DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Thèses de doctorat >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5324

Titre: Automatic medical decision for diagnosis of infectious diseases basedon artificial intelligence approaches
Auteur(s): Messai, Aya
Mots-clés: infectiousDiseases
Blackboxmodel
Meningitis diagnosis
Date de publication: 2-jui-2025
Résumé: infectious totheoverlappingclini- Meningitis,inparticular,remainsasig-especiallywhen whichcanbetime-consumingand resource-intensive. ThisPh.D.researchinvestigatestheintegrationofartificialintelli- gence (AI) into the diagnostic process, aiming to enhance accuracy, speed, and inter- pretability through the use of explainable AI (XAI) techniques. The first phase of this study examines cerebrospinal fluid (CSF) biomarker vari- ations across different age groups—children, adults, and the elderly—within various types of meningitis.By analyzing these patterns, we aim to improve the understand- This analysis establishes a foundational understanding of how biomarkers behave in different populations and infection contexts. Ournextcontributionfocusesondiagnosingmultiplemeningitistypesusingensem- ble models and SHapley Additive exPlanations (SHAP) to interpret feature importance. Using data from Setif Hospital (Algeria) and Brazil’s SINAN database, we validated our findings across diverse populations.Extreme Gradient Boosting achieved strong performance(accuracy: 0.90,AUROC:0.94,F1-score: 0.98). SHAPrevealeddistinct biomarker profiles such as elevated neutrophils in meningococcal, high lymphocytes alongwithclin- guish bacterial, viral, and pathogen-specific meningitis, increasing trust in AI-driven diagnostics.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/5324
Collection(s) :Thèses de doctorat

Fichier(s) constituant ce document :

Fichier Description TailleFormat
PhD_Thesis_final___Aya_Messai_corrections.pdf8,73 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires