DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté des Sciences >
Département de Mathématiques >
Thèses de doctorat >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/3913

Titre: Asymptotic analysis for some boundary value problems ‎in thin domains with friction laws
Auteur(s): Manaa, Soumia
Mots-clés: Brinkman fluid
Coulomb law
Reynolds equation
Tresca law
Date de publication: 22-fév-2022
Résumé: This thesis focuses on the study of the asymptotic analysis of some boundary value problems in a ‎three-dimensional thin domain Ω^ε with nonlinear boundary conditions of friction type on a part of ‎the boundary. The main idea of this study is to show how to derive two-dimensional limit problems ‎when the thickness tends to zero for three types of bilateral contacts problems involving Tresca's or ‎Coulomb's friction law. We start first with an incompressible fluid governed by the Brinkman ‎equation. Then the second problem concerns a mathematical model describing the static process of ‎contact between a piezoelectric body and a foundation. Finally, the third work carried out is ‎devoted to the transmission problem for the linear elasticity equation with a nonlinear dissipative ‎term. Precisely, we have transformed the original problems posed in the domain Ω^ε into new ‎equivalent problems on a fixed domain Ω independent of a small parameter ε, and by using a new ‎scale and several inequalities we prove some estimates and convergence theorems. Then, we obtain ‎the limit problems with the weak generalized equation and its uniqueness.‎
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/3913
Collection(s) :Thèses de doctorat

Fichier(s) constituant ce document :

Fichier Description TailleFormat
E-th1996 Manaa.pdf1,71 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires