Dépôt Institutionnel de l'Université Ferhat ABBAS - Sétif 1 >
Faculté de Technologie >
Département d'Electrotechnique >
Articles >
Veuillez utiliser cette adresse pour citer ce document :
http://dspace.univ-setif.dz:8888/jspui/handle/123456789/2506
|
Titre: | Power System Voltage Stability Assessment Using a Hybrid Approach Combining Dragonfly Optimization Algorithm and Support Vector Regression |
Auteur(s): | Amroune, Mohammed Bouktir, Tarek Musirin, Ismail |
Mots-clés: | Voltage stability assessment Phasor measurement unit Support vector regression Dragonfly optimization algorithm |
Date de publication: | 29-jui-2018 |
Collection/Numéro: | RESEARCH ARTICLE - ELECTRICAL ENGINEERING;Arabian Journal for Science and Engineering DOI https://doi.org/10.1007/s13369-017-3046-5;Publisher Name Springer Berlin Heidelberg |
Résumé: | In this paper, an efficient approach based on the combination of dragonfly optimization (DFO) algorithm and support vector
regression (SVR) has been proposed for online voltage stability assessment. As the performance of the SVR model extremely
depends on careful selection of its parameters, the DFO algorithm involves SVR parameters setting, which significantly
ameliorates their performance. In the proposed approach, the voltage magnitudes of the phasor measurement unit (PMU)
buses are adopted as the input data for the hybrid DFO–SVR model, while the minimum values of voltage stability index
(VSI) are taken as the output vector. Using the data provided by PMUs as the input variables makes the proposed model
capable of assessing the voltage stability in a real-time manner, which helps the operators to adopt the required measures to
avert large blackouts. The predictive ability of the proposed hybrid model was investigated and compared with the adaptive
neuro-fuzzy inference system (ANFIS) through the IEEE 30-bus and the Algerian 59-bus systems. According to the obtained
results, the proposed DFO–SVR model can successfully predict the VSI. Moreover, it provides a better performance than the
ANFIS model. |
URI/URL: | http://dspace.univ-setif.dz:8888/jspui/handle/123456789/2506 |
ISSN: | 2193-567X Online ISSN 2191-4281 |
Collection(s) : | Articles
|
Fichier(s) constituant ce document :
|
Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.
|