|
Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5515
|
| Titre: | Blockchain for Scalable Data and Security in IoV |
| Auteur(s): | Badreddine, Youcef Islam Naili, Karam Allah |
| Mots-clés: | Internet of Vehicles (IoV) Blockchain Layer 2 ZkSync Machine Learning, Smart Contracts |
| Date de publication: | 2025 |
| Résumé: | The rapid evolution of the Internet of Vehicles (IoV) introduces major challenges
in terms of scalability, data integrity, and security. Traditional centralized systems
and single-layer blockchain architectures struggle to handle the high volume of
real-time vehicular data efficiently. This thesis proposes an IoV framework that
applies the recent concept of Layer 2 blockchain along with a machine learning
(ML) model to address these limitations. Layer 1 ensures decentralized trust and
secure storage, while Layer 2 (zkSync) significantly improves transaction throughput
and reduces gas fees through off-chain processing. A machine learning model
deployed at Roadside Units (RSUs) validates events in real-time, distinguishing
between valid and malicious data. Smart contracts then manage a reputation
score for each vehicle, rewarding honest behavior and penalizing false reporting.
The system was implemented using Hyperledger Geth, Docker, and smart contracts,
with performance benchmarking conducted via Caliper. Experimental results
demonstrate a substantial improvement in system performance when using
Layer 2 (zkSync) compared to Layer 1: throughput more than tripled, latency
was reduced by approximately 64.63%, CPU usage decreased by around 33% for
3000 transactions, and gas fees were lowered by 42.91%. This integrated approach
demonstrates that combining Layer 2 blockchain and ML enables scalable, secure,
and intelligent vehicular networks. |
| URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5515 |
| Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|