|
Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5473
|
| Titre: | Enhancing Deep Learning with Quantum Computing: Exploring Hybrid Algorithms for Image Classification |
| Auteur(s): | Lazeli, Sabrina |
| Mots-clés: | Theoretical Foundations of Deep Learning Hybrid Quantum Classical Algorithms Hybrid Model for Image Classification: The Proposed Approach Results and Analysis |
| Date de publication: | 2025 |
| Résumé: | This thesis explores the integration of quantum computing and deep learning paradigms
to enhance image classification, with a particular focus on detecting Alzheimer’s disease
stages from MRI images. An innovative hybrid architecture, combining the pre-trained
ResNet50 neural network for feature extraction with a variational quantum circuit (VQC)
for classification, was developed and evaluated on the Augmented Alzheimer MRI Dataset.
This approach leverages the hierarchical feature extraction capabilities of classical convolutional
neural networks and quantum properties such as superposition and entanglement
to enhance the representation of complex patterns. The results demonstrate an overall
accuracy of 97.35%, with outstanding performance in discriminating moderate stages
(F1-score of 99.92%) and confirmed robustness through low variance. A comparative
analysis with state-of-the-art approaches positions the proposed model among the top
performers, highlighting the potential of hybrid quantum-classical algorithms to overcome
computational limitations of classical methods, despite the constraints of current Noisy
Intermediate-Scale Quantum NISQ devices. This work also proposes perspectives for optimizing
quantum circuits and extending this approach to other medical imaging tasks,
emphasizing the importance of future advancements in quantum hardware for practical
implementation. |
| URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5473 |
| Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|