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General Introduction  

At the end of the nineteenth century, physics was dominated by classical mechanics, 

electromagnetism, and thermodynamics, which were thought to provide a complete 

description of nature. However, classical physics failed to explain key microscopic 

phenomena such as black-body radiation, atomic stability, and spectroscopy. These 

limitations revealed the need for new theories, ultimately leading to the development of 

quantum mechanics in the early twentieth century. 

The application of quantum mechanics to chemistry gave rise to quantum chemistry, a 

discipline that employs theoretical models and computational methods to study 

molecular systems. Among its most powerful applications is the study of optical 

properties, particularly those that arise in nonlinear optical (NLO) materials. 

Nonlinear optics is a subdiscipline of optics in which focuses on materials that can strongly 

interact with the electric field of incident laser radiation and generate nonlinear optical (NLO) 

responses which have grown significantly in scientific and technological domains [1]–[5]. The 

strength of light-matter interaction is much more intense than that typically encountered in 

linear optics. It provides fundamental theories and principles of devices for laser radiation in 

the visible, ultraviolet and infrared spectral ranges. The origins of modern nonlinear optics are 

often attributed to the experimental demonstration of second-harmonic generation (SHG) by 

Franken et al.[6] The pivotal advancement enabling this breakthrough was the invention of the 

first laser by Maiman and Collins in 1960 [7], [8]. Nonlinear optical materials are compounds 

capable of exhibiting phenomena such as second-harmonic generation (SHG) and third-

harmonic generation (THG). They play a vital role in a wide range of applications, including 

optical communication, computing, data storage, and laser technology. Additionally, they are 

crucial in photopharmacology, photoactuators, controlled drug transport and release etc. These 

phenomena have led to the evolution of new technologies such as ultrafast lasers, [9], 

[10]  nonlinear microscopy [11], and nonlinear optical switching [9], [10], [12]. 

Furthermore, nonlinear optical materials have great potential applications in different 

fields such as optoelectronics,[13], [14] photonics [15], optical computing, optical 

communications [16], [17], holographic imaging and dynamic image processing etc 

[18], [19]. 

Within the wide range of NLO-active molecules, organometallic complexes have 

emerged as particularly promising candidates due to their structural versatility, tunable 
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electronic properties, and strong charge-transfer capabilities. The incorporation of 

transition metals into conjugated organic frameworks introduces new pathways for 

electron delocalization and metal–ligand interactions, both of which are critical for 

enhancing NLO responses. Complexes based on metallocenes, multidecker sandwich 

structures[20], [21], and donor–acceptor architectures [22]–[25] demonstrate favorable 

characteristics such as redox activity, asymmetric charge distribution[26]–[28], 

introducing diffuse excess electrons [29]–[32], key factors in achieving strong second- 

and third-order NLO effects. 

This thesis is devoted to the investigation of the linear and nonlinear optical (NLO) 

properties of two distinct classes of materials. The first class comprises two series of 

metal-doped nanocages, M@B₆₄Al₁₂N₁₂ and M@B₆₆Al₁₂N₁₂, where M represents a 

transition metal spanning the series from Sc to Zn. The second class involves 

multidecker sandwich clusters of the type {µ-B₂H₂S₂Pd(Cl)₂}–(CoCp)ₙ (n = 2–5). The 

study emphasizes a comprehensive analysis of their structural, electronic, linear and 

nonlinear optical characteristics. To achieve this objective, state-of-the-art 

computational methodologies were employed, with particular reliance on density 

functional theory (DFT) as the primary framework for electronic structure and optical 

property calculations. 

For clarity and coherence, this thesis is organized into five chapters, each addressing a 

key aspect of the investigation. 

 The first chapter introduces fundamental concepts of quantum mechanics, 

including the Born–Oppenheimer and Hartree–Fock approximations, which 

simplify the many-body Schrödinger equation and provide the foundation for 

understanding complex chemical and physical phenomena. It also presents the 

basic principles of density functional theory (DFT) and the Hohenberg–Kohn 

theorems, which form the cornerstone of modern computational approaches. 

 The second chapter focuses on the theoretical framework of linear and nonlinear 

optical phenomena. It describes fundamental parameters such as polarizability 

and hyperpolarizability, emphasizing their significance in advanced technologies 

such as optical switching, frequency conversion, and telecommunications. By 

examining the physical origins of nonlinear optical (NLO) behavior, this chapter 

establishes the basis for the computational studies presented in later sections. 
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 The third chapter is devoted to the computational investigation of the second- and 

third-order nonlinear optical (NLO) responses of M@B₆₆/₆₄Al₁₂N₁₂ nanocages. 

For these systems, a topological analysis was carried out within the framework 

of the Quantum Theory of Atoms in Molecules (QTAIM), and delocalization 

indices (DI) were evaluated to gain insights into the nature of chemical bonding. 

In addition, the optical absorption spectra were analyzed, and both static and 

dynamic NLO parameters of the doped nanocages were computed. To further 

elucidate the origin of the NLO response, the sum-over-states (SOS) approach 

was employed. 

 The fourth chapter is dedicated to predicting and tailoring the second-order 

nonlinear optical (NLO) behavior of a novel series of multidecker sandwich 

clusters, {µ-B₂H₂S₂Pd(Cl)₂}–(CoCp)ₙ (n = 2–5). In this part, both static and 

frequency-dependent first- and second-order NLO coefficients are determined, 

together with a comprehensive examination of their geometric, electronic, and 

optical attributes. 

 The fifth chapter extends the findings of Chapter IV by examining the third-order 

nonlinear optical responses of multidecker cluster compounds. Particular 

emphasis is placed on quantifying the fundamental parameters associated with 

second hyperpolarizability. These results are systematically compared with those 

obtained for metallocene-based systems, offering a deeper understanding of the 

correlations between molecular architecture and optical performance. 

  



General Introduction  

4 
 

References 

[1] J. Zyss and I. Ledoux, “Nonlinear Optics in Multipolar Media: Theory and Experiments,” 

Chem. Rev., vol. 94, no. 1, pp. 77–105, 1994, doi: 10.1021/cr00025a003. 

[2] D. M. Burland, R. D. Miller, and C. A. Walsh, “Second-Order Nonlinearity in Poled-

Polymer Systems,” Chem. Rev., vol. 94, no. 1, pp. 31–75, 1994, doi: 

10.1021/cr00025a002. 

[3] T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, and A. Persoons, “Second-order 

nonlinear optical materials: Recent advances in chromophore design,” J. Mater. Chem., 

vol. 7, no. 11, pp. 2175–2189, 1997, doi: 10.1039/a703434b. 

[4] S. Di Bella, “Second-order nonlinear optical properties of transition metal complexes,” 

Chem. Soc. Rev., vol. 30, no. 6, pp. 355–366, 2001, doi: 10.1039/b100820j. 

[5] S. R. Marder, “Organic nonlinear optical materials: Where we have been and where we 

are going,” Chem. Commun., no. 2, pp. 131–134, 2006, doi: 10.1039/b512646k. 

[6] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical 

harmonics,” Phys. Rev. Lett., vol. 7, no. 4, pp. 118–119, 1961, doi: 

10.1103/PhysRevLett.7.118. 

[7] T. H. MAIMAN, “Stimulated Optical Radiation in Ruby,” Nature, vol. 187, pp. 493–

494, 1960, doi: org/10.1038/187493a0. 

[8] R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, and W. Kaiser, 

“Coherence, narrowing, directionality, and relaxation oscillations in the light emission 

from ruby,” Phys. Rev. Lett., vol. 5, no. 7, pp. 303–305, 1960, doi: 

10.1103/PhysRevLett.5.303. 

[9] L. T. Cheng, W. Tam, S. R. Marder, A. E. Stiegman, G. Rikken, and C. W. Spangler, 

“Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 

1. Methods and Results on Benzene and Stilbene Derivatives,” J. Phys. Chem., vol. 95, 

no. 26, pp. 10643–10652, 1991, doi: 10.1021/j100179a027. 

[10] K. A. Green, M. P. Cifuentes, M. Samoc, and M. G. Humphrey, “Metal alkynyl 

complexes as switchable NLO systems,” Coord. Chem. Rev., vol. 255, no. 21–22, pp. 

2530–2541, 2011, doi: 10.1016/j.ccr.2011.02.021. 



General Introduction  

5 
 

[11] J. A. Delaire and K. Nakatani, “Linear and Nonlinear Optical Properties of Photochromic 

Molecules and Materials,” Chem. Rev., vol. 100, no. 5, pp. 1817–1845, 2000, doi: 

10.1021/cr980078m. 

[12] J. Dang, D. Mei, Y. Wu, and Z. Lin, “A comprehensive survey on nonlinear optical 

phosphates: Role of multicoordinate groups,” Coord. Chem. Rev., vol. 431, p. 213692, 

2021, doi: 10.1016/j.ccr.2020.213692. 

[13] M. S. Kodikara, R. Stranger, and M. G. Humphrey, “Computational studies of the 

nonlinear optical properties of organometallic complexes,” Coord. Chem. Rev., vol. 375, 

pp. 389–409, 2018, doi: 10.1016/j.ccr.2018.02.007. 

[14] Y. Y. Liang, B. Li, X. Xu, F. Long Gu, and C. Zhu, “A Density Functional Theory Study 

on Nonlinear Optical Properties of Double Cage Excess Electron Compounds: 

Theoretically Design M[Cu(Ag)@(NH 3 ) n ](M = Be, Mg and Ca; n = 1–3),” J. Comput. 

Chem., vol. 40, no. 9, pp. 971–979, 2019, doi: 10.1002/jcc.25371. 

[15] N. Baggi et al., “Design of cyclometallated 5-π-delocalized donor-1,3-di(2-

pyridyl)benzene platinum(II) complexes with second-order nonlinear optical 

properties,” Polyhedron, vol. 140, no. Ii, pp. 74–77, 2018, doi: 

10.1016/j.poly.2017.11.051. 

[16] C. Andraud, F. Cyril, B. Olivier, H. Chermette, and P. L. Baldeck, “Excitonically 

Coupled Oligomers and Dendrimers for Two-Photon Absorption,” Adv. Polym. Sci., vol. 

214, pp. 149–203, 2008, doi: 10.1007/12_2008_158. 

[17] Z. R. Khan, M. Shkir, V. Ganesh, S. AlFaify, I. S. Yahia, and H. Y. Zahran, “Linear and 

Nonlinear Optics of CBD Grown Nanocrystalline F Doped CdS Thin Films for 

Optoelectronic Applications: An Effect of Thickness,” J. Electron. Mater., vol. 47, no. 

9, pp. 5386–5395, 2018, doi: 10.1007/s11664-018-6437-9. 

[18] K. Iliopoulos, O. Krupka, D. Gindre, and M. Salle, “Reversible Two-Photon Optical Data 

Storage in Coumarin-Based Copolymers,” J. Am. Chem. Soc., vol. 132, pp. 14343–

14345, 2010, doi: 10.1021/ja1047285. 

[19] M. Homocianu, A. Airinei, C. Hamciuc, and A. M. Ipate, “Nonlinear optical properties 

(NLO) and metal ions sensing responses of a polymer containing 1,3,4-oxadiazole and 

bisphenol A units,” J. Mol. Liq., vol. 281, pp. 141–149, 2019, doi: 

10.1016/j.molliq.2019.02.065. 



General Introduction  

6 
 

[20] S. J. Wang, Y. F. Wang, and C. Cai, “Multidecker Sandwich Cluster VnBenn +1 (n = 1, 

2, 3, 4) as a Polarizable Bridge for Designing 1D Second-Order NLO Chromophore: 

Metal-π Sandwich Multilayer Structure as a Particular Charge-Transfer Axis for 

Constructing Multidimensional NLO Molecules,” J. Phys. Chem. C, vol. 119, no. 28, pp. 

16256–16262, 2015, doi: 10.1021/acs.jpcc.5b04656. 

[21] S. J. Wang, Y. F. Wang, and C. Cai, “Multidecker sandwich complexes VnBenn+1 (n = 

1, 2, 3) as stronger electron donor relative to ferrocene for designing high-performance 

organometallic second-order nlo chromophores: Evident layer effect on the first 

hyperpolarizability and two-dimensional N,” J. Phys. Chem. C, vol. 119, no. 10, pp. 

5589–5595, 2015, doi: 10.1021/jp5123272. 

[22] M. Blanchard-Desce, I. Ledoux, J. M. Lehn, J. Malthête, and J. Zyss, “Push-pull 

polyenes and carotenoids: Synthesis and non-linear optical properties,” J. Chem. Soc., 

Chem. Commun., no. 11, pp. 737–739, 1988, doi: 10.1039/C39880000737. 

[23] D. Hannachi et al., “The Effect of Resonance-Assisted Hydrogen Bond on the Second- 

Order Nonlinear Optical properties of Pyridine Hydrazone Photoswitches: A Quantum 

Chemistry Investigation,” New J. Chem., 2023, doi: 10.1039/D3NJ02848H. 

[24] E. Cariati, C. Dragonetti, E. Lucenti, F. Nisic, S. Righetto, and E. Tordin, “An acido-

triggered reversible luminescent and nonlinear optical switch based on a substituted 

styrylpyridine : EFISH measurements as an unusual method to reveal a protonation – 

deprotonation NLO contrast,” Chem. Commun., vol. 50, no. 13, pp. 1608–1610, 2014, 

doi: 10.1039/c3cc48149b. 

[25] F. Ricci, F. Elisei, P. Foggi, A. Marrocchi, A. Spalletti, and B. Carlotti, “Photobehavior 

and Non − Linear Optical Properties of Push − Pull , Symmetrical and Highly 

Fluorescent Benzothiadiazole Derivatives,” J. Phys. Chem., vol. 120, no. 41, pp. 23726–

23739, 2016, doi: 10.1021/acs.jpcc.6b07290. 

[26] D. Hannachi, M. F. Haroun, A. Khireddine, and H. Chermette, “Optical and nonlinear 

optical properties of Ln(Tp)2, where Ln = La,...,Lu and Tp = tris(pyrazolyl)borate: a 

DFT+TD-DFT study,” New J. Chem., vol. 43, p. 14377, 2019, doi: 10.1039/c9nj03232k. 

[27] M. Zaidi, D. Hannachi, and H. Chermette, “Correlation between Second Ionization 

Potential and Nonlinear Optical Properties of Bivalent Transition-Metal Complexes : A 

Quantum Chemical Study,” Inorg. Chem., vol. 60, pp. 6616–6632, 2021. 



General Introduction  

7 
 

[28] D. Kamli, D. Hannachi, and H. Chermette, “Bis-TTF-Ge derivatives: promising linear 

and nonlinear optical properties, a theoretical investigation,” New J. Chem., vol. 47, pp. 

1234–1246, 2023, doi: 10.1039/d2nj03671a. 

[29] A. Ahsin and K. Ayub, “Remarkable electronic and NLO properties of bimetallic 

superalkali clusters: a DFT study,” J. Nanostructure Chem., no. 0123456789, 2021, doi: 

10.1007/s40097-021-00429-2. 

[30] A. Ahsan and K. Ayub, “Adamanzane based alkaline earthides with excellent nonlinear 

optical response and ultraviolet transparency,” Opt. Laser Technol., vol. 129, no. March, 

p. 106298, 2020, doi: 10.1016/j.optlastec.2020.106298. 

[31] A. Ahsan, S. Sarfaraz, F. Fayyaz, M. Asghar, and K. Ayub, “Enhanced non-linear optical 

response of calix[4]pyrrole complexant based earthides in the presence of oriented 

external electric field,” J. Mol. Liq., vol. 350, p. 118504, 2022, doi: 

10.1016/j.molliq.2022.118504. 

[32] A. Ahsan and K. Ayub, “Extremely large nonlinear optical response and excellent 

electronic stability of true alkaline earthides based on hexaammine complexant,” J. Mol. 

Liq., vol. 297, pp. 36–40, 2020, doi: 10.1016/j.molliq.2019.111899. 

 

 



 

Chapter I 
Theoretical foundations



Chapter I 

8 
 

I.1. Introduction 

Quantum chemistry provides a rigorous theoretical framework for investigating the electronic 

structure of molecular systems by solving the time-independent Schrödinger equation. Given 

the complexity of many-electron systems, practical computations rely on fundamental 

approximations such as the Born–Oppenheimer separation, which decouples nuclear and 

electronic motion. Core methodologies include Hartree–Fock (HF) theory, post-HF correlation 

methods (e.g., MP2, CCSD), and density functional theory (DFT), each offering varying 

balances between accuracy and computational cost. These approaches are implemented using 

basis sets that approximate molecular orbitals and are essential for achieving reliable results. 

In this chapter, the fundamental theoretical concepts and computational strategies 

underlying these methods are introduced, providing the necessary foundation for exploring 

molecular properties through quantum chemical models. 

I.2. Schrödinger equation 

The foundations of quantum chemistry go back to 1926 when the physicist Erwin Schrödinger 

introduced a key concept within quantum theory, this is now referred to as the Schrödinger 

equation. 

This equation is a fundamental part of quantum mechanics and explains how the quantum state 

of a physical system changes over time. Essentially, solving this equation enables us to 

understand atomic and molecular behaviours on a quantum level, which is essential to quantum 

chemistry. The most common form of this equation, the time-independent Schrödinger 

equation, is written as [1]: 

                      𝐻̂Ψ = 𝐸Ψ                (I.1) 

Where: 

𝐻̂ Represents the Hamiltonian operator of the system under consideration (atom, molecule, 

solid); it is known and contains terms related to the kinetic energy of the electrons and atomic 

nuclei, as well as terms describing the Coulomb interaction between electron-nucleus, electron-

electron, and nucleus-nucleus. The unknowns to be determined are the wave function Ψ and 

the energy 𝐸. 

The Schrödinger equation serves as the foundation for first-principles methods, which seek to 

determine the energy (E) and wave function (Ψ) of a quantum system without relying on 
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experimentally adjusted parameters. Quantum computational methods rely on various 

mathematical frameworks that involve applying the Schrödinger equation while accounting for 

all interactions between the particles in the systems being studied. However, due to the presence 

of interaction terms for all pairs of particles in the Hamiltonian operator, the equation can only 

be solved analytically for a few very simple systems.  

For a molecular system, the total Hamiltonian operator 𝐻̂ is expressed as the sum of the kinetic 

and potential energy operators of both nuclei and electrons. 

   𝐻̂ = 𝑇̂𝑁 + 𝑇̂𝑒 + 𝑉̂𝑁𝑒 + 𝑉̂𝑒𝑒 + 𝑉̂𝑁𝑁      (I.2) 

where the kinetic energy operators are defined as follows: 

𝑇̂𝑁 = − ∑
ћ2

2𝑀𝛼
∆𝛼

𝑁
𝛼=1  (kinetic energy of the nuclei) 

𝑇̂𝑒 = − ∑
ћ2

2𝑚𝑒
∆𝑖

𝑛
𝑖=1  (kinetic energy of electrons) 

and where the Coulomb potential terms are given by: 

𝑉̂𝑁𝑁 = ∑ ∑
𝑍𝛼𝑍𝛽𝑒2

𝑅𝛼𝛽
𝛼>𝛽𝛼  (nuclear-nuclear electrostatic repulsion) 

𝑉̂𝑁𝑒 = − ∑ ∑
𝑍𝛼𝑒2

𝑟𝑖𝛼
𝛼𝑖  (electrostatic attraction electrons nuclei) 

𝑉̂𝑒𝑒 = ∑ ∑
𝑒2

𝑟𝑖𝑗
𝑖>𝑗𝑗  (electron-electron electrostatic repulsion) 

Where rij the distance between electrons i and j, e the elementary charge, riα the distance 

electron i - nuclei α, Zα atomic number of nuclei α, Rαβ the distance between nuclei α and β and 

Δi and Δα the Laplacian operators associated with the electron i and the nuclei α, respectively.   

In quantum chemistry, the primary challenge is to find approximate solutions to the Schrödinger 

equation in complex many-body systems with multiple electrons and nuclei interacting, with 

each particle experiencing the collective influence of all others.  

I.3. Born Oppenheimer Approximation 

The first major simplification is the Born–Oppenheimer approximation (BOA). It exploits the 

large mass difference between nuclei and electrons to treat their motions separately. 
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We assume that the nuclei are stationary relative to the fast-moving electrons. This leads to the 

decomposition: 

The Born-Oppenheimer approximation [2] plays a crucial role in electronic structure 

calculations. It exploits the large mass difference between nuclei and electrons to treat their 

motions separately. Even for the lightest nucleus, the proton, its mass is about 1836 times 

greater than that of an electron. As a result, nuclei move much more slowly compared to 

electrons. This allows, in many cases, the assumption that electrons evolve within an average 

potential created by fixed nuclei.  Under this approximation, the electronic wave function 

Ψ𝑒(𝑟, 𝑅⃗⃗) explicitly depends on the electronic coordinates 𝑟 while being parametrically 

dependent on the nuclear coordinates 𝑅⃗⃗. Consequently, the total wave function can be expressed 

as the product of an electronic wave function and a nuclear wave function:   

    Ψ(𝑟, 𝑅⃗⃗) = Ψ𝑛(𝑅⃗⃗)Ψ𝑒(𝑟, 𝑅⃗⃗)       (I.3) 

The electronic Schrödinger equation becomes: 

𝐻̂𝑒Ψ𝑒(𝑟, 𝑅⃗⃗) = 𝐸𝑒Ψ𝑒(𝑟, 𝑅⃗⃗)      (I.4) 

𝐻̂𝑒 = 𝑇̂𝑒(𝑟) + 𝑉̂𝑁𝑒(𝑟, 𝑅⃗⃗) + 𝑉̂𝑒𝑒(𝑟) + 𝑉̂𝑁𝑁(𝑅⃗⃗)     (I.5) 

which leads to:  

𝐻̂𝑒 = − ∑
1

2
∆𝑖

𝑛
𝑖=1 + ∑ ∑

𝑍𝛼

𝑟𝑖𝛼
𝛼𝑖 + ∑ ∑

1

𝑟𝑖𝑗
𝑖>𝑗𝑗 + 𝑉̂𝑁𝑁(𝑅⃗⃗)    (I.6) 

This approximation represents a first step toward solving Schrödinger Equation but it remains 

insufficient on its own. 

The electronic Schrödinger generally has no analytical solutions. The main difficulty arises 

from the electron-electron interaction 𝑉̂𝑒𝑒, which accounts for all quantum effects between 

electrons, and the Coulomb repulsion term 
1

𝑟𝑖𝑗
, which couples their motion. To simplify the 

problem, this repulsion can be treated as an average effect, meaning each electron moves within 

the mean field generated by the others. This approximation forms the foundation of the Hartree-

Fock method. 

I.4. Hartree Approximation 

The Born-Oppenheimer approximation simplifies the electronic problem but fails to resolve the 

fundamental challenge posed by electron-electron interactions, leading to an N-body problem. 
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Solving this problem exactly, even for a single electron, remains impossible due to the 

complexity of these interactions. In 1927, an approximate technique was introduced by Douglas 

Hartree  [3] to calculate wave functions and energy levels in atoms and ions This method is 

based on the premise that electrons operate independently, lacking any correlations in their 

movements. 

Based on this approximation, the probability of locating an electron at position 𝑟1 within orbital 

1 is regarded independent of the probability of another electron being at position 𝑟2. 

Consequently, the Hamiltonian of the system is then expressed as:   

𝐻 = ∑ ℎ(𝑖)𝑁
𝑖=1         (I.7) 

where ℎ(𝑖) represents the monoelectronic Hamiltonian.   

The associated electronic wave function is constructed as a product of single-electron wave 

functions, known as the Hartree product  [4]:   

Ψ𝐻𝑃 = (𝑥1; 𝑥2; … ; 𝑥𝑁) = |𝜑𝑖(𝑥1)𝜑𝑗(𝑥2) … 𝜑𝑘(𝑥𝑁)|    (I.8) 

This approximation assumes that each electron moves independently within an average 

potential generated by all other electrons, ignoring direct electron-electron interactions. In this 

model, electrons are treated as uncorrelated, meaning their individual wave functions can be 

represented as a simple product. However, this approach overlooks key quantum mechanical 

effects, including the Pauli exclusion principle and electron correlation, which results in an 

overestimation of Coulomb repulsion. Despite these limitations, it provides a foundational 

framework for more advanced methods, such as Hartree-Fock theory, which introduces spin 

considerations and enforces the antisymmetry of the wave function when exchanging two 

electrons, leading to a more accurate solution of the Schrödinger equation. 

I.5. Hartree-Fock approximation  

The Hartree approximation is an important step in solving the electronic Schrödinger equation, 

but it doesn’t fully align with the core principles of quantum mechanics. In particular, it 

overlooks the Pauli exclusion principle [5], which requires that the total wave function of a 

system of electrons must be antisymmetric when any two electrons are exchanged. This means 

that swapping two electrons in the wave function must introduce a negative sign, reflecting the 

fundamental nature of fermions. 
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The initial objective is to obtain an approximate solution to the electronic Schrödinger equation 

[1]. The Hartree-Fock method, introduced by Fock and Slater in 1930, extends the Hartree 

approach by incorporating additional quantum mechanical principles. This refinement is 

achieved by replacing the Hartree wave functions with a Slater determinant [6]. This 

determinant consists of single-electron functions known as spin orbitals and applies to closed-

shell systems, where all electrons are paired. Each spin orbital is the product of a spatial function 

𝜙𝑖 (orbital), which depends on the electron's spatial coordinates, and a spin function that can 

take one of two opposite values: 𝛼 (S )= 1/2 and 𝛽 (S)= -1/2. In a closed-shell system, the spin 

density is zero, making the system symmetric with respect to these two spin states. This 

symmetry allows a pair of electrons to be described using the same spatial orbital 𝜙𝑖.  

This describes the configuration in which the polyelectronic determinant for an N electron 

system comprises N/2 spatial orbitals {𝜑1, 𝜑2, … , 𝜑𝑁
2⁄ }. Every spatial orbital appears two times 

inside the determinant, linked with spin functions of opposite values to ensure that the two 

corresponding spin orbitals are distinct. 

an N×N determinant made from N different spin orbitals that explain single-electron states 

using both space and spin coordinates. So, the polyelectronic wave function is written as: 

Ψ(𝑟1, 𝑟2 … . , 𝑟𝑁) =
1

√𝑁!
|

𝜑1(𝑟1) 𝜑1(𝑟2)    . . . 𝜑1(𝑟𝑁)
𝜑2(𝑟1) 𝜑2(𝑟2)    . . . 𝜑2(𝑟𝑁)

⋮
𝜑𝑁(𝑟1)

⋮
𝜑𝑁(𝑟2)    . . .

⋮
𝜑𝑁(𝑟𝑁)

|                (I.9) 

The Hartree-Fock model serves as a foundation for further refinements, either by introducing 

additional approximations, as seen in semi-empirical methods, or by incorporating additional 

determinants to generate solutions that progressively converge toward the exact solution of 

the electronic Schrödinger equation. 

I.6. Post Hartree-Fork  

The Hartree–Fock (HF) approximation provides a good initial approach for solving the 

electronic Schrödinger equation, but it does not provide electron correlation, the correlating 

effects of electrons present contemporaneously within the atom beyond the mean-presentation 

nature. This omission can cause large errors in computed properties, especially total energies, 

reaction barriers, and spectroscopic properties. Post-Hartree–Fock methods have been devised 

to introduce correlation effects systematically to improve upon this. A very straightforward 

example is Møller–Plesset perturbation theory, where the Hamiltonian is split into a zeroth-
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order contribution (the HF Hamiltonian) and a perturbation. The energy correction in second-

order perturbation theory (MP2) is: 

𝐸𝑀𝑃2 = ∑
|〈𝑖𝑗‖𝑎𝑏〉|2

𝜀𝑖+𝜀𝑗−𝜀𝑎−𝜀𝑏
𝑖<𝑗,𝑎<𝑏                             (I.10) 

In doing so 𝑖, 𝑗 occupied orbitals 𝑎, 𝑏 virtual orbitals, 𝜀 orbital energy and ⟨𝑖𝑗∣∣𝑎𝑏⟩ antisymmetric 

two-electron integral. Another widely used approach is configuration interaction (CI), where 

the associated wave functions are expressed as linear combinations of Slater determinants: 

𝜓𝐶𝐼 = 𝑐0𝜙0 + ∑ 𝑐𝑖
𝑎𝜙𝑖

𝑎
𝑖,𝑎 + ∑ 𝑐𝑖𝑗

𝑎𝑏𝜙𝑖𝑗
𝑎𝑏

𝑖<𝑗,𝑎<𝑏 + ⋯    (I.11) 

𝜙0 is the HF reference, and 𝜙𝑖
𝑎, 𝜙𝑖𝑗

𝑎𝑏 etc. represent single-excitation and double-excitation 

configurations. The full CI theory provides exact solutions on a finite basis, but is 

computationally infeasible outside of small systems due to scaling factors. In contrast, coupled 

cluster theory (CC) employs an exponential approach to compute the wave functions: 

|𝜓𝐶𝐶⟩ = 𝑒𝑇̂|𝜙
0

⟩,    𝑇̂ = 𝑇̂1 + 𝑇̂2 + 𝑇̂3 + ⋯    (I.12) 

Where 𝑇̂𝑛 represents the excitation operator. The most commonly used approximation is 

CCSD(T), which contains single and double numbers exactly and treats triple numbers in a 

perturbative manner. The method is known for its high accuracy and size-wideness and is 

therefore considered a benchmark for quantum chemical predictions. Overall, post-HF 

methods, while computationally expensive, are able to model electronic structure with high 

accuracy and are indispensable in systems where correlations play a dominant role. 

I.7. Density Functional Theory (DFT) 

A comprehensive examination of the electronic characteristics of a molecular system 

necessitates consideration of electron correlation effects, especially when transition metals are 

present. Although Post-Hartree-Fock methods take these effects into account, they tend to be 

computationally intensive, which restricts the size of the systems that can be analyzed. 

Over the past three decades, Density Functional Theory (DFT) has undergone significant 

advancements for investigating chemical systems, proving to be a formidable alternative to 

Post-Hartree-Fock methods. Initially created and utilized for solid-state issues, DFT has 

become increasingly favored in chemical applications due to several important factors: 

• This theory includes in its formalism a large part of electronic correlation. 
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• This approach is relevant to a wide range of systems, such as covalent, ionic, and 

metallic compounds. 

• The study of larger molecular systems is made possible due to its lower demand for 

computational resources compared to Post-Hartree-Fock methods.  

• A more intuitive chemical interpretation of the resulting wave function is facilitated by 

its single-determinant characteristic. 

I.7.1 Framework of Density Functional Theory (DFT) 

While Hartree-Fock methods express the system's energy as a functional of its wave function 

𝜓, Density Functional Theory (DFT) instead defines energy as a functional of the electronic 

density (𝜌). One of the key advantages of DFT is its ability to solve the Schrödinger equation 

using only the observable 𝜌, which is defined in real space R3. This replaces the high-

dimensional configuration space of 3N variables required for the wave function in Hartree-Fock 

methods.   

However, while this approach avoids the complexity of the many-body problem by relying on 

the electronic density, the challenge lies in formulating an explicit analytical expression for 

energy as a functional of (𝜌).   

Before exploring the fundamental principles of Density Functional Theory, it is essential to 

define its central quantity: the electronic density (𝜌). 

I.7.2 The electronic density  

Electrons are inseparable and indistinguishable particles. While an individual electron cannot 

be precisely localized [7], its probability of presence within a given volume element can be 

estimated, which corresponds to the electronic density (𝜌). Rather than being treated as isolated 

entities, electrons must be considered collectively as an electron cloud, with the electronic 

density identifying the regions of space where they are most likely to be found.   

The electronic density (𝜌) is a positive function defined by the three spatial coordinates (x, y, z). 

It gradually decreases to zero at infinite distance and is worth N - total number of electrons - 

when integrated over the whole space. 

{
𝜌(𝑟 ↦ ∞) = 0

∫ 𝜌(𝑟)𝑑𝑟 = 𝑁
     (I.13) 
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The electronic density 𝜌 (r) is, by definition, the probability of finding an electron within a unit 

volume 𝑑𝜏 at position r. Unlike the wave function 𝜓, the electronic density is an observable 

quantity. 

Notably, 𝜌 (r) appears to contain sufficient information to describe the system, whereas the 

wave function 𝜓 holds a far greater amount of information, some of which is not essential for 

understanding chemical bonding. 

These considerations suggest that the electronic density alone is enough to fully determine the 

properties of an atomic system. This idea has motivated several attempts to develop a quantum 

formalism based on 𝜌 (r). However, it was Hohenberg and Kohn who formulated an exact 

theoretical framework (Without any approximations) expressed through two fundamental 

theorems. 

I.8. Hohenberg -Kohn theorems: 

Pierre Hohenberg and Walter Kohn established two fundamental theorems in 1964, providing 

a theoretical foundation for calculating the ground-state electronic energy using the electronic 

density 𝜌(𝑟)[8]. 

I.8.1 Theorem 1 

In an electronic system described by the Hamiltonian 𝐻𝑒𝑙, the ground-state energy and wave 

function are determined by minimizing the corresponding functional 𝐸[𝜓]. In an N electron 

system, the external potential 𝑣𝑒𝑥𝑡(𝑟) fully defines the Hamiltonian 𝐻𝑒𝑙. This implies that if the 

number of electrons N and the external potential 𝑣𝑒𝑥𝑡(𝑟) are known, the Hamiltonian can be 

uniquely determined, granting access to the ground-state energy and wave function. Thus, the 

external potential defines the essential characteristics of a given system.   

The first theorem of Hohenberg and Kohn [8] provides a theoretical justification for the idea 

that a given electronic density 𝜌 (r) corresponds to a unique external potential 𝑣𝑒𝑥𝑡(𝑟). Indeed, 

the external potential is uniquely determined by the electronic density, up to an additive 

constant. Since 𝜌 (r)  also defines the total number of electrons in the system, it follows that the 

electronic density uniquely determines the wave function and, consequently, all electronic 

properties of the system.   
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For a system characterized by a given number of electrons N, nuclear positions (𝑅𝛼), and 

nuclear charges (𝑍𝛼), the addition of the electronic density 𝜌 (r)   allows for the construction of 

the corresponding Hamiltonian. As a result, the fundamental wave function 𝜓𝑓 and the ground-

state energy 𝐸𝑓 can be determined.  

𝜌 ⇒ {𝑁, 𝑍𝛼 , 𝑅𝛼} ⇒ 𝐻 ⇒ 𝜓𝑓 ⇒ 𝐸𝑓     (I.14) 

The total energy of the system is thus a functional of the electronic density 𝜌(𝑟), expressed as 

𝐸 = 𝐸[𝜓]. This expression can be rewritten by explicitly separating the terms that depend on 

the specific system, such as the number of electrons N and the external potential (N, 𝑣𝑒𝑥𝑡(𝑟)) 

that is, independent of any parameters specific to a given system. 

The system-independent terms are grouped into a functional known as the Hohenberg-Kohn 

functional. This functional includes the electronic kinetic energy 𝑇𝑒[𝜌] and the potential energy 

arising from electron-electron interactions 𝑉𝑒−𝑒[𝜌]. 

I.8.2 Theorem 2:   

The configuration that results in the lowest energy corresponds to the ground-state electronic 

density of a system, which can be mathematically represented as: 

𝐸[𝜌(𝑟)] ≥ 𝐸𝐺𝑆[𝜌𝐺𝑆(𝑟)]     (I.15) 

In this expression, 𝐸[𝜌(𝑟)] denotes the energy calculated for an arbitrary electronic density 

𝜌(𝑟), while 𝐸𝐺𝑆[𝜌𝐺𝑆(𝑟)] signifies the minimum energy that the system can achieve, linked to 

the actual ground-state density 𝜌𝐺𝑆(𝑟).   

While this theorem provides a method to determine the ground-state density and its 

corresponding energy, it does not provide an explicit formulation for the functional 𝐹[𝜌(𝑟)] nor 

a direct approach for solving the many-electron Schrödinger equation. 

I.9. Kohn-Sham theorem 

In the Kohn-Sham framework [9] of density functional theory (DFT), the exact exchange 

energy from Hartree-Fock (HF) theory is replaced by a more general exchange-correlation 

functional. This functional accounts for both exchange and electron correlation effects, the latter 

being absent in HF theory. The total Kohn-Sham energy is given by:   

𝐸𝐾𝑆(𝜌) = 𝑇[𝜌(𝑟)] + 𝐸𝐻[𝜌(𝑟)] + ∫ 𝒱𝑒𝑥𝑡(𝑟)𝜌(𝒓)𝑑𝒓 + 𝑉𝑥𝑐[𝜌(𝑟)]   (I.16) 
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Where: 

𝑇[𝜌(𝑟)] is the kinetic energy of non-interactive electrons. 

𝒱𝑒𝑥𝑡(𝑟) is the external potential 

𝐸𝐻[𝜌(𝑟)] is the Hartree energy 

𝑉𝑥𝑐[𝜌(𝑟)] is the exchange-correlation potential, expressed as: 

𝑉𝑥𝑐[𝜌(𝑟)] =
𝛿𝐸𝑥𝑐(𝜌)

𝛿𝜌(𝑟)
     (I.17) 

The exchange-correlation energy functional 𝐸𝑥𝑐(𝜌) consists of four key contributions: 

exchange, correlation, kinetic, and Coulomb terms. These arise naturally when expressing the 

total energy of a system in terms of the density operator within the framework of density 

functional theory (DFT).   

In principle, the total energy of the system can be determined using the formal expression for 

the Kohn-Sham energy functional. However, this remains an unsolved problem due to the 

unknown exact form of the exchange-correlation potential 𝑉𝑥𝑐[𝜌(𝑟)]. This uncertainty 

necessitates the development of approximate exchange-correlation functionals to enable 

practical calculations of electronic structure and total energy [10], [11]. 

I.10. Exchange-Correlation Approximations in DFT 

An accurate treatment of the exchange–correlation (XC) energy, which is defined as all 

quantum mechanical electron interactions that are not described by the classical Coulomb 

interaction, is a central challenge in Density Functional Theory (DFT). Since the exact form of 

the XC functional is not known, approximations to it have been developed at different levels of 

accuracy and computational cost with a goal of achieving the best possible way. These 

approximations are typically organized according to "Jacob's Ladder" 

I.10.1 Local Density Approximation (LDA) 

In order to precisely account for the effects of electron-electron correlation, it is essential to 

develop an algebraic representation for the exchange-correlation energy 𝐸𝑥𝑐. The initial method 

examined adheres to the Kohn and Sham framework, with the goal of defining a reference 

system that allows for the most accurate expression of the exchange-correlation functional. 
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The fundamental concept of the Local Density Approximation (LDA) involves treating the 

exchange-correlation potential as a localized quantity, determined at a particular point 𝑟 and 

only slightly influenced by density fluctuations nearby. Instead of striving to accurately depict 

the precise exchange-correlation hole, LDA aims to replicate the physical properties of its 

spherically averaged equivalent. 

The LDA, serving as the basis for all contemporary exchange-correlation functionals, can be 

formally expressed in the following manner: 

 

 𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌] = ∫ 𝜌(𝑟)𝜀𝑥𝑐(𝜌(𝑟))𝑑𝑟     (I.18) 

This is the functional for which an almost exact form is known. The approximation of 𝐸𝑥𝑐[𝜌] 

is based on the uniform electron gas model, where the term 𝜀𝑥𝑐(𝜌(𝑟)) represents the exchange-

correlation energy per particle in a uniform electron gas of density 𝜌(𝑟). Additionally, 

𝜀𝑥𝑐(𝜌(𝑟)) can be expressed as the sum of an exchange contribution and a correlation 

contribution: 

𝜀𝑥𝑐(𝜌(𝑟)) = 𝜀𝑥(𝜌(𝑟)) + 𝜀𝑐(𝜌(𝑟))    (I.19) 

The exchange term, commonly referred to as "Dirac exchange"[12]  and denoted by S (as it was 

later adopted by Slater), is known in an exact form: 

𝜀𝑥
𝑆(𝜌(𝑟)) =

−3

4
(

3𝜌(𝑟)

𝜋
)

1 3⁄

     (I.20) 

The correlation term 𝜀𝑐(𝜌(𝑟)) cannot be expressed in an exact analytical form. The most widely 

adopted approximation for this term was developed by Vosko, Wilk, and Nusair (VWN) [13]. 

Their approach is based on an interpolation of highly accurate quantum Monte Carlo 

calculations performed by Ceperley and Alder [14] for the uniform electron gas. 

The fundamental idea behind the Local Density Approximation (LDA) is that the exchange-

correlation energy of an inhomogeneous system can be treating each small region as if it were 

part of a homogeneous electron gas with the same local density. This approximation is 

reasonable when the density varies slowly, though in practice, this condition is not strictly met. 

Nevertheless, LDA has proven to be remarkably effective, and its application to atoms and 

molecules is justified by the success of its numerical implementations. 
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I.10.2 Local Spin Density Approximation (LSDA)  

The LSDA method extends the LDA method to spin-polarized systems, where the electron 

density is separated into spin-up and spin-down components. The exchange-correlation 

functional is then given by:  

𝐸𝑥𝑐
𝐿𝑆𝐷𝐴[𝜌𝛼, 𝜌𝛽] = ∫ 𝜌(𝑟)𝜀𝑥𝑐 (𝜌𝛼(𝑟), 𝜌𝛽(𝑟)) 𝑑𝑟    (I.21) 

This approach accounts for the different exchange-correlation contributions from each spin 

channel and is essential for the analysis of magnetic systems, open-shell molecules, and 

transition metal complexes, where spin polarization plays a role. 

I.10.3 Generalized Gradient Approximation (GGA) 

The exchange energy is the primary source of error in LDA, frequently underestimated, whereas 

the correlation energy is usually overestimated, despite its overall contribution to the total 

energy being lesser. Notably, these two errors often offset each other. To enhance the precision 

of DFT calculations, more accurate approximations for the exchange-correlation functional are 

necessary. Some researchers have suggested improving the density functional by integrating its 

derivatives to address system inhomogeneities. However, this initial approach performed worse 

than LDA because it disrupted key physical conditions that gave LDA its reliability. To address 

this, modifications were introduced to enforce these essential constraints, resulting in the 

Generalized Gradient Approximation (GGA), which played a key role in the success of DFT. 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝜌; ∇𝜌] = ∫ 𝜀𝑥𝑐

𝐺𝐺𝐴(𝜌(𝑟), ∇𝜌(𝑟))𝑑𝑟   (I.22) 

The exchange and correlation contributions are often treated separately: 

𝐸𝑥𝑐
𝐺𝐺𝐴(𝜌, ∇𝜌) = 𝐸𝑥

𝐺𝐺𝐴(𝜌, ∇𝜌) + 𝐸𝑐
𝐺𝐺𝐴(𝜌, ∇𝜌)   (I.23) 

Since the main limitation of LDA arises from its treatment of exchange, special attention was 

given to improving this component: 

𝐸𝑥
𝐺𝐺𝐴(𝜌, ∇𝜌) = 𝐸𝑥

𝐿𝐷𝐴 − ∫ 𝐹(𝑠(𝑟))𝜌4 3⁄ (𝑟)𝑑𝑟  (I.24) 

where 𝐹 is a function of the reduced density gradient: 

𝑠(𝑟) =
|∇⃗⃗⃗𝜌(𝑟)|

𝜌4 3⁄ (𝑟)
       (I.25) 
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Several functionals based on this approximation have been proposed, such as Becke 88 (B88) 

[15] and Perdew‐Wang 86 (PW86) [16]: 

B88: The B88 exchange functional is derived from a dimensional analysis of the exchange 

density. 

𝐹𝐵88(𝑠) =
𝛽𝑠2

1+6𝛽𝑠×sin−1(𝑠)
     (I.26) 

With 𝛽 = 0.0042 𝑎. 𝑢. 

The parameter 𝛽 is empirically determined through a least-squares fit to the exchange energies 

of six noble gas atoms, ranging from He to Rn.  

PW91: The Perdew-Wang functional [17] is a modified version of this approach, designed to 

satisfy specific scaling conditions. 

PW86: This functional is based on an analysis of the gradient expansion of the exchange-

correlation hole around its LSDA form. 

𝐹𝑃𝑊86(𝑠) = [1 + 1.296 (
𝑠

𝑝
)

2

+ 14 (
𝑠

𝑝
)

4

+ 0.2 (
𝑠

𝑝
)

6

]
1 15⁄

   (I.27) 

With: 𝑝 = (24𝜋2)1 3⁄  

The Perdew-Burke-Ernzerhof (PBE) functional [18] is a refinement of this approach. Notably, 

neither PW86 nor PBE rely on empirically fitted parameters. 

I.10.4 Meta GGA 

With recent progress, a new class of functionals has been developed that depend not only on 

the electron density and its gradient but also on the Laplacian. These functionals, known as 

meta-GGA (M-GGA), have shown significant improvements over previous approaches, 

particularly in predicting properties such as atomization energies [19]. However, they are 

computationally more demanding, and optimizing the parameters for their construction is a 

more intricate process [20]. 

A meta-GGA exchange-correlation functional can be defined according to the expression: 

            𝐸𝑥𝑐
𝑚𝑒𝑡𝑎−𝐺𝐺𝐴[𝜌(𝑟)] ≈ ∫ 𝜀𝑥𝑐[𝜌(𝑟), |∇𝜌(𝑟)|, ∇2𝜌𝑖𝜎(𝑟), 𝜏𝜎(𝑟)]𝜌(𝑟)𝑑𝑟    (I.28) 

In which the orbital kinetic energy density of the occupied Kohn-Sham orbitals, 𝜏𝜎(𝑟), is 

written as: 
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                                                        𝜏𝜎(𝑟) =
1

2
∑ |

∇𝜑𝑖𝜎(𝑟)

𝑚𝑒
|

2
𝑜𝑐𝑐
𝑖                                    (I.29) 

The measure of "electronic localization" [15], [21], [22] is provided by the quantity 𝜏𝜎(𝑟), 

which can help ascertain whether the localized exchange-correlation hole model serves as a 

suitable approximation for the true exchange-correlation function of the system being analyzed. 

Certain systems, such as the H2
+ molecule at significant separations, cannot effectively utilize 

this localized hole approximation. Additionally, in any type of system, the exchange-correlation 

holes associated with classical bonds invariably possess a minor nonlocal component. By 

integrating the orbital kinetic energy density, meta-GGA functionals present an enhancement 

over the GGA model. Indeed, these meta-GGA functionals significantly decrease the relative 

errors in calculations of atomization energy, reducing them to approximately 2-3% [23], [24]. 

Nevertheless, these functionals are still semi-local, relying solely on the density and Kohn-

Sham orbitals at a specific point 𝑟 and within an infinitesimal vicinity of that point. Nonlocality 

can only be explicitly addressed through exchange-correlation functionals referred to as 

"hybrids. These are named in contrast to the previously discussed functional categories (LDA, 

GGA, meta-GGA), which are considered "pure" DFT functionals. 

The term "hybrid" refers to the combined use of exact exchange energy from the Hartree-Fock 

model and exchange-correlation energy at the DFT level. 

Examples of M-GGA functionals include M06-L [25], B95 [26]. 

I.10.5 The hybrid functional 

The foundation of this functional type involves beginning with the exchange-correlation 

expression of GGA functionals and incorporating a specific percentage of the true or exact 

exchange, aligning with Hartree-Fock exchange. This precise proportion of Hartree-Fock 

exchange is established through a semi-empirical approach. 

The findings achieved with this category of functionals indicate that they rank among the top 

methods for characterizing molecular electronic structures and their related properties. Notable 

hybrid functionals include those created by Becke, such as: 

B3LYP functional is a hybrid exchange-correlation functional by the recipe, mostly used with 

density functional theory, for the combination, or rather mixing Hartree–Fock exact exchange 

with Becke's gradient corrected exchange and Lee–Yang–Parr correlation functionals to 

molecular properties at balanced accuracy [15], [26], [27], it can be written as follows:  
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    𝐸𝐵3𝐿𝑌𝑃
𝑋𝐶 = 𝑎0𝐸𝐿𝐷𝐴

𝑋 + (1 − 𝑎0)𝐸𝐻𝐹
𝑋𝐶 + 𝑎1∆𝐸𝐵𝑒𝑐𝑘𝑒88

𝑋 + 𝐸𝐿𝐷𝐴
𝐶 + 𝑎2(𝐸𝐿𝑌𝑃

𝐶 − 𝐸𝐿𝐷𝐴
𝐶 )              (I.30) 

With 𝑎0=0.80, 𝑎1=0.72 and 𝑎2=0.81 

B3P86 [15], [26], [28] along with others like O3LYP [27], [29]. 

I.10.6 Range-Separated Hybrid Functionals  

This class of functionals separate the exchange interaction into a short-range and long-range 

parts multiplied by an attenuation parameter. This is important for systems in which there are 

charge-transfer excitations or long-range electron correlation. Examples include: 

CAM-B3LYP (Coulomb-Attenuating Method B3LYP) is a long-range corrected functional 

developed to handle the inaccuracies of the non-Coulomb part of exchange functional at long 

distances [30].   

ωB97X-D is a range-separated hybrid density functional developed to accurately capture long-

range charge-transfer interactions and dispersion effects [31], [32]. 

I.10.7 Meta-hybrid functionals  

Meta-hybrid functionals represent new generation of exchange-correlation (XC) functionals 

used in density functional theory (DFT). They extend the capabilities of generalized gradient 

approximation (GGA) and hybrid functionals by introducing kinetic energy density as an 

additional variable, enhancing the accuracy of electronic structure predictions for a broad range 

of systems. 

A typical meta-hybrid GGA functional has the form: 

𝐸𝑋𝐶
𝑚𝑒𝑡𝑎−ℎ𝑦𝑏𝑟𝑖𝑑[𝜌] = 𝐸𝑋

𝐺𝐺𝐴[𝜌, ∇𝜌, 𝜏] + 𝑎𝐸𝑋
𝐻𝐹 + 𝐸𝐶

𝐺𝐺𝐴[𝜌, ∇𝜌, 𝜏]   (I.31) 

Where: 

𝐸𝑋
𝐺𝐺𝐴: GGA exchange 

𝐸𝐶
𝐺𝐺𝐴: GGA correlation 

𝐸𝑋
𝐻𝐹: exact Hartree-Fock exchange 

𝜏: kinetic energy density 

𝑎: HF exchange mixing coefficient 
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Available meta-hybrid functionals: 

M06: Functional (27% HF exchange) by Yan-Truhlar [25], [33] 

M06-2X: Functional (54% HF exchange) by Yan-Truhlar [25], [33] 

TPSSH: Functional (10% HF exchange) by Tao-Perdew-Staroverov-Scuseria [34], [35] 

I.10.8 Dispersion Correction 

A major shortcoming of standard DFT is that it treats long-range dispersion or van der Waals 

(vdW) forces poorly. The critical importance of these forces in the structural stability and 

properties of molecular assemblies, biological macromolecules, molecular crystals, and 

supramolecular complexes. Typical locals (LDA) and semi-locals (GGA), plus some hybrids 

functionals do not explicitly account for these long-range correlations effects, therefore large 

errors are possible in binding energies, geometries and electronic properties. 

I.10.8.1 Grimme’s DFT-D3 

To overcome the limitations of standard DFT in accounting for long-range van der Waals 

interactions, various dispersion correction schemes have been introduced. Among these, 

Grimme’s DFT-D3 (Dispersion version 3) has emerged as one of the most reliable and widely 

used methods due to its high accuracy, computational efficiency, and broad compatibility with 

different functionals. The DFT-D3 enhances conventional DFT by incorporating empirical 

dispersion corrections, thereby enabling a more realistic description of weak, non-covalent 

interactions such as van der Waals forces which are typically underestimated or entirely omitted 

in traditional DFT calculations. 
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Schema I.1:  Jacob’s Ladder diagram of Density Functional Approximations 
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I.11. Conclusion  

In this chapter, we delved into the intricate realm of quantum mechanics, examining essential 

concepts such as the Born-Oppenheimer and Hartree-Fock approximations. These theories 

provide a simplification of the many-body Schrödinger equation and establish a basis for 

comprehending complex chemical and physical phenomena. 

In addition, we have unveiled the innovative concepts of DFT and the Hohenberg-Kohn 

theorems, which have fundamentally changed our approach to scientific inquiry. Particularly 

noteworthy is DFT, which has established itself as a dependable and precise technique 

embraced by researchers; it has turned theoretical investigation into a virtual coordination 

laboratory, facilitating remarkable scientific advancements. The importance of these 

developments in computational science cannot be overstated. They enable scientists to conduct 

virtual experiments, anticipate real-world results, and investigate conditions and properties that 

traditional experimental labs cannot access. Furthermore, these developments greatly lower the 

cost and time required for scientific research, making it more efficient and widely accessible. 

These theoretical foundations have moved beyond mere abstraction, leading to tangible 

scientific breakthroughs and technological innovation.
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II.1. Introduction 

Since their inception, lasers (with electric fields exceeding 10⁴ V·cm⁻¹) have enabled the 

observation of nonlinear optical (NLO) phenomena, where the external field surpasses the 

Coulomb force acting on atomic electrons. This breakthrough has driven significant advances 

across physics [1] and chemistry [2]. 

A core feature of NLO lies in its wavelength dependence, which has spurred the search for 

active media operating beyond the visible spectrum. Due to limitations in achieving direct 

emission across all wavelengths, frequency conversion techniques have become essential. 

A pivotal experiment by Franken et al. demonstrated second-harmonic generation (SHG) using 

a ruby laser and quartz crystal [3], laying the foundation for modern NLO research. Since then, 

interest has grown in organic materials due to their broadband non-resonant response and 

minimal energy input. SHG and third-harmonic generation (THG) are now central to high-

power laser applications. Initially dominated by semiconductors and inorganic crystals (e.g., 

LiNbO₃), the field has expanded to include organic molecular crystals with promising nonlinear 

efficiency [4], [5], [6], [7]. The interaction between light and NLO materials alters intrinsic 

properties, enabling electric field coupling and affecting optical parameters such as frequency, 

phase, and polarization. 

This chapter provides a detailed introduction to the fundamental concepts of polarizability and 

nonlinear susceptibility, followed by an in-depth analysis of wave propagation phenomena in 

nonlinear media. 

II.2. Development History of Nonlinear Optics 

The evolution of nonlinear optics (NLO) passed through three main phases: theoretical 

prediction, applied development, and applied advancement. Two-photon absorption and the 

Kerr effect were important phenomena predicted before the invention of the laser in 1960; 

however, verification was nearly impossible without this invention. The foundational phase 

began with the invention of the laser (1961-1965) and during this period several nonlinear 

effects like frequency doubling Raman and Brillouin scattering could be observed 

experimentally. It got formalized into a discipline with Bloembergen’s book Nonlinear Optical 

Phenomena published in 1965 [8]. In mature phase (1965-1984) was characterized by deeper 

exploration into transient coherent effects, four-wave mixing, optical bistability, solitons, and 

the development of theoretical models, culminating in Shen’s the Principles of Nonlinear Optics 
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[9]. From 1984 to 2015, the field of nonlinear optics proceeded into an application expanse with 

several breakthroughs in semiconductor quantum structures [10], [11], organic materials [12], 

optical limiting [13]–[15], photorefractive effects [16], quantum optics [17], photonic crystals 

[18], and plasmonic technologies [19]. During this period nonlinear optics became a main driver 

for new advances in laser science, information processing, communication, and materials 

technology. 

II.3. Polarizations and Susceptibilities  

II.3.1. Induced Polarization by an Electromagnetic Field: Linear Approximation  

The propagation of light in a transparent medium is dictated by its dielectric properties, while 

its interaction with an electromagnetic field at the microscopic scale is characterized by the 

induced polarization: 

                                                                 𝑝 = 𝛼𝐸       (II.1) 

It characterizes the charge displacement and is linearly dependent on the applied electric field. 

When the field oscillates at a specific frequency, the induced polarization exhibits oscillations 

at the same frequency.   

(Here, 𝛼 denotes the linear polarizability, and 𝐸 represents the applied electric field).  

At the macroscopic scale, the polarization 𝑃 of the medium is given by:  

                    𝑃 = −𝑁𝑒𝑥 = 𝜀0𝜒
(1)𝐸      (II.2) 

where 𝑁 represents the density of polarizable units in the medium (in this case, electrons), 𝑒 is 

the elementary charge of the electron, 𝑥 denotes the charge displacement induced by the field, 

and 𝜒(1) is the linear (first-order) susceptibility of the material.  

The first-order susceptibility 𝜒(1) can be estimated using the classical model of linear 

polarizability, in which electrons are bound to atoms through a harmonic potential. In this 

model, the restoring force 𝐹 acting on the electron is a linear function of its displacement 𝑥 

from the nucleus, expressed as (𝐹 = 𝑘𝑥). Additionally, the applied electric field 𝐸 exerts a force 

on the electron. Solving the equation of motion for the electron allows for the determination of 

𝑥, and consequently, the evaluation of 𝜒(1). 

At both the microscopic and macroscopic scales, the polarization of a medium is not necessarily 

uniform in all directions. For instance, if an external electric field 𝐸 is applied along the 𝑥-axis 
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of a molecule, the resulting perturbation will influence the electronic distribution not only along 

𝑥 but also in the transverse directions 𝑦 and 𝑧.  Since the electric field can be applied along 

three mutually orthogonal directions, a complete description of polarizability requires nine 

independent components. This makes polarizability a tensor quantity, which can be represented 

as a 3 × 3 matrix. Consequently, it is more appropriate to express the induced polarization in 

the following form: 

𝑃𝑖(𝜔) = ∑ 𝛼𝑖𝑗(𝜔)𝐸𝑗(𝜔)𝑗      (II.3) 

where the indices 𝑖, 𝑗 correspond to the Cartesian axes 𝑥, 𝑦 of the reference frame associated 

with the molecule subjected to the electric field 𝐸.   

The polarizability tensor α is presented as: 

𝛼 = (

𝛼𝑥𝑥 𝛼𝑥𝑦 𝛼𝑥𝑧
𝛼𝑦𝑥 𝛼𝑦𝑦 𝛼𝑦𝑧
𝛼𝑧𝑥 𝛼𝑧𝑦 𝛼𝑧𝑧

)      (II.4) 

Isotropic polarizability (average value): 

𝛼̅ =
1

3
(𝛼𝑥𝑥 + 𝛼𝑦𝑦 + 𝛼𝑧𝑧)       (II.5) 

Anisotropy of polarizability: 

∆𝛼 = √
1

2
[(𝛼𝑥𝑥 − 𝛼𝑦𝑦)

2
+ (𝛼𝑦𝑦 − 𝛼𝑧𝑧)

2
+ (𝛼𝑧𝑧 − 𝛼𝑥𝑥)2] + 3(𝛼𝑥𝑦2 + 𝛼𝑦𝑧2 + 𝛼𝑧𝑥2 )  (II.6) 

Polarization anisotropy is also evident at the macroscopic scale, where the induced polarization 

is expressed as:  

𝑃𝑖(𝜔) = 𝜀0∑ 𝜒𝑖𝑗
(1)(𝜔)𝐸𝑗(𝜔)𝑗       (II.7) 

As a result, in optically anisotropic materials, the refractive index varies depending on the 

direction of propagation.   

The permittivity tensor [𝜀] (or the first-order susceptibility tensor 𝜒(1)) can be diagonalized, 

yielding eigenvalues 𝜀𝑥, 𝜀𝑦 , 𝜀𝑧, which correspond to the principal dielectric axes of the material, 

denoted as 𝑋, 𝑌, 𝑍. Consequently, the refractive index of the medium depends on both the 

propagation direction and the polarization of the incident wave.   

Specifically, when a wave propagates within a dielectric plane (XY, YZ, or ZX), its polarization 

consists of two components:  a perpendicular component to the plane, for which the refractive 
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index remains independent of the propagation direction this is referred to as an ordinary wave 

and a parallel component to the plane, for which the refractive index varies with the propagation 

direction. This is known as an extraordinary wave.  These anisotropic refractive index 

properties, combined with their frequency dispersion, play a crucial role in optimizing the 

efficiency of nonlinear interactions, particularly through phase-matching techniques. 

II.3.2. Microscopic and Macroscopic Nonlinearities 

At the microscopic level, the interaction of light with matter is described by the induced dipole 

moment 𝜇 of a molecule in an external electric field 𝐸. This dipole moment can be expanded in 

a power series with respect to the applied field: 

𝜇𝑖 = 𝜇𝑖
(0)
+ ∑ 𝛼𝑖𝑗𝐸𝑗𝑗 + ∑ 𝛽𝑖𝑗𝑘𝐸𝑗𝑗𝑘 𝐸𝑘 + ∑ 𝛾𝑖𝑗𝑘𝑙𝐸𝑗𝑗𝑘𝑙 𝐸𝑘𝐸𝑙 +⋯   (II.8) 

Where: 

𝜇(0) is the permanent dipole moment. 

𝛼 is the linear polarizability tensor. 

𝛽 is the first hyperpolarizability tensor (second-order NLO). 

𝛾 is the second hyperpolarizability tensor (third-order NLO). 

The intrinsic nonlinear optical response of a single unit, like a molecule, bond, or chromophore, 

is characterized by these molecular tensors. The values of 𝛽 and 𝛾 are significantly affected by 

the symmetries and electronic structure of the molecule. 

The polarization 𝑃, which appears in Maxwell’s equations and governs light propagation 

through the medium, is the sum of the microscopic dipole moments per unit volume: 

𝑃 = 𝑁(∑ 𝛼𝑖𝑗𝑗 𝐸𝑗 + ∑ 𝛽𝑖𝑗𝑘𝐸𝑗𝑗𝑘 𝐸𝑘 +∑ 𝛾𝑖𝑗𝑘𝑙𝐸𝑗𝑗𝑘𝑙 𝐸𝑘𝐸𝑙 +⋯)   (II.9) 

Where: N is the number density of polarizable units. 

and the corresponding macroscopic polarization is given by: 

𝑃⃗ = 𝑃0 + 𝜀0{𝜒
(1)𝐸⃗ + 𝜒(2)𝐸⃗ 𝐸⃗ + 𝜒(3)𝐸⃗ 𝐸⃗ 𝐸⃗ + ⋯ }             (II.10) 

where 𝜀0 is the vacuum permittivity, 𝜒(1)the linear susceptibility which is directly linked to the 

linear refractive index n0, 𝜒(2) and 𝜒(3)respectively the second and third order nonlinear 

susceptibilities and E the electric field. 𝜒(2) and 𝜒(3) nonlinear optical susceptibilities are 
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tensors of the third and the fourth rank and contain 27 and 81 components, respectively. The 

susceptibilities display several forms of symmetry that are crucial in nonlinear optics: 

permutation symmetry, time-reversal symmetry, and spatial symmetry. While time-reversal and 

permutation symmetries are intrinsic characteristics of the susceptibilities, the spatial symmetry 

of the susceptibility tensors indicates the structural properties of the nonlinear medium.  A 

broader symmetry principle known as overall permutation symmetry is used as an 

approximation when all optical fields involved in the susceptibility equations (both excitations 

and responses) are significantly distant from any transition, a concept initially proposed by 

Kleiman [20]. 

The first hyperpolarizability tensor β: 

𝛽 = (

𝛽𝑥𝑥𝑥 𝛽𝑥𝑥𝑦
𝛽𝑦𝑥𝑥 𝛽𝑦𝑥𝑦
𝛽𝑧𝑥𝑥 𝛽𝑧𝑥𝑦

    

𝛽𝑥𝑥𝑧 𝛽𝑥𝑦𝑥
𝛽𝑦𝑥𝑧 𝛽𝑦𝑦𝑥
𝛽𝑧𝑥𝑧 𝛽𝑧𝑦𝑥

    

𝛽𝑥𝑦𝑦 𝛽𝑥𝑦𝑧 𝛽𝑥𝑧𝑥
𝛽𝑦𝑦𝑦 𝛽𝑦𝑦𝑧 𝛽𝑦𝑧𝑥
𝛽𝑧𝑦𝑦 𝛽𝑧𝑦𝑧 𝛽𝑧𝑧𝑥

    

𝛽𝑥𝑧𝑦 𝛽𝑥𝑧𝑧
𝛽𝑦𝑧𝑦 𝛽𝑦𝑧𝑧
𝛽𝑧𝑧𝑦 𝛽𝑧𝑧𝑧

)            (II.11) 

The second hyperpolarizability tensor 𝛾: 

𝛾 =

(

 
 
 
 
 
 
 
 
 

  𝛾𝑥𝑥𝑥𝑥 𝛾𝑥𝑥𝑥𝑦 𝛾𝑥𝑥𝑥𝑧 𝛾𝑥𝑥𝑦𝑥 𝛾𝑥𝑥𝑦𝑦 𝛾𝑥𝑥𝑦𝑧 𝛾𝑥𝑥𝑧𝑥 𝛾𝑥𝑥𝑧𝑦 𝛾𝑥𝑥𝑧𝑧

  

𝛾𝑦𝑥𝑥𝑥 𝛾𝑦𝑥𝑥𝑦 𝛾𝑦𝑥𝑥𝑧 𝛾𝑦𝑥𝑦𝑥 𝛾𝑦𝑥𝑦𝑦 𝛾𝑦𝑥𝑦𝑧 𝛾𝑦𝑥𝑧𝑥 𝛾𝑦𝑥𝑧𝑦 𝛾𝑦𝑥𝑧𝑧

𝛾𝑧𝑥𝑥𝑥 𝛾𝑧𝑥𝑥𝑦 𝛾𝑧𝑥𝑥𝑧 𝛾𝑧𝑥𝑦𝑥 𝛾𝑧𝑥𝑦𝑦 𝛾𝑧𝑥𝑦𝑧 𝛾𝑧𝑥𝑧𝑥 𝛾𝑧𝑥𝑧𝑦 𝛾𝑧𝑥𝑧𝑧

𝛾𝑥𝑦𝑥𝑥 𝛾𝑥𝑦𝑥𝑦 𝛾𝑥𝑦𝑥𝑧 𝛾𝑥𝑦𝑦𝑥 𝛾𝑥𝑦𝑦𝑦 𝛾𝑥𝑦𝑦𝑧 𝛾𝑥𝑦𝑧𝑥 𝛾𝑥𝑦𝑧𝑦 𝛾𝑥𝑦𝑧𝑧

𝛾𝑦𝑦𝑥𝑥 𝛾𝑦𝑦𝑥𝑦 𝛾𝑦𝑦𝑥𝑧 𝛾𝑦𝑦𝑦𝑥 𝛾𝑦𝑦𝑦𝑦 𝛾𝑦𝑦𝑦𝑧 𝛾𝑦𝑦𝑧𝑥 𝛾𝑦𝑦𝑧𝑦 𝛾𝑦𝑦𝑧𝑧

𝛾𝑧𝑦𝑥𝑥 𝛾𝑧𝑦𝑥𝑦 𝛾𝑧𝑦𝑥𝑧 𝛾𝑧𝑦𝑦𝑥 𝛾𝑧𝑦𝑦𝑦 𝛾𝑧𝑦𝑦𝑧 𝛾𝑧𝑦𝑧𝑥 𝛾𝑧𝑦𝑧𝑦 𝛾𝑧𝑦𝑧𝑧

𝛾𝑥𝑧𝑥𝑥 𝛾𝑥𝑧𝑥𝑦 𝛾𝑥𝑧𝑥𝑧 𝛾𝑥𝑧𝑦𝑥 𝛾𝑥𝑧𝑦𝑦 𝛾𝑥𝑧𝑦𝑧 𝛾𝑥𝑧𝑧𝑥 𝛾𝑥𝑧𝑧𝑦 𝛾𝑥𝑧𝑧𝑧

𝛾𝑦𝑧𝑥𝑥 𝛾𝑦𝑧𝑥𝑦 𝛾𝑦𝑧𝑥𝑧 𝛾𝑦𝑧𝑦𝑥 𝛾𝑦𝑧𝑦𝑦 𝛾𝑦𝑧𝑦𝑧 𝛾𝑦𝑧𝑧𝑥 𝛾𝑦𝑧𝑧𝑦 𝛾𝑦𝑧𝑧𝑧

𝛾𝑧𝑧𝑥𝑥 𝛾𝑧𝑧𝑥𝑦 𝛾𝑧𝑧𝑥𝑧 𝛾𝑧𝑧𝑦𝑥 𝛾𝑧𝑧𝑦𝑦 𝛾𝑧𝑧𝑦𝑧 𝛾𝑧𝑧𝑧𝑥 𝛾𝑧𝑧𝑧𝑦 𝛾𝑧𝑧𝑧𝑧 )

 
 
 
 
 
 
 
 
 

       (II.12) 

In centrosymmetric materials, all components of the χ (2) tensor are zero, resulting in the absence 

of second-order nonlinear optical effects as well as first-order electro-optical effects in glasses; 

thus, alternative methods must be employed to disrupt the centrosymmetry of these materials. 

II.4. Applications of Nonlinear Optics 

From the present perspective, the applications of nonlinear optics primarily span three key 

areas: laser technology, information and communication systems, and advanced materials 

science. 
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II.4.1. Application in Laser Technology  

o New Laser Device 

Building on the principles of nonlinear optics, researchers have developed different new sorts 

of laser equipment, including the ultrashort pulse lasers, tunable lasers (in both wavelength and 

power), the stimulated Raman laser, the nonlinear fiber laser, the soliton laser, the terahertz 

laser, the nanoscale laser etc. Nonlinear optics also plays a crucial role in enhancing laser 

performance by enabling mode selection, power stabilization, and precise measurement of laser 

parameters. 

o Laser Pulse Compression 

Q-switching and mode-locking are key techniques rooted in nonlinear optical principles, 

enabling the generation of ultrashort laser pulses. These methods allow for the compression of 

laser pulse durations, producing pulses in the picosecond, femtosecond, and even attosecond 

range, which are essential for high-precision applications in science and technology. 

o Laser Frequency Conversion 

Nonlinear optical techniques such as frequency doubling, sum and difference frequency 

generation, parametric amplification and oscillation, third-harmonic generation, four-wave 

mixing, and various forms of stimulated scattering enable a wide range of laser frequency 

conversions.  

o Laser Transportation  

A key application of nonlinear optics in adaptive optical technology is optical phase 

conjugation, which is used to correct wavefront distortions. This technique is particularly 

valuable for compensating beam distortions during laser propagation through the atmosphere 

and is also applied in addressing beam distortion challenges in laser-driven nuclear fusion 

systems. 

o Laser Protection  

Nonlinear optics play a key role in military applications, particularly in protection against laser-

based threats such as blinding weapons that use intense laser pulses to damage human eyes or 

sensitive photodetectors. Nonlinear optical limiters, which automatically reduce transmission 

at high light intensities, offer significant advantages over linear optical limiters due to their 

dynamic response and effectiveness over a wider range of laser intensities. 
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II.4.2. Application in Information Technology 

o Optical Communication 

Modern optical communication systems including fiber-optic and free-space optical 

communication rely heavily on nonlinear optical technologies. Key components such as 

semiconductor lasers, Raman optical amplifiers, optical modulators, self-focusing lenses, 

optical switches, wavelength converters, optical delay lines, add-drop multiplexers, and optical 

cross-connects all utilize nonlinear optical effects. Furthermore, advanced communication 

methods such as coherent optical communication, optical soliton communication, optical chaos 

communication, optical quantum communication, and future all-optical communication are all 

associated with nonlinear optics. 

o Optical Computing 

Digital optical information processing represents a promising direction for the future of 

information technology. Core components of next-generation optical computing such as all-

optical computers, optical logic gates, 3D two-photon optical storage, optical amplifiers and 

all-optical switches, are fundamentally based on the principles of nonlinear optics. 

o Optical Sensing 

Distributed fiber sensors utilizing Raman and Brillouin scattering represent an emerging class 

of fiber-optic sensing technology. To enable fully optical sensing networks (Internet of Things) 

nonlinear fiber gratings are crucial for developing all-optical switches. Additionally, nonlinear 

optics plays a vital role in laser-based remote sensing technologies. 

II.4.3. Application in Material Technology 

o High Resolution Spectrum Analysis 

By harnessing nonlinear optical effects such as stimulated Raman scattering, four-wave mixing, 

second-harmonic generation, and two-photon absorption triggered by ultrafast laser pulses, 

scientists have developed high-resolution nonlinear spectroscopic techniques. These methods 

offer both high spatial and temporal resolution and are widely used to study atomic and 

molecular structures, energy level fine structures, changes in physical and chemical clusters, 

and biological cell activity. When combined with near-field optical microscopy, this technology 

evolves into near-field spectroscopic imaging, enabling detailed analysis of nanoscale structural 

changes, material luminescence behavior, and chemical reaction processes. 
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o Micromachining of Material 

High-precision laser direct writing, based on multiphoton absorption (like two-photon 

absorption) and multiphoton ionization, has become a valuable technique for fabricating 

nanomaterials and engineering nanoscale structures. To enhance the luminous ef fi ciency of 

solid light-emitting devices (LED), as well as the light absorption efficiency of solar cells, laser 

micromachining is an effective approach for creating microstructured patterns on device 

surfaces. 

o Investigation of New Material 

Nonlinear optical techniques can be applied to study a wide range of advanced materials, 

including low-dimensional systems such as surfaces, interfaces, and clusters; quantum-confined 

structures like quantum wells, quantum wires, and quantum dots; 1D, 2D, and 3D photonic 

crystals; surface plasmon polariton materials; nanoscale structures such as nanospheres, 

nanocavities, and nanotubes; materials with negative refractive indices; chiral materials; and 

even biological cells. These methods are also essential for measuring the nonlinear optical 

properties of these novel materials. 

 

Figure.II.1: Nonlinear Optical Application in Laser Technology [21] 
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II.5. Nonlinear Optical Processes Classification 

Nonlinear optical materials are classified according to their main type of nonlinear response: 

(a) Second-order (quadratic, χ2) materials require noncentrosymmetric structures and enable 

key processes such as second harmonic generation (SHG), sum/difference frequency 

generation (SFG/DFG), optical rectification and electro-optic effects, making them 

indispensable for frequency conversion and high-speed optical modulators (e.g. LiNbO₃, KTP). 

(b) Third-order materials (cubic, χ3), even when present in isotropic systems (e.g. glasses, 

liquids), exhibit third-harmonic generation (THG), four-wave mixing (FWM), self-phase 

modulation (SPM), optical Kerr effect and optical bistability. These form the basis for 

applications in purely optical switching, signal processing and nonlinear spectroscopy (e.g. 

silicon, CS2, nonlinear polymers). The distinction between χ2 and χ3 fundamentally determines 

the choice of materials based on symmetry constraints and the target light-matter interaction. 

II.6. Computational Discovery of NLO Materials 

The discovery and optimization of materials with enhanced nonlinear optical (NLO) 

properties have become critical goals in modern materials science. In this context, 

computational approaches particularly density functional theory (DFT) have emerged as 

indispensable tools for predicting and rationalizing the NLO response at the molecular and 

solid-state levels. 

These methods enable accurate estimation of key parameters such as polarizability, 

hyperpolarizability, and electronic transition characteristics prior to synthesis, offering insight 

into structure–property relationships. By simulating electronic structures and optical responses, 

computational modeling guides experimental efforts, significantly reducing trial-and-error 

cycles and minimizing the cost and time associated with material screening. 

Moreover, computational predictions help identify promising molecular frameworks and 

functional groups, evaluate the effects of substitution patterns or conjugation length, and 

explore the influence of electronic and geometric factors under various conditions. As a result, 

theoretical calculations have become a cornerstone for the rational design, control, and 

accelerated discovery of high-performance NLO materials, complementing and enhancing 

experimental research strategies. 

II.6.1. NLO parameters 

II.6.1.1. First hyperpolarizability: 

The first hyperpolarizability 𝛽 is a second-order nonlinear optical (NLO) property that describes 
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the response of a molecular system to an applied electric field beyond the linear regime. It is 

defined by the following expression: 

< 𝛽 >= √𝛽𝑥2 + 𝛽𝑦2 + 𝛽𝑧2
2

                   (II.13) 

The first hyperpolarizability components are expressed as: 

𝛽𝑥 = 𝛽𝑥𝑥𝑥 + 𝛽𝑥𝑦𝑦 + 𝛽𝑥𝑧𝑧                       (II.14) 

𝛽𝑦 = 𝛽𝑦𝑦𝑦 + 𝛽𝑥𝑥𝑦 + 𝛽𝑦𝑧𝑧                       (II.15) 

𝛽𝑧 = 𝛽𝑧𝑧𝑧 + 𝛽𝑧𝑦𝑦 + 𝛽𝑥𝑥𝑧                       (II.16) 

Hyper-Rayleigh Scattering (HRS), also known as incoherent second-harmonic 

scattering, is a powerful experimental method used to determine the first 

hyperpolarizability (𝛽𝐻𝑅𝑆) of molecules in solution or in isotropic media. It involves the 

scattering of light at twice the frequency (second harmonic) of the incident laser, arising 

from the nonlinear optical response of individual molecules, the 𝛽𝐻𝑅𝑆 can be described 

as: [22]–[24] 

〈𝛽𝐻𝑅𝑆〉  = √{〈𝛽𝑍𝑍𝑍
2 〉 + 〈𝛽𝑋𝑍𝑍

2 〉}                  (II.17) 

Here, 〈𝛽𝑍𝑍𝑍
2 〉 and 〈𝛽𝑋𝑍𝑍

2 〉 represent the orientationally averaged components of the β 

tensor, computed using the following relations: 

〈𝛽𝑍𝑍𝑍
2 〉 =  

1

7
∑ 

𝑖𝑖𝑖
2𝑥,𝑦,𝑧

𝑖 + 
4

35
∑ 

𝑖𝑖𝐽
2𝑥,𝑦,𝑧

𝑖≠𝐽 + 
2

35
∑ 𝛽𝑖𝑖𝑖
𝑥,𝑦,𝑧
𝑖≠𝐽 𝛽𝑖𝑗𝑗 + 

4

35
∑ 𝛽𝑗𝑖𝑖
𝑥,𝑦,𝑧
𝑖≠𝐽 𝛽𝑖𝑖𝑗 +

4

35
∑ 𝛽𝑖𝑖𝑖
𝑥,𝑦,𝑧
𝑖≠𝐽 𝛽𝑗𝑗𝑖 +

1

35
∑ 

𝐽𝑖𝑖
2𝑥,𝑦,𝑧

𝑖≠𝐽 + 
4

105
∑ 𝛽𝑖𝑖𝑗
𝑥,𝑦,𝑧
𝑖≠𝐽≠𝑘 𝛽𝑗𝑘𝑘 +

1

105
∑ 𝛽𝑗𝑖𝑖
𝑥,𝑦,𝑧
𝑖≠𝐽≠𝑘 𝛽𝑗𝑘𝑘 +

4

105
∑ 𝛽𝑖𝑖𝑗
𝑥,𝑦,𝑧
𝑖≠𝐽≠𝑘 𝛽𝑘𝑘𝑗 +

2

105
∑ 

𝑖𝑗𝑘
2𝑥,𝑦,𝑧

𝑖≠𝐽≠𝑘 +
4

105
∑ 𝛽𝑖𝑗𝑘
𝑥,𝑦,𝑧
𝑖≠𝐽≠𝑘 𝛽𝑗𝑖𝑘            (II.18) 

〈𝛽𝑋𝑍𝑍
2 〉 =

1

35
∑ 

𝑖𝑖𝑖
2𝑥,𝑦,𝑧

𝑖 +
4

105
∑ 𝛽𝑖𝑖𝑖
𝑥,𝑦,𝑧
𝑖≠𝐽 𝛽𝑖𝑗𝑗 −

2

35
∑ 𝛽𝑖𝑖𝑖
𝑥,𝑦,𝑧
𝑖≠𝐽 𝛽𝑗𝑗𝑖 +

8

105
∑ 

𝑖𝑖𝐽
2𝑥,𝑦,𝑧

𝑖≠𝐽 +

3

35
∑ 

𝑖𝑗𝑗
2𝑥,𝑦,𝑧

𝑖≠𝐽  −
2

35
∑ 𝛽𝑖𝑖𝑗
𝑥,𝑦,𝑧
𝑖≠𝐽 𝛽𝑗𝑖𝑖 + 

1

35
∑ 𝛽𝑖𝑗𝑗
𝑥,𝑦,𝑧
𝑖≠𝐽≠𝑘 𝛽𝑖𝑘𝑘 −

2

105
∑ 𝛽𝑖𝑖𝑘
𝑥,𝑦,𝑧
𝑖≠𝐽≠𝑘 𝛽𝑗𝑗𝑘 +

2

35
∑ 

𝑖𝑗𝑘
2𝑥,𝑦,𝑧

𝑖≠𝐽≠𝑘 −
2

105
∑ 𝛽𝑖𝑖𝑗
𝑥,𝑦,𝑧
𝑖≠𝐽≠𝑘 𝛽𝑗𝑘𝑘  −

2

105
∑ 𝛽𝑖𝑗𝑘
𝑥,𝑦,𝑧
𝑖≠𝐽≠𝑘 𝛽𝑗𝑖𝑘            (II.19) 

II.6.1.2. Depolarization Ratio in Nonlinear Optics 

In nonlinear optics, the depolarization ratio (DR) is a key parameter for studying the 

symmetry and tensorial properties of the first hyperpolarizability (β). It plays a crucial 

role in Hyper-Rayleigh Scattering (HRS) and other second-order nonlinear processes, 

helping researchers analyse molecular anisotropy and validate theoretical models against 

experimental data. 

o Connection to Hyperpolarizability Tensor Components 
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The β tensor can be decomposed into symmetry-adapted contributions, primarily: 

- Dipolar (J=1): Aligned with charge asymmetry (e.g., push-pull chromophores). 

- Octupolar (J=3): Higher-order symmetry (e.g., symmetric 3D structures). 

A low DR suggests dominant dipolar character, while a high DR indicates strong 

octupolar contributions. 

o Theoretical Calculation of DR 

In quantum chemistry, β is computed using time-dependent density functional theory 

(TD-DFT) or response theory. The DR is derived by orientationally averaging the tensor 

components: 

𝐷𝑅 =  
〈𝛽𝑍𝑍𝑍
2 〉

〈𝛽𝑋𝑍𝑍
2 〉

                         (II.20) 

This approach allows researchers to predict DR values from first principles and compare 

them with experimental HRS measurements. 

Typical depolarization ratio (DR) values are indicative of the underlying 

symmetry of the first hyperpolarizability (β) tensor in nonlinear optical systems. A DR 

value of approximately 1.5 is characteristic of octupolar systems (tensor rank 
𝑗=3

), 

reflecting a high degree of symmetry often observed in trigonal or tetrahedral structures. 

Conversely, a DR close to 5 corresponds to an ideal dipolar system, typically associated 

with strongly asymmetric charge distributions. In general, DR values exceeding 1.5 

suggest a dipolar dominance (
𝑗=1

), where the nonlinear optical response is primarily 

aligned with the molecular dipole moment 

II.6.1.3. Second hyperpolarizability: 

The second hyperpolarizability (γ) is a third-order nonlinear optical (NLO) property that 

describes a system’s response to an external electric field beyond the linear and quadratic 

regimes. It plays a crucial role in phenomena such as third-harmonic generation (THG), 

the Kerr effect, and two-photon absorption, making it essential for the design and 

characterization of advanced optoelectronic and photonic materials. 

The overall magnitude of γ is calculated to be [25]–[27]: 

𝛾 = √𝛾𝑥2 + 𝛾𝑦2 + 𝛾𝑧2                 (II.21) 

The average second hyperpolarizability is given by the following expression: 

< 𝛾 >=
1

5
[𝛾𝑥𝑥𝑥𝑥 + 𝛾𝑦𝑦𝑦𝑦 + 𝛾𝑧𝑧𝑧𝑧 + 2(𝛾𝑥𝑥𝑦𝑦 + 𝛾𝑦𝑦𝑧𝑧 + 𝛾𝑥𝑥𝑧𝑧)]                  (II.22) 

The i components of the second hyperpolarizabilities are defined as follows: 

𝛾𝑖 =
1

15
∑ (𝛾𝑗𝑗𝑘𝑘 + 𝛾𝑗𝑘𝑘𝑗 + 𝛾𝑗𝑘𝑗𝑘)𝑗,𝑘         𝑖, 𝑗 = {𝑥, 𝑦, 𝑧}              (II.23) 
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The quadratic nonlinear refractive index 𝑛2 is a third-order nonlinear optical (NLO) 

parameter that describes the intensity-dependent change a material’s refractive index. 

the quadratic nonlinear refractive index is one of the most important quantities in 

nonlinear optics, it is estimated using the second hyperpolarizability coefficients, 

calculated via the following equation [28]: 

𝑛2(𝑐𝑚
2/𝑊)  = 8.28 × 10−23𝛾𝐷𝐹𝑊𝑀  (a.u.)                     (II.24) 

The degenerate four-wave mixing (DFWM) nonlinear susceptibility 𝛾𝐷𝐹𝑊𝑀  () =

γ(−ω;  ω,−ω,ω), denoted as  [29]: 

𝛾𝐷𝐹𝑊𝑀(−;  , −,) ≈ (1/3)𝛾(−2;  ,, 0) + (−;  , 0,0)                 (II.25) 

II.7. Electronic transitions 

The way electrons move during transition is fundamental to understanding the optical 

behavior of a molecule or material. These transitions are typically categorized according 

to the origin and destination of the charge transfer during excitation: 

o Ligand-to-Metal Charge Transfer (LMCT): Electron density is transferred from 

ligand orbitals to metal centers. 

o Metal-to-Ligand Charge Transfer (MLCT): Electron density shifts from metal 

orbitals to ligand orbitals. 

o Ligand-to-Ligand Charge Transfer (LLCT): Electron density moves between 

different ligands, often mediated by the coordination center. 

o Intramolecular Charge Transfer (ICT): Redistribution of electron density 

occurs within a single molecule, typically from donor to acceptor moieties. 

o Local Excitation (LE): Excitation remains localized within a specific part of the 

molecule, with little or no charge transfer 

II.7.1. Charge Transfer Descriptors 

The characterization of electronic transitions can be made more precise through hole electron 

analysis descriptors [30], [31], which provide quantitative measures of both the nature and 

extent of charge transfer. 

To quantify the spatial extent of charge transfer (CT) during electronic excitation, the 

CT length (D index) calculated as: 

𝐷 𝑖𝑛𝑑𝑒𝑥 =  [(𝐷𝑥)
2 + (𝐷𝑦)

2
+ (𝐷𝑧)

2]
1/2

                   (II.26) 

The spatial overlap between hole and electron densities can be quantified by: 
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𝑆𝑟(𝑟) = √𝜌ℎ𝑜𝑙𝑒(𝑟)𝜌𝑒𝑙𝑒(𝑟)                      (II.27) 

To characterize the overlapping extent of hole and electron, Sr index is defined as: 

𝑆𝑟(index) = ∫𝑆𝑟(𝑟)𝑑𝑟 ≡ ∫√𝜌ℎ𝑜𝑙𝑒(𝑟)𝜌𝑒𝑙𝑒(𝑟) 𝑑𝑟                  (II.28) 

The charge transfer direction (HCT) can defined as: 

𝐻𝐶𝑇 = |𝐻. 𝑢𝐶𝑇|                       (II.29) 

 uCT is the unit vector in CT direction and H index displays the width of the average 

distribution of holes and electrons. 

𝑡 𝑖𝑛𝑑𝑒𝑥 is used to measure separation degree between the hole and electron in CT 

direction: 

𝑡 𝑖𝑛𝑑𝑒𝑥 = 𝐷 𝑖𝑛𝑑𝑒𝑥 − 𝐻𝐶𝑇                    (II.30) 

The variations of dipole moment of the excited state with respect to the ground state in 

X, Y and Z directions can be simply calculated as 

∆𝜇𝑥 = (𝑋𝑒𝑙𝑒 − 𝑋ℎ𝑜𝑙𝑒),         ∆𝜇𝑦 = −(𝑌𝑒𝑙𝑒 − 𝑌ℎ𝑜𝑙𝑒),         ∆𝜇𝑍 = −(𝑍𝑒𝑙𝑒 − 𝑍ℎ𝑜𝑙𝑒) 

∆𝜇 = √∆𝜇𝑥2 + ∆𝜇𝑥2 + ∆𝜇𝑥2               (II.31) 

The charge density difference (CDD) between excited state and ground state can be 

easily evaluated as 

∆𝜌(𝑟) =  𝜌𝑒𝑙𝑒(𝑟) − 𝜌ℎ𝑜𝑙𝑒(𝑟)                  (II.32) 

To characterize the nature of electronic transitions in molecular systems, we examined 

the spatial separation of charges during excitation by analyzing hole-electron 

distributions. The distributions of holes and electrons are defined as follows [30], [32] 

𝜌ℎ𝑜𝑙𝑒(𝑟) = ∑ (𝑊𝑖
𝑎)2φ𝑖(𝑟)φ𝑖(𝑟)𝑖→𝑎 + ∑ ∑ 𝑊𝑖

𝑎𝑊𝑗
𝑎φ𝑖(𝑟)φ𝑗(𝑟)𝑗≠𝑖→𝑎𝑖→𝑎          (II.33) 

𝜌𝑒𝑙𝑒(𝑟) = ∑ (𝑊𝑖
𝑎)2φ𝑎(𝑟)φ𝑎(𝑟)𝑖→𝑎 + ∑ ∑ 𝑊𝑖

𝑎𝑊𝑖
𝑏φ𝑎(𝑟)φ𝑏(𝑟)𝑖→𝑏≠𝑎𝑖→𝑎         (II.34) 

Where 𝜑 is the orbital wave function, 𝑊 is the coefficient of excitation, i and j are the 

occupied orbital label, a and b are the virtual orbital label. 

 

In our work, the crucial excited state wavefunctions have been obtained by natural 

transition orbitals (NTOs) in terms of “excited particle” to “empty hole” of the electronic 

transition density matrix. The CT indices have been determined with the MULTIWFN 

program. [30] 
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II.8. Quantum Theory of Atoms in Molecules (QTAIM) 

The Quantum Theory of Atoms in Molecules (QTAIM), postulated by Richard F. W. 

Bader [33], is a powerful in the sense that it can provide a very detailed way of looking 

at and interpreting the electronic structure of any molecule. At the heart of QTAIM lies 

the concept of the electron density distribution, which describes how electrons are 

arranged in space within a molecular system. 

In this approach, an atom is defined not by arbitrary boundaries such as a nucleus and 

its surrounding electron cloud, but by regions of space—known as atomic basins—that 

are uniquely determined by the topology of the electron density. Within this framework, 

important features of molecular structure and bonding are revealed through the analysis 

of critical points, which are specific locations where the gradient of the electron density 

goes to zero. These points are classified according to the curvature of the density: 

o Nuclear Critical Points (NCPs), located at atomic nuclei and characterized by 

local maxima in electron density. 

o Bond Critical Points (BCPs), situated along bond paths where the density exhibits 

a saddle point. 

o Ring Critical Points (RCPs), associated with ring structures, and Cage Critical 

Points (CCPs), found in cage-like, three-dimensional molecular frameworks. 

Additional important properties can be derived from electron density. The Laplacian 

of electron density allows insight into regions of electron concentration (where the 

Laplacian is negative) and electron depletion (where it is positive). Similarly, energy 

density analysis allows for a deeper understanding of the kinetic and potential energy 

distribution within a molecule, providing valuable information about chemical bonding 

and reactivity. 

Using these principles, QTAIM establishes a rigorous and widely applicable 

framework for relating electron density to chemical structure and bonding, making it an 

indispensable tool in modern theoretical and computational chemistry. 

II.8.1. Characterization of Bonding Interactions 

II.8.1.1. Closed-Shell Interactions 

Closed shell interactions mostly occur as observed in ionic bonding, van der Waals 

forces, and hydrogen bonding. The major characteristic of these interactions is weakness 

or lack of substantial sharing of electron density between the atoms involved. 
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   II.8.1.2. Open-Shell Interactions 

Open-shell interactions mostly emerge in systems that have unpaired electrons. These 

interactions are mostly associated with covalent bonding particularly in the case of 

radicals, transition metal complexes, and paramagnetic species. 

   II.8.1.3. Intermediate Interactions 

Intermediate interactions are those that lie in between the two extremums of closed-shell 

(ionic or weakly interacting) and open-shell (covalent) bonding. They mostly occur in 

polar covalent bonds, weakly coordinated complexes, or systems possessing both ionic 

and covalent characteristics. 

II.8.2. Bond Classification Through Topological and Energetic Parameters 

The classification of bonding interactions can be rigorously established by analyzing the 

electron density (ρ) and its Laplacian (∇²ρ) at Bond Critical Points (BCPs). Low electron 

density (ρ < 0.1) with a positive Laplacian (∇²ρ > 0) is typically associated with closed-

shell interactions, such as ionic bonds. In contrast, high electron density (ρ > 0.1) 

combined with a negative Laplacian (∇²ρ < 0) is characteristic of open-shell, covalent 

interactions. 

Espinosa and co-workers [34] introduced the ratio |V|/G, where V represents the 

potential energy density and G the kinetic energy density, as a reliable metric for 

classifying bonds. Within this framework: 

o Closed-shell interactions: |V|/G ≤ 1 

o Intermediate interactions: 1 < |V|/G < 2 

o Open-shell interactions: |V|/G > 2 

Further refinement was provided by Cremer and Kraka [35], who analyzed the local total 

electronic energy density (H = G + V). When H is positive, the kinetic energy dominates, 

indicating closed-shell interactions and weaker bonding. Conversely, negative values of 

H reflect the dominance of potential energy, characteristic of stronger, covalent-like 

open-shell interactions. 

Rozas and co-workers [36] extended this approach to hydrogen bonding by 

incorporating both H and ∇²ρ into their classification. They distinguished three 

categories: 

o Strong hydrogen bonds: H < 0 and ∇²ρ < 0, indicative of significant electron 

density accumulation and strong bonding. 

o Intermediate hydrogen bonds: H < 0 and ∇²ρ > 0, showing mixed features with 

moderate bond strength. 
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o Weak hydrogen bonds: H > 0 and ∇²ρ > 0, associated with electron density 

depletion and weak interactions. 

These combined topological descriptors (ρ, ∇²ρ) and energetic criteria (H, |V|/G) provide 

a comprehensive framework for characterizing bonding interactions. The methodology 

has proven broadly applicable, from small inorganic molecules to complex biological 

systems, and effectively captures the continuum of bonding phenomena between the 

extremes of purely electrostatic and fully covalent interactions.  

II.9. Conclusion 

Nonlinear optics stands at the heart of numerous modern technological advancements, offering 

powerful tools for manipulating light in ways that linear optical processes cannot achieve. By 

exploiting nonlinear polarization phenomena governed by higher-order susceptibilities, 

researchers have unlocked transformative effects like harmonic generation, wave mixing, and 

optical soliton formation. These effects not only deepen our fundamental understanding of 

light–matter interaction but also lay the groundwork for practical applications in fields as 

diverse as telecommunications, biophotonics, and quantum information processing. 

A key enabler of these phenomena is the class of materials that exhibit strong nonlinear 

responses. From traditional inorganic crystals like LiNbO₃ and BBO to emerging organic 

molecules, hybrid composites, and 2D materials each offering unique combinations of 

nonlinear efficiency, optical transparency, and integration potential, making material selection 

a critical step in NLO device design. 

Despite significant progress, challenges remain in balancing nonlinearity, stability, 

processability, and compatibility with integrated platforms. However, ongoing research into 

new materials, nanostructures, and hybrid systems is rapidly overcoming these limitations. 

Looking forward, nonlinear optics is expected to play an increasingly pivotal role in future 

technologies from all optical computing and on-chip photonics to quantum light sources and 

ultrafast signal processing. 

By understanding the physical principles and engineering considerations behind NLO processes 

and materials, researchers and engineers are better equipped to design innovative systems that 

leverage the full potential of nonlinear light–matter interactions. 
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III.1. Introduction  

In the search for high-performance nonlinear optical (NLO) materials, excess electron 

compounds have emerged as a particularly promising class due to their extraordinary electronic 

response properties [1]–[4]. These systems, characterized by loosely bound or diffuse excess 

electrons, exhibit exceptionally high electronic polarizability and pronounced charge 

delocalization. When subjected to an external electric field, such materials demonstrate rapid 

and extensive charge redistribution, resulting in dramatically enhanced hyperpolarizabilities 

and superior NLO performance. This unique behavior makes them ideal candidates for 

advanced photonic [5] and optoelectronic applications [6], [7], driving growing research 

interest in their design and characterization. 

The search for advanced materials with superior nonlinear optical (NLO) properties has driven 

researchers to investigate nanostructured systems capable of strong interactions with intense 

electromagnetic fields [8]–[10]. In this context, transition metal-doped nanocages have gained 

attention as a highly promising class of NLO-active materials [10], [11]. Their appeal lies in 

their tunable electronic structures, high charge delocalization, and inherent symmetry-breaking 

features. Whether the transition metals are incorporated within the cage or on the surface, their 

presence can induce substantial changes in the material’s electronic and optical properties. 

Notably, the doping introduces strong charge-transfer interactions and localized d-electron 

effects, which significantly boost polarizability and hyperpolarizability critical factors in 

determining NLO performance [12], [13]. 

III.2. Nanomaterials 

Nanomaterials are substances with at least one dimension in the nanometer range, generally 

from 1 up to 100 nanometers. Generally, materials at the nanoscale possess a much greater 

surface area-to-volume ratio with attendant quantum effects that can greatly alter behavior and 

interactions  

These materials are commonly classified based on their dimensions: zero-dimensional (0D) 

nanoparticles, one-dimensional (1D) structures like nanowires and nanotubes, two-dimensional 

(2D) materials such as nanofilms and nanocoatings, and three-dimensional (3D) forms like 

nanocomposites. Each type brings specific advantages and is suited to different technological 

applications, ranging from electronics to medicine. 
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III.2.1. Classification of Nanomaterials 

A widely used classification of nanomaterials is based on their dimensionality: 

o Zero-Dimensional (0D) Nanomaterials: These are materials having all the three 

dimensions in the nanometric scale. Examples of such materials are nanoparticles, 

nanospheres and nanoclusters.  

o One-Dimensional (1D) Nanomaterials: These are materials that have one dimension out 

of the nanometric scale Examples of such materials are nanowires, nanotubes, and 

nanorods. One-dimensional nanomaterials are used by electronic and photonic 

industries applications because these facilitate electricity and light conduction by them 

along their length. 

o Two-Dimensional (2D) Nanomaterials: These materials are characterized by having two 

dimensions outside the nanoscale. For example, graphene, nanofilms, and nanocoatings. 

Two-dimensional nanomaterials known for their outstanding mechanical strength and 

electrical and thermal conductivity; their applications extend from flexible electronics 

to barrier coatings. 

o Three-Dimensional (3D) Nanomaterials: These structures have all three dimensions 

larger than the nanoscale, but they contain internal nanoscale features. Examples include 

nanocomposites and bulk nanostructured materials. By combining nanoscale 

functionality with bulk properties, 3D nanomaterials are valuable in structural 

applications and the development of advanced multifunctional materials.  

III. 2.2. Nanocages: Structure and Significance 

Nanocages are a class of nanoscale materials characterized by their hollow, cage-like 

geometries. These zero-dimensional (0D) structures often exhibit high symmetry, large surface 

area, and strong quantum confinement effects.  

These nanostructures are commonly composed of light main-group elements such as carbon, 

boron, nitrogen, or metals like aluminum, and they can be either homonuclear (e.g., C₆₀ 

fullerenes) or heteronuclear configurations (e.g., B₁₂N₁₂, Al₁₂N₁₂). Their well-defined energy 

levels and adjustable electronic structure contribute to strong NLO responses, especially when 

modified through chemical doping or functionalization. 

Moreover, these nanostructures often break centrosymmetry upon doping or substitution, 

enabling second-order NLO effects like second harmonic generation (SHG). 
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III.3. Al₁₂N₁₂ Nanocages 

Among the various heteronuclear nanocages, the Al₁₂N₁₂ nanocage has gained considerable 

attention due to its excellent thermal stability, large HOMO–LUMO gap, and adaptable 

structure make it a topic in materials research. Structurally analogous to B₁₂N₁₂, this cage 

consists of alternating aluminum and nitrogen atoms arranged in a fullerene-like topology with 

high symmetry. 

The Al₁₂N₁₂ nanocage possesses several unique features that make it an excellent candidate for 

nonlinear optical applications. Its chemical robustness, derived from strong Al–N bonds, 

imparts high thermal and chemical stability, ensuring durability in practical device 

environments. The nanocage also exhibits a wide HOMO–LUMO band gap exceeding 5 eV in 

its pristine form, which contributes to optical transparency in the visible range and resistance 

to photodegradation. One of its most advantageous characteristics is its doping versatility; it 

can accommodate transition metals, as well as alkali and alkaline earth metals, which 

significantly alter its electronic distribution, reduce molecular symmetry, and promote strong 

intramolecular charge-transfer states factors that substantially enhance its NLO response. 

Additionally, the low reorganization energy associated with Al₁₂N₁₂ supports rapid electronic 

transitions, making it particularly suitable for ultrafast optical switching and other high-speed 

photonic applications. 

III.4. Transition Metals 

Transition metals, the elements occupying the d-block of the periodic table. They have unique 

chemical and physical properties that set them apart from other elements. Because of things like 

their electron structure (those partially filled ‘d-orbitals’), their ability to have different charges, 

and ability to form coordination complexes with diverse geometries, they're fantastic for 

boosting the way nanomaterials handle light and electricity. This makes them key players in 

advanced areas like nonlinear optics. 

III.4.1. 3d Elements 

The first-row transition metals, comprising the elements from Scandium (Sc) to Zinc (Zn), 

represent the 3d series of the periodic table. These elements are defined by the progressive 

filling of the 3d orbitals, leading to diverse oxidation states, electronic configurations, and 

coordination behaviors. Such properties render them exceptionally versatile in materials 
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chemistry, especially for applications in catalysis, magnetism, optoelectronics, and more 

recently, nonlinear optics (NLO). 

Table II.1: Electronic Configurations and Oxidation States of 3d Transition Metals. 

Elements Symbol Electronic configuration Oxidation states 

Scandium Sc [Ar] 3d14s2 +3 

Titanium Ti [Ar] 3d2 4s2 +2, +3, +4 

Vanadium V [Ar] 3d3 4s2 +2, +3, +4, +5 

Chromium Cr [Ar] 3d5 4s1 +2, +3, +6 

Magnesium Mn [Ar] 3d5 4s2 +2,+3, +4, +7 

Iron Fe [Ar] 3d6 4s2 +2, +3 

Cobalt Co [Ar] 3d7 4s2 +2, +3 

Nickel Ni [Ar] 3d8 4s2 +2, +3 

Copper Cu [Ar] 3d10 4s1 +1, +2 

Zinc Zn [Ar] 3d10 4s2 +2  

 

III.5. Overview of Doping Strategies in Nanocage Systems 

Doping nanocages with metal atoms has become a powerful method for tailoring their 

electronic and optical properties. These nanostructures such as fullerenes, boron nitride cages, 

and silicon-based clusters are known for their exceptional structural stability and delocalized π-

electron systems, which make them excellent platforms for atomic-level modifications. 

Introducing metal atoms into these frameworks can lead to noticeable changes in their nonlinear 

optical (NLO) behavior, particularly enhancing third-order effects. 

There are different ways metals can be doped into nanocages: endohedral and exohedral doping. 

In endohedral doping, metal atoms or small clusters are trapped inside the cage (e.g., M@C₆₀) 

[14], which often results in strong charge transfer interactions and enhanced polarization due to 

the confined environment. Substitutional doping involves swapping one or more atoms in the 

cage structure typically boron, nitrogen, or carbon with metal atoms. This strategy is useful for 
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adjusting the electronic band structure and creating new active sites [15]. In exohedral doping, 

metal atoms are attached to the outer surface of the nanocage, which can also significantly affect 

the material's polarizability and electron distribution [16]. 

Each type of doping offers unique advantages depending on the desired application. In the 

context of nonlinear optics, both the type of metal and how it is incorporated into the nanocage 

play a critical role in determining the material's third-order hyperpolarizability, optical limiting 

performance, and two-photon absorption behavior. Because of these tunable properties, metal-

doped nanocages are gaining attention as promising materials for advanced photonic 

technologies, including optical switching, sensing, and light-harvesting systems. 

 

Scheme III.1: Representation of Endohedral and Exohedral Doping in Nanocages 

III.5.1. Al12N12 Nanoparticles Doped with First-Row Transition Metals (Sc–Zn) 

Recent advances in nanomaterial have opened exciting possibilities for enhancing nonlinear 

optical (NLO) properties, particularly through metal-doped nanocages and nanoparticles. 

Among these, the Al₁₂N₁₂ nanocage stands out due to its exceptional stability, wide electronic 

bandgap and ability to be finely tuned by doping. By introducing first-row transition metals 

(from Scandium to Zinc) into this cage, researchers can systematically adjust its electronic and 

optical properties. In this chapter, we focus on the second- and third-order NLO characteristics 

of transition metal-doped Al₁₂N₁₂ systems (denoted as M@Al₁₂N₁₂, where M = Sc–Zn), aiming 

to provide a deeper understanding of their structure-property relationships and potential 

application [11].  
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III.6. Computational method 

The study conducted by Chołuj et al. demonstrates that global hybrid functionals are 

highly effective in precisely reproducing the absolute values of Two-Photon-Absorption 

strengths for donor-acceptor molecules.[17] On the other hand, long-range exchange 

correction have been considered the most suitable functionals to calculate spectroscopic 

parameters related to linear and nonlinear optical spectroscopy, such as first-and second-

hyperpolarizabilities [18] probably because of the short amount of HF exchange in the 

short range part[19] . Prior studies have indicated that CAM-B3LYP with the 6-

311+G(d) basis set, which was utilized in this study, can produce an absorption spectrum 

that closely resembles experimental results and has demonstrated effectiveness in 

calculating both static and dynamic nonlinear optical (NLO) responses [20]–[26]. 

