Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5556
|
Titre: | Artificial Intelligence for Diabetes Disease |
Auteur(s): | Ajissa, Mohamed El Amine Cheraga, Abdelmounaim |
Mots-clés: | Diabetes Artificial Intelligence Machine Learning, Deep Learning Neural Networks Random Forest |
Date de publication: | 2025 |
Résumé: | This project presents an intelligent diabetes prediction and insulin dose estimation system,
integrating artificial intelligence techniques to improve diabetes management. Based on the Indian
PIMA diabetes database and medical recommendations, the system uses a neural network for binary
classification (diabetic or non-diabetic) and a Random Forest regressor to calculate daily insulin
doses (bolus and basal). The user-friendly interface, developed with Streamlit, allows both patients
and practitioners to interact with the system. Clinical validation is carried out by a ratio test to
assess the adequacy of insulin doses based on glycemic stability. The results confirm the reliability of
the system and its potential to support early diagnosis and personalized treatment strategies, thus
contributing to better health outcomes for diabetic patients. It achieves an accuracy of 77.92% and
an precision of 70.59%, confirming its effectiveness for early diagnosis and treatment personalization. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5556 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|