Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5478
|
Titre: | Industrial Vision Inspection System |
Auteur(s): | Oulkhiari, Zouher Benhebbadj, Akram |
Mots-clés: | Vision Inspection Deep Learning CNN Machine Vision Image Processing |
Date de publication: | 2025 |
Résumé: | This project comprises a vision inspection system for automatic defect detection employing a Convolutional
Neural Network (CNN) built from scratch. The purpose is to improve quality control in industrial
settings by detecting products, such as electronic chips, mechanical parts, tiles, pharmaceuticals and
others ... with the highest accuracy and zero human intervention. The CNN architecture created in this
project is unlike other traditional approaches of machine learning or pre-trained models, where it was
hypothesized end-to-end training on a dataset of labeled images of defective and non-defective samples
was the way to go.The setup involves a preprocessing pipeline for normalizing and augmenting data
followed by a multi-layer CNN specially designed for feature extraction and binary classification. A
Qt/QML front-end application serves as an interface for real-time image annotation, from which various
defect types can be identified and serial codes tracked via Firebase. Thus, the integration of a bespoke
deep-learning model with an interactive application interface creates a well-formed and scalable solution
to the automated visual inspection task. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5478 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|