DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5414

Titre: Detecting SQL Injections using Deep Learning
Auteur(s): Zitouni, Ahmed Faouzi
Sedjal, Moheamed Aymen Dhaya Eddin
Mots-clés: SQL Injection
Web Application Security
Deep Learning
Machine Learning
BERT
Transformer Models
Date de publication: 2025
Résumé: SQL injection attacks remain one of the biggest threats to web applications, because they allow the attacker to gain trusted access to data without authorization, which can lead to irreparable damages. As part of this project, we examined how deep learning and machine learning can aid in detecting these attacks automatically. In total, we built and evaluated six models: Logistic Regression, Support Vector Machine (SVM), Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and BERT (Bidirectional Encoder Representations from Transformers). Overall, BERT achieved the highest scores in accuracy, precision, recall, and F1-score. This demonstrates that transformer-based models such as BERT have a better understanding of SQL query structures, which makes them efficient in detecting complex attacks. This study shows how deep learning, especially BERT, can improve web application security.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5414
Collection(s) :Mémoires de master

Fichier(s) constituant ce document :

Fichier Description TailleFormat
MAI0970.pdf3,52 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires