Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5502
|
Titre: | Comparative Analysis of Interpretable Deep Learning Models for Pneumonia Detection in Chest X-rays |
Auteur(s): | Dahel, Soumia Maabed, Amina |
Mots-clés: | Pneumonia Chest X-ray Deep Learning Attention Mechanism Preprocessing Explainability |
Date de publication: | 2025 |
Résumé: | Pneumonia, a life-threatening respiratory infection caused by bacteria, viruses, or
fungi, claims approximately 2.5 million lives annually, including 672,000 children under
five. Misdiagnosis rates can exceed 20% in low-resource settings due to subjective
chest X-ray interpretation. Our master’s thesis addresses this challenge with an effective
computer-aided diagnosis (CAD) system using deep learning. Our model, a
Convolutional Neural Network (CNN) with a Squeeze-and-Excitation (SE) attention
layer, was evaluated alongside transfer learning models like DenseNet121 and ResNet50
but trained from scratch for resource efficiency in binary (pneumonia vs. normal) and
multi-class (normal, pneumonia, other lung diseases) classification. Our comprehensive
preprocessing pipeline, combining CLAHE for image enhancement with augmentations
(e.g., rotation, flipping) and weighted loss, tackles class imbalance and boosts training
robustness. Evaluated on the Kaggle Pneumonia Chest X-ray and NIH ChestX-ray14
datasets, our model achieves 97.5% accuracy and 0.9798 F1-score for binary classification,
and 74.9% accuracy with 0.9660 F1-score for multi-class classification, with low
loss and fast training times ideal for resource-constrained settings. Our model’s explainability,
enhanced by Grad-CAM++ and SHAP, provides visual and feature-level
insights, aligning with clinical needs for interpretable diagnostics. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5502 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|