Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté de Technologie >
Département d'Electrotechnique >
Articles >

Veuillez utiliser cette adresse pour citer ce document : http://dspace.univ-setif.dz:8888/jspui/handle/123456789/2507

Titre: The Amalgamation of SVR and ANFIS Models with Synchronized Phasor Measurements for On-Line Voltage Stability Assessment
Auteur(s): Amroune, Mohammed
Musirin, Ismail
Bouktir, Tarek
Othman, Muhammad Murtadha
Mots-clés: voltage stability
phasor measurement unit
support vector regression
adaptive neuro-fuzzy inference system
ant lion optimizer
Date de publication: 29-jui-2018
Collection/Numéro: Energies 2017, 10, 1693;https://doi.org/10.3390/en10111693
Résumé: This paper presents the application of support vector regression (SVR) and adaptive neuro-fuzzy inference system (ANFIS) models that are amalgamated with synchronized phasor measurements for on-line voltage stability assessment. As the performance of SVR model extremely depends on the good selection of its parameters, the recently developed ant lion optimizer (ALO) is adapted to seek for the SVR’s optimal parameters. In particular, the input vector of ALO-SVR and ANFIS soft computing models is provided in the form of voltage magnitudes provided by the phasor measurement units (PMUs). In order to investigate the effectiveness of ALO-SVR and ANFIS models towards performing the on-line voltage stability assessment, in-depth analyses on the results have been carried out on the IEEE 30-bus and IEEE 118-bus test systems considering different topologies and operating conditions. Two statistical performance criteria of root mean square error (RMSE) and correlation coefficient (R) were considered as metrics to further assess both of the modeling performances in contrast with the power flow equations. The results have demonstrated that the ALO-SVR model is able to predict the voltage stability margin with greater accuracy compared to the ANFIS model.
URI/URL: http://dspace.univ-setif.dz:8888/jspui/handle/123456789/2507
ISSN: EISSN 1996-1073
Collection(s) :Articles

Fichier(s) constituant ce document :

Fichier Description TailleFormat
The Amalgamation of SVR and ANFIS Models with.pdf2,29 MBAdobe PDFVoir/Ouvrir
View Statistics

Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.


Valid XHTML 1.0! Ce site utilise l'application DSpace, Version 1.4.1 - Commentaires