DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5556

Titre: Artificial Intelligence for Diabetes Disease
Auteur(s): Ajissa, Mohamed El Amine
Cheraga, Abdelmounaim
Mots-clés: Diabetes
Artificial Intelligence
Machine Learning,
Deep Learning
Neural Networks
Random Forest
Date de publication: 2025
Résumé: This project presents an intelligent diabetes prediction and insulin dose estimation system, integrating artificial intelligence techniques to improve diabetes management. Based on the Indian PIMA diabetes database and medical recommendations, the system uses a neural network for binary classification (diabetic or non-diabetic) and a Random Forest regressor to calculate daily insulin doses (bolus and basal). The user-friendly interface, developed with Streamlit, allows both patients and practitioners to interact with the system. Clinical validation is carried out by a ratio test to assess the adequacy of insulin doses based on glycemic stability. The results confirm the reliability of the system and its potential to support early diagnosis and personalized treatment strategies, thus contributing to better health outcomes for diabetic patients. It achieves an accuracy of 77.92% and an precision of 70.59%, confirming its effectiveness for early diagnosis and treatment personalization.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5556
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires