DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département de Mathématiques >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5559

Titre: Asymptotic Behavior of a General Boundary Problem in Sobolev Spaces With Variable Exponents
Auteur(s): Smail, Meriem Naouel
Mots-clés: Sobolev
Lebesgue spaces
priori estimates
boundary value problem,
monotonic operators
Tresca law
Date de publication: 2025
Résumé: The problem presented in this thesis concerns the study of a boundary value problem that generalizes the Lamé system, with a nonlinear perturbation in a thin three-dimensional domain with Tresca friction. The results obtained consist in proving the existence and uniqueness of the solution for the corresponding variational problem. The method used to achieve these results is based on the theory of monotone operators, Minty-Browder and the theory of variational inequalities. More precisely, we transformed the original problem defined on the domain Dε into a new equivalent one on a fixed domain D independent of ε using a new scale and several inequalities. Finally, we established various estimates and a convergence Theorem and eventually obtained the limit problem with the generalized weak formulations and their uniqueness. The positive point of this work is the existence and uniqueness of solutions, as well as the possibility of studying their asymptotic behavior in the functional framework based on Sobolev spaces with variable exponent. ============================================================================================================== Les problèmes présentés dans cette thèse concernent l’étude d’un problème des valeurs aux limites non linéaire généralisant le système de Lamé avec une perturbation non linéaire dans un domaine mince tridimensionnel Dε avec frottement de Tresca sur une partie de la frontière. Les résultats obtenus sont l’existence et l’unicité de la solution pour les problèmes variationnels correspondants.La méthode utilisée pour obtenir ces résultats repose sur la théorie des opérateurs monotones, Minty-Browder et la Théorie des inégalités variationnelles. Ensuite, et plus précisément, nous avons transformé le problème initial défini sur le domaine Dε en un nouveau problème équivalent sur un domaine fixe indépendant de ε, en utilisant un nouveau changement d’échelle et de nombreuses inégalités. Nous avons établi certaines estimations, un Théorème de convergence, et nous avons formulé les problèmes limites avec les équations faibles généralisées ainsi que leur unicité. Le point positif de ce travail est l’existence et l’unicité, ainsi que la possibilité d’étudier leur comportement asymptotique dans le cadre fonctionnel constitué des espaces de Lebesgue et de Sobolev à exposant variable.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5559
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Abstract.docx15,39 kBMicrosoft Word XMLVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires