DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5478

Titre: Industrial Vision Inspection System
Auteur(s): Oulkhiari, Zouher
Benhebbadj, Akram
Mots-clés: Vision Inspection
Deep Learning
CNN
Machine Vision
Image Processing
Date de publication: 2025
Résumé: This project comprises a vision inspection system for automatic defect detection employing a Convolutional Neural Network (CNN) built from scratch. The purpose is to improve quality control in industrial settings by detecting products, such as electronic chips, mechanical parts, tiles, pharmaceuticals and others ... with the highest accuracy and zero human intervention. The CNN architecture created in this project is unlike other traditional approaches of machine learning or pre-trained models, where it was hypothesized end-to-end training on a dataset of labeled images of defective and non-defective samples was the way to go.The setup involves a preprocessing pipeline for normalizing and augmenting data followed by a multi-layer CNN specially designed for feature extraction and binary classification. A Qt/QML front-end application serves as an interface for real-time image annotation, from which various defect types can be identified and serial codes tracked via Firebase. Thus, the integration of a bespoke deep-learning model with an interactive application interface creates a well-formed and scalable solution to the automated visual inspection task.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5478
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Il n'y a pas de fichiers associés à ce document.

View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires