DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Thèses de doctorat >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/4261

Titre: Deep models for understanding and generating textual arabic data
Auteur(s): Berrimi, Mohamed
Mots-clés: Textual arabic data
Multiple challenges of Arabic
Date de publication: 6-fév-2024
Résumé: In this thesis, our primary focus lies in advancing the research efforts and making significant contributions to the Arabic language domain through the utilization of the state-of-the-art (SOTA) deep learning techniques. Another specific objective is to enhance Arabic resources by creating diverse Arabic text and speech corpora encompassing various dialects that are relevant to a variety of NLP tasks. In addition, we delve into the exploration and development of effective models specifically designed for Arabic language processing applied for the aforementioned NLP tasks. These models were tailored to perform consistently in both Modern Standard Arabic (MSA) and dialectal Arabic datasets. By developing and evaluating these models and their applications, this thesis contributes significantly to the field of Arabic NLP, paving the way for future research and advancements in solving the unique challenges of processing Arabic text and speech.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/4261
Collection(s) :Thèses de doctorat

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Final-Thesis-Mohamed-Berrimi.pdf5,18 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires