|
Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5576
|
| Titre: | Graph Neural Networks for Botnet Detection |
| Auteur(s): | Bouchama, Mostepha Bouchelaghem, Zakaria |
| Mots-clés: | Machine Learning Deep Learning Graph Neural Networks Bots Botnet Detection |
| Date de publication: | 2025 |
| Résumé: | Bots and botnets are among the most prevalent cybersecurity risks, a topic of
significant concern for security communities, and a persistent threat that continues to impact
digital systems. The detection of botnets is crucial to ensure the security and reliability of
these systems, as various detection methods and research have been conducted to mitigate
their risks. In this master’s thesis, we have proposed a new architecture based on Graph
Neural Networks (GNNs) for the detection of botnets, focusing on their temporal network
traffic behavior. Our architecture effectively captures both the temporal dynamics of network
traffic and the structural relationships between machines in a network. Experiments on a
real-world dataset show that our proposed architecture is efficient and achieves 81.25%
accuracy, which is superior results compared to other state-of-the-art approaches. |
| URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5576 |
| Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|