Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5550
|
Titre: | Federated Learning-Based Intrusion Detection System for Enhancing Internet of Things Security |
Auteur(s): | Bouharizi, Lina Messaoudi, Maria Rahma |
Mots-clés: | Federated Learning Intrusion Detection System Internet of Things Stacking Ensemble Artificial Neural Network Random Forest |
Date de publication: | 2025 |
Résumé: | The widespread deployment of Internet of Things (IoT) devices has increased the surface
area for cyberattacks, making effective intrusion detection a growing necessity. While
Machine Learning (ML) and Deep Learning (DL) techniques have improved Intrusion
Detection Systems (IDS), traditional centralized approaches often compromise data privacy
by requiring raw data transmission to a central server. Federated Learning (FL)
offers a privacy-preserving alternative by enabling decentralized model training without
exposing raw data. In this work, we implement a federated stacking ensemble Intrusion
Detection System (FedStack-IDS), combining an Artificial Neural Network (ANN) and
Random Forest (RF) as base learners, with a Logistic Regression (LR) model as the metaclassifier.
The approach is evaluated using the CICIoT2023 dataset in both centralized
and decentralized settings. FedStack-IDS achieved an accuracy of 87.45% and a macro
F1-score of 88%, outperforming existing FL-based IDS solutions, while also maintaining
strong detection on rare attack classes. Moreover, communication overhead was reduced
by 75% through quantization, confirming the system’s effectiveness for accurate, efficient,
and privacy-preserving intrusion detection in IoT environments. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5550 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|