DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5550

Titre: Federated Learning-Based Intrusion Detection System for Enhancing Internet of Things Security
Auteur(s): Bouharizi, Lina
Messaoudi, Maria Rahma
Mots-clés: Federated Learning
Intrusion Detection System
Internet of Things
Stacking Ensemble
Artificial Neural Network
Random Forest
Date de publication: 2025
Résumé: The widespread deployment of Internet of Things (IoT) devices has increased the surface area for cyberattacks, making effective intrusion detection a growing necessity. While Machine Learning (ML) and Deep Learning (DL) techniques have improved Intrusion Detection Systems (IDS), traditional centralized approaches often compromise data privacy by requiring raw data transmission to a central server. Federated Learning (FL) offers a privacy-preserving alternative by enabling decentralized model training without exposing raw data. In this work, we implement a federated stacking ensemble Intrusion Detection System (FedStack-IDS), combining an Artificial Neural Network (ANN) and Random Forest (RF) as base learners, with a Logistic Regression (LR) model as the metaclassifier. The approach is evaluated using the CICIoT2023 dataset in both centralized and decentralized settings. FedStack-IDS achieved an accuracy of 87.45% and a macro F1-score of 88%, outperforming existing FL-based IDS solutions, while also maintaining strong detection on rare attack classes. Moreover, communication overhead was reduced by 75% through quantization, confirming the system’s effectiveness for accurate, efficient, and privacy-preserving intrusion detection in IoT environments.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5550
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires