DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5522

Titre: Deep Learning Models for Medical Image Segmentation: Approaches and Applications
Auteur(s): Arras, Houssem dhia eddine
Lahreche, dhia eddine
Mots-clés: Medical image segmentation
Stroke
Deep Learning
U-Net
UNet++
Attention U-Net
Date de publication: 2025
Résumé: The increased availability of medical image data, particularly from modalities such as Magnetic Resonance Imaging (MRI), has opened up possibilities to develop smart systems to aid clinical diagnosis and treatment planning. However, the complexity and volume of such data render manual analysis cumbersome. This thesis addresses the problem of automatic stroke lesion segmentation in brain MRI images through deep learning techniques. A thorough experimental evaluation was conducted with three CNN architectures: U-Net, Attention U-Net, and UNet++. The networks were trained and evaluated on a sub-dataset of the ATLAS 2.0 dataset with annotated post-stroke MRI images. The performance of each model was evaluated by Dice coefficient and Intersection over Union (IoU) metrics. The result shows that the standard U-Net worked well for segmentation ( 74.76% ), and the Attention U-Net and UNet++ provided improvements in lesion boundary and location refinement. The findings show the effectiveness of CNN-based models in effectively segmenting stroke lesions from 2D medical images. This study adds value to the medical image analysis field by providing insight into the capabilities of deep learning models for stroke segmentation and acts as a baseline for further improvement using 3D architectures or transformer-based models.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5522
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires