DSpace
 

Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté de Technologie >
Département d'Electrotechnique >
Articles >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/2999

Titre: Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification
Auteur(s): Belaout a, A
Krim, F
Mellit, A
Talbi, B
Arabi, A
Mots-clés: Photovoltaic arrays
Fault detection and classification
Multiclass neuro-fuzzy classifier
Features reduction techniques
Date de publication: 9-déc-2018
Collection/Numéro: Renewable Energy Volume 127, November 2018, Pages 548-558;
Résumé: In this paper, a Multiclass Adaptive Neuro-Fuzzy Classifier (MC-NFC) for fault detection and classification in photovoltaic (PV) array has been developed. Firstly, to show the generalization capability in the automatic faults classification of a PV array (PVA), Fuzzy Logic (FL) classifiers have been built based on experimental datasets. Subsequently, a novel classification system based on Adaptive Neuro-fuzzy Inference System (ANFIS) has been proposed to improve the generalization performance of the FL classifiers. The experiments have been conducted on the basis of collected data from a PVA to classifyfive kinds of faults. Results showed the advantages of using the fuzzy approach with reduced features over using the entire original chosen features. Then, the designed MC-NFC has been compared with an Artificial Neural Networks (ANN) classifier. Results demonstrated the superiority of the MC-NFC over the ANN-classifier and suggest that further improvements in terms of classification accuracy can be achieved by the proposed classification algorithm; furthermore faults can be also considered for discrimination
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/2999
ISSN: 0960-1481
Collection(s) :Articles

Fichier(s) constituant ce document :

Fichier Description TailleFormat
Article_BELAOUT_Mai_2018.pdf1,76 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.

 

Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires