Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département de Mathématiques >
Thèses de doctorat >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/4207
|
Titre: | Analyse variationnelle et asymptotique de différents Problèmes aux limites avec frottement et à mémoire dans des domaines minces |
Auteur(s): | Derguine, Mustafa |
Mots-clés: | Analyse asymptotique Equation faible généralisée |
Date de publication: | 20-jui-2023 |
Résumé: | Dans cette thèse de recherche, on s’intéresse à l’étude de l'analyse variationnelle et asymptotique de deux problèmes aux limites associés aux corps viscoélastiques, avec des conditions de frottement non linéaires,de type Tresca et à mémoire courte ou longue dans des domaines minces de 3D.Dans une première étape,on donne des notations ainsi que les positions des problèmes considérés.Ensuite on montre que ces problèmes seront équivalents à des nouveaux problèmes variationnels.Après les formulations variationnelles des problèmes,on passe à l’étude de l’analyse asymptotique pour cela,en utilisant le changement d’échelle et des nouvelles inconnus pour mener les études sur un domaine ne dépend pas de ε. Ensuite,on cherche des estimations à priori indépendamment du paramètre ε.Enfin en passant à la limite, on obtient les problèmes limites et les équations faibles généralisées. Cette étude est basée sur la formulation variationnelle,l’inégalité de Poincaré,Cauchy-Shwarz,Young,Hölder,Korn et Gronwell. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/4207 |
Collection(s) : | Thèses de doctorat
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|