Detection
Auteur(s): Bouchama, Mostepha
Bouchelaghem, Zakaria
Mots-clés: Machine Learning
Deep Learning
Graph Neural Networks
Bots
Botnet
Detection
Date de publication: 2025
Résumé: Bots and botnets are among the most prevalent cybersecurity risks, a topic of significant concern for security communities, and a persistent threat that continues to impact digital systems. The detection of botnets is crucial to ensure the security and reliability of these systems, as various detection methods and research have been conducted to mitigate their risks. In this master’s thesis, we have proposed a new architecture based on Graph Neural Networks (GNNs) for the detection of botnets, focusing on their temporal network traffic behavior. Our architecture effectively captures both the temporal dynamics of network traffic and the structural relationships between machines in a network. Experiments on a real-world dataset show that our proposed architecture is efficient and achieves 81.25% accuracy, which is superior results compared to other state-of-the-art approaches.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5576
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires