|
Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5460
|
| Titre: | Aklee, AI-Based Mobile App for Nutrition Label Classification |
| Auteur(s): | Bourouba, Mohamed El Khalil |
| Mots-clés: | Nutrition Label Classification OCR CatBoost Mobile Application React Native |
| Date de publication: | 2025 |
| Résumé: | With the growing interest in healthy eating and digital solutions, the need for accessible
tools that assist users in evaluating food products has increased. In this work, we introduce
Aklee, a mobile application that leverages artificial intelligence and optical character
recognition (OCR) to classify food products based on their nutritional labels.
Our system uses Tesseract OCR to extract text from scanned product images and
applies a Catboost classifier to determine the nutritional quality. The application is
built with a modern architecture using React Native for the mobile frontend, Laravel
and FastAPI for backend services, and containerized using Docker.
The goal is to provide a user-friendly and efficient tool that aids consumers in making
healthier food choices through real-time analysis. |
| URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5460 |
| Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|