Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5549
|
Titre: | Advanced bioinformatics tools and artificial intelligence in genomic data analysis: application in cancer diagnosis |
Auteur(s): | Mezghiche, Bouthaina Bakhouche, Hind |
Mots-clés: | Bioinformatics Machine learning Deep learning Artificial intelligence Cancer classification Transcriptomics |
Date de publication: | 2025 |
Résumé: | Throughout the past decades, proteomics and transcriptomics have contributed
to a large extent in unraveling the complex molecular mechanisms
of cancer. The widespread acceptance of next-generation sequencing and
high-throughput technologies has transformed our ability to study large-scale
biological data, yet several challenges still remain — from heterogeneity,
dimensionality of data to the multimodal information integration challenge.
Addressing these challenges is critical in making enhanced cancer diagnosis,
monitoring, and treatment a reality through the precision medicine paradigm.
Parallel to that, artificial intelligence more specifically machine learning
and deep learning — has emerged as a remarkable facilitator in biomedical
research capable of extracting useful patterns from complex data structures.
This thesis follows the integration of transcriptomic profiles with image-based
data derived from protein interaction networks, represented as protein graph
images. Through these various data sources, we aim to improve the accuracy
and interpretability of cancer classification models.From actual datasets in
The Cancer Genome Atlas (TCGA), we constructed and validated machine
learning models with MLP, SVM, and KNN classifiers to detect cancer-relevant
molecular signatures. Our integrated approach demonstrates the efficacy of
applying omics data and image representation in early detection. The work
contributes to the new field of computational oncology and provides a valuable
starting point for researchers designing multi-modal, AI-enabled tools for
personalized cancer diagnostics. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5549 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|