DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département d'Informatique >
Thèses de doctorat >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/4260

Titre: Machine learning based models for audio signal classification : Application to COVID-19 Detection
Auteur(s): Hamdi, Skander
Mots-clés: Machine Learning
Audio Signa
Date de publication: 4-fév-2024
Résumé: In this thesis, we propose novel methods for COVID-19 screening, where cough sound is used to employ various techniques. Our first approach is based on hybridizing Convolutional Neural Network (CNN) with Long-Short Term Memory (LSTM) along with Attention mechanism and spectral data augmentation. The second one is a set of ML approaches that are based on ensemble learning, where Random Forest algorithm was primarily used.The first approach consists of forwarding a raw Low-Level Descriptors (LLD) vector to the classifier, the second and the third are based on feature space compression and dimensionality reduction using Stacked Autoencoders and Locally Linear Embedding(LLE), respectively, to reduce computing complexity and make use of the most discriminant features to perform the classification task. The proposed methods are evaluated on a publicly available dataset called COUGHVID, and the results demonstrate their feasibility and high performance. The contributions of this thesis include the development of novel Deep Learning (DL) and ML-based architectures for COVID-19 screening, which can be used in both clinical and remote settings. These findings highlight the potential of ML and DL-based diagnosis system in improving the speed and accuracy of COVID-19 screening and its potential to assist healthcare providers for decision making, especially during pandemics.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/4260
Collection(s) :Thèses de doctorat

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Skander_HAMDI_PhD_Thesis_Final_Version_Secured.pdf5,66 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires