Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Mémoires de master >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5366
|
Titre: | Machine Learning and Deep Learning for Autism Spectrum Disorder (ASD) detection |
Auteur(s): | Mahdaoui, Nour elhouda Belkefoul, kaouther |
Mots-clés: | Autism Spectrum Disorder Early detection Deep learning Facial images Movement |
Date de publication: | 2025 |
Résumé: | Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by difficulties
with social interaction, communication, and behavior. Early identification ensures timely
intervention and improves quality of life. The present study proposes a two-modality binary
classification approach for ASD detection based on facial image data and movement data. The
image dataset consists of facial photos of children labeled as ASD or non-ASD. The movement
data, captured using a Kinect v2 sensor, comprises 1,259 features per subject derived from 3D
joint positions and gait metrics, with a total of 800 samples.
A DenseNet121 convolutional neural network (CNN) was employed for images, achieving 89%
accuracy. Grad-CAM was used to provide visual explanations by highlighting important regions
in the images. For the movement modality, a Multi-Layer Perceptron (MLP) trained on
features learned via an autoencoder achieved 99.38% accuracy, with Shapley Additive exPlanations
(SHAP) applied to identify key features influencing model decisions. Finally, a late
fusion mechanism combining both models was evaluated, resulting in 88.12% accuracy. Results
highlight the effectiveness of unimodal solutions, particularly the MLP with autoencoder, and
indicate that multimodal fusion requires further optimization for enhanced overall performance. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5366 |
Collection(s) : | Mémoires de master
|
Fichier(s) constituant ce document :
Il n'y a pas de fichiers associés à ce document.
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|