III.7. Results and discussion 

III.7.1 Quantum Theory Atoms in Molecules analysis 

To gain deeper insight into the nature of the bonding interactions between the transition metal 

(M) atoms and the Al₁₂N₁₂ nanocage, we have carried out topological analysis of electron 

density on all  doped  geometries M@Al12N12 using the framework of the Quantum Theory of 

Atoms in Molecules (QTAIM) as formulated by Bader [27]–[31] using Amsterdam Density 

Functional (AMS) program developed by Baerends et al. [32], [33] Within the QTAIM 

approach, the topology of electron density is examined through the identification of critical 

points, specifically bond critical points (BCPs) and ring critical points (RCPs) defined as points 

where the gradient of the electron density is null. These critical points are classified based on 

several key parameters: the electron density (),  the Laplacian of the electron density ( ²()),  

the total electron energy density (H), the kinetic electron energy density (G) and the potential 

electron energy density (V). [30], [34]. In the graphs, red circles indicate ring critical points 

(RCPs), while green circles represent bond critical points (BCPs), providing a visual map of 

electron density distribution and bonding pathways within the systems. 
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Figure III.1 Molecular topology of Sc@Al12N12 of Co@Al12N12 (b66 and b64) 

 

Our topological analysis reveals that in several M@Al₁₂N₁₂ complexes specifically Cr@b66, 

Mn@b66, Mn@b64, Fe@b66, Co@b66, Ni@b66, Zn@b66, and Zn@b64 there is a single bond 

critical point (BCP) connecting the transition metal to a nitrogen atom, indicating the presence 

of M–N bonding. These bonds are characterized by negative values of the electron energy 

density (HBCP) and high positive Laplacian values (∇²ρ), suggesting a mixed covalent and 

electrostatic nature. However, for Mn and Zn doped systems, the M–N bond exhibits weaker, 

closed-shell (ionic) characteristics due to their low electron density at the BCP. 

In contrast, other systems such as M@b64 Al12N12 (M = Cr, Fe, Co, Ni, Cu) and M@b66 Al12N12 

(M = Sc, Ti, V) show two BCPs one between M–N and another between M–Al alongside a ring 

critical point (RCP), indicating a more complex bonding environment. The M–N bonds in these 

cases also display partial covalent character, while the M–Al bonds, with negative HBCP and 

low  2ρBCP values, are identified as mixed covalent–ionic. The covalent nature of these M–

Al bonds increase in the order: Cu < Ni < Co < Fe, based on the 
−VBCP

GBCP
 and HBCP values. 

For early transition metals (Sc, Ti, V) in the b64Al12N12 cage, both M–N and M–Al interactions 

exhibit significant covalent character, particularly in comparison to their b66Al12N12 
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counterparts. This is reflected in more negative HBCP values, indicating stronger bonding. 

Notably, the Cu–N bond in Cu@b66 shows the highest covalent character among the late 

transition metals studied, with HBCP (Cu–N) = –0.046 a.u., compared to weaker values observed 

in Zn–N and Mn–N bonds.  

Table III.2 QTAIM calculated values of: the electron density (, a.u.) and its Laplacian 

( ²() , a.u.), total electron energy density (H, a.u.), kinetic electron energy density (G, a.u.) 

and potential electron energy density (V, a.u.) 

M    G V H M    G V H 

  M@b64Al12N12 M@b66Al12N12 

Sc 
BCP Sc-Al 0.039 -0.020 0.009 -0.024 -0.014 

Sc 

RCP  0.036 0.029 0.016 -0.025 -0.009 

BCP Sc-N 0.123 0.375 0.150 -0.208 -0.057 BCP Sc-N 0.113 0.336 0.132 -0.181 -0.048 

Ti 
BCP Ti-Al -5.361 -3.505 1.855 4.433 5.296 BCP Sc-Al 0.037 -0.009 0.010 -0.022 -0.012 

BCP Ti-N 0.043 -0.025 0.011 -0.029 -0.017 

Ti 

RCP 0.035 0.046 0.018 -0.025 -0.007 

V 
BCP V-Al 0.139 0.413 0.177 -0.251 -0.073 BCP Ti-Al 0.035 

-

0.0005 
0.011 -0.022 -0.011 

BCP V-N -5.388 -2.708 2.680 4.048 3.057 BCP Ti-N 0.110 0.329 0.127 -0.173 -0.045 

Cr 

RCP  0.048 -0.037 0.011 -0.033 -0.021 

V 

RCP  0.042 0.016 0.017 -0.031 -0.013 

BCP Cr-N 0.135 0.436 0.175 -0.242 -0.066 BCP V-Al 0.042 -0.012 0.012 -0.029 -0.016 

BCP Cr-Al -5.710 -2.914 2.795 4.312 3.326 BCP V-N 0.115 0.370 0.140 -0.188 -0.047 

Mn BCP Mn-N 0.041 0.009 0.015 -0.029 -0.013 Cr BCP Cr-N 0.118 0.410 0.150 -0.197 -0.047 

Fe 

RCP  0.115 0.409 0.147 -0.192 -0.045 Mn BCP Mn-N 0.093 0.332 0.111 -0.138 -0.027 

BCP Fe-Al 0.041 -0.016 0.011 -0.027 -0.015 Fe BCP Fe-N 0.111 0.391 0.139 -0.181 -0.041 

BCP Fe-N 0.091 0.326 0.107 -0.134 -0.026 Co BCP Co-N 0.112 0.410 0.143 -0.183 -0.040 

Co 

RCP  0.043 0.012 0.017 -0.031 -0.014 Ni BCP Ni-N 0.114 0.439 0.151 -0.192 -0.041 

BCP Co-Al 0.043 0.004 0.016 -0.031 -0.015 Cu BCP Cu-N 0.126 0.490 0.173 -0.224 -0.050 

BCP Co-N 0.110 0.387 0.137 -0.179 -0.041 Zn BCP Zn-N 0.066 0.244 0.071 -0.082 -0.010 

Ni 

RCP  0.045 0.024 0.020 -0.035 -0.014        

BCP Ni-Al 0.045 0.018 0.019 -0.035 -0.015        

BCP Ni-N 0.111 0.406 0.141 -0.182 -0.040        

Cu 

RCP  0.048 0.058 0.028 -0.042 -0.013        

BCP Cu-Al 0.049 0.047 0.026 -0.041 -0.015        

BCP Cu-N 0.113 0.429 0.147 -0.188 -0.040        

Zn BCP Zn-N 0.050 0.069 0.031 -0.044 -0.013        

 

III.7.2. Electronic Spectra: UV–Vis Absorption and Excited-State Properties 

To better understand the origin of the NLO behavior of the investigated complexes, TD-

DFT calculations were performed. The results provide spectroscopic parameters 

associated with significant electronic transitions. These include the absorption 

wavelengths (0→n), oscillator strengths (𝑓0→n), transition dipole moment changes 
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(𝛥
0→n

), orbital overlap integrals (Sr(r)), and the D and t descriptors related to charge 

transfer characteristics. 

Table III.3 Presents the excitation wavelengths (0→n, in nm), oscillator strengths (𝑓0→n, 

dimensionless), orbital overlap integrals (Sr(r)), and the D and t indices (in Å) corresponding to 

the S₀ → Sₙ transitions, as calculated using the CAM-B3LYP/6-311+G(d) level of theory for 

the studied M@b₆₄/₆₆Al₁₂N₁₂ complexes. 

M 𝑆0→𝑛 0→𝑛 𝑓0→𝑛 Sr D t M 𝑆0→𝑛 0→𝑛 𝑓0→𝑛 Sr D t 

 M@b64Al12N12 M@b66Al12N12 

Sc 
𝑆0→5 766 0.009 0.795 1.085 -0.434 

Sc 
𝑆0→6 885 0.001 0.706 0.522 -0.710 

𝑆0→13 463 0.144 0.578 1.187 -0.443 𝑆0→13 527 0.251 0.658 1.022 -0.739 

Ti 
𝑆0→5 996 0.005 0.597 0.628 -0.455 

Ti 
𝑆0→8 837 <0.001 0.802 0.131 -1.166 

𝑆0→16 428 0.055 0.662 1.044 -0.749 𝑆0→13 590 0.177 0.670 0.853 -0.837 

V 
𝑆0→5 822 0.001 0.596 0.442 -0.588 

V 
𝑆0→7 859 <0.001 0.544 0.514 -0.455 

𝑆0→15 407 0.116 0.757 0.896 -0.773 𝑆0→12 495 0.075 0.594 1.841 -0.195 

Cr 
𝑆0→1 917 0.001 0.602 0.558 -0.736 

Cr 
𝑆0→1 861 <0.001 0.601 0.536 -0.723 

𝑆0→7 484 0.088 0.590 1.213 -0.664 𝑆0→7 495 0.097 0.579 1.409 -0.411 

Mn 
𝑆0→1 850 0.01 0.86 0.245 -1.195 

Mn 
𝑆0→1 845 0.011 0.858 0.332 -1.199 

𝑆0→9 416 0.140 0.733 1.205 -0.443 𝑆0→8 424 0.118 0.771 1.011 -0.542 

Fe 
𝑆0→4 952 0.023 0.872 0.164 -1.171 

Fe 
𝑆0→4 866 0.022 0.848 0.213 -1.111 

𝑆0→9 512 0.057 0.486 3.156 1.111 𝑆0→9 513 0.05 0.439 3.305 1.354 

Co 

𝑆0→8 717 <0.00
1 

0.581 0.329 -0.633 

Co 

𝑆0→7 804 0.031 0.856 0.134 -1.170 

𝑆0→9 671 0.072 0.805 0.358 -1.001 𝑆0→9 510 0.049 0.438 3.214 1.260 

Ni 
𝑆0→5 676 0.037 0.845 0.163 -1.305 

Ni 
𝑆0→5 649 0.068 0.803 0.400 -0.940 

𝑆0→7 480 0.055 0.469 3.107 1.098 𝑆0→7 500 0.056 0.444 3.184 1.221 

Cu 
𝑆0→1 591 0.076 0.726 0.667 -0.782 

Cu 
𝑆0→1 622 0.077 0.711 0.689 -0.701 

𝑆0→2 468 0.057 0.489 2.952 0.927 𝑆0→2 491 0.053 0.424 3.085 1.128 

Zn 
𝑆0→3 414 0.215 0.699 0.219 -1.546 

Zn 
𝑆0→3 427 0.197 0.694 0.233 -1.505 

𝑆0→5 372 0.09 0.413 3.057 1.006 𝑆0→5 387 0.076 0.386 2.936 0.940 

 

Materials with high first hyperpolarizability values are key components in nonlinear optics, 

particularly in second harmonic generation (SHG), where they enable frequency doubling (2ω). 

An ideal nonlinear optical (NLO) material must exhibit both a strong NLO response and high 

transparency at the operational laser wavelength [35]. To evaluate this, the UV–Vis–NIR 

absorption spectra of pristine Al₁₂N₁₂ and its transition metal-doped counterparts, M@Al₁₂N₁₂ 

(M = Sc to Zn, in b₆₄ and b₆₆ configurations). 

Time-dependent density functional theory (TD-DFT) calculations were carried out using 120 

excited states an adequate number for the scope of this study [36], [37]. The results indicate 

that the absorption spectrum of undoped Al₁₂N₁₂ lies within the ultraviolet region, specifically 
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between 170 and 300 nm. Upon incorporation of transition metals, the spectra of M@Al₁₂N₁₂ 

complexes exhibit red shifts, with absorption bands extending into the visible region. 

Notably, the Cr@b₆₄/₆₆, Mn@b₆₄/₆₆, and Cu@b₆₄/₆₆ complexes show transparent regions in the 

infrared (IR) region beyond 950 nm, indicating effective IR transparency. Additionally, all 

studied systems maintain full transparency in the deep ultraviolet range (≤ 200 nm). These 

optical characteristics suggest that these materials hold strong potential as high-performance 

NLO candidates, particularly for applications operating in the deep-UV region. 

 

Figure III.2 Theoretical UV-Vis Absorption Spectra of Al₁₂N₁₂ and Sc@b₆₄/₆₆Al₁₂N₁₂ 

Nanocages. 

Distinct spectral features were observed for Sc, Ti, V, Cr, and Cu derivatives, with transitions 

attributed to specific HOMO–LUMO excitations. For instance, Cu@b₆₆ exhibits both ICT and 

NMCT transitions within the 328–622 nm range, while Cr@b₆₄/₆₆ shows broad absorption 

spanning 600–900 nm, indicating strong NLO-relevant activity. In Mn, Fe, Co, and Ni-doped 

systems, strong absorption bands in the near-infrared (~850–950 nm) arise from local ICT 

within the metal centers, supported by high hole-electron overlap (Sr> 0.8), low charge 

separation (D < 0.4 Å), and negative centroid separation (t ≤ –1), all characteristic of local 

excitations. Additionally, transitions around 500 nm indicate significant MNCT contributions, 

while bands near 320–400 nm for Fe, Co, and Ni suggest mixed ICT/MNCT or NMCT 

behavior. 
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Figure III.3 Electron density difference maps of V@b64, V@b66, Co@b64, Co@b66, 

Mn@b66 and Fe@b64compounds from the ground state to the crucial excited state S0 → Sn 

(Sn: S15, S12, S11, S9, S1 and S9, respectively), plotted using 0.0003 au isovalues (where pink 

and blue denotes the electrons and holes, respectively). 

 

III.7.3. Nonlinear Optical Parameters  

The nonlinear optical (NLO) properties of materials, particularly at the second and third order, 

are strongly influenced by key molecular descriptors such as the electric dipole moment, 

chemical hardness, and overall electronic structure. 

Quantum chemical methods, especially those grounded in density functional theory (DFT), play 

a pivotal role in predicting and understanding these properties, offering valuable insight for 

guiding experimental efforts [20], [38]. Despite this, accurately modeling NLO behavior in 

large nanoparticle systems remains a significant computational challenge. 
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Table III.4 Magnetic moment, static and dynamic first hyperpolarizability (𝛽𝐻𝑅𝑆
 , a.u), second harmonic generation [𝛽𝑆𝐻𝐺 (-2ω ; ω, ω), a.u], depolarization 

ratios (DR) and second-order hyperpolarizability (𝛾(0 ;  0, 0,0), 𝛾(−2ω ;  ω, ω, 0), 𝛾(−ω ;  ω, 0,0), 𝛾𝐷𝐹𝑊𝑀a.u and n2 (cm²/W) of M@b64Al12N12 nanoparticles  

 
M@b64Al12N12 Sc Ti V Cr Mn Fe Co Ni Cu Zn 

Most stable spin state Doublet Triplet Quartet Quintet Sextet Quintet Quartet Triplet Doublet Singlet 

 Magnetic moment 10.439 10.479 10.519 10.559 10.599 10.639 10.679 10.72 10.759 10.800 

λ = ∞ 

βHRS
∞  6824 2844 1718 2022 769 813 873 923 1010 448 

𝐷𝑅 7.614 7.769 7.812 7.325 3.725 3.779 5.085 5.550 5.584 5.462 

𝛾(0 ;  0, 0,0) 345236 253934 192576 267954 306434 212848 200176 200397 187169 152310 

λ=1064 

𝛽𝑆𝐻𝐺  (-2ω ; ω, ω) 391027 10472 14078 9120 20180 47175 10298 12645 17744 2609 

βHRS
  236559 7129 7078 3640 8985 21727 6197 5417 7316 1136 

𝐷𝑅 1.339 1.454 1.883 6.937 2.565 2.038 0.661 2.474 3.224 3.941 

𝛾(−2ω ;  ω, ω, 0) 82236510 2035118 234015 1338979 4509417 16591340 4147931 1749344 1107949 360334 

𝛾(−ω ;  ω, 0,0) 98314110 18063860 272615 463597 685365 323649 245229 313902 290504 186927 

𝛾𝐷𝐹𝑊𝑀  125611201 18657588 286428 820605 2086359 5783146 1561147 830217 597430 256268.333 

n2 (cm²/W) 1.04× 10−14 1.54× 10−15 2.37× 10−17 6.79× 10−17 1.72× 10−16 4.78× 10−16 1.29× 10−16 6.87× 10−17 4.94× 10−17 2.1219E-17 

λ=1341 

𝛽𝑆𝐻𝐺  (-2ω ; ω, ω) 230157 47264 13401 42321 5938 4056 130387 48639 12423 1786 

βHRS
  185510 19823 5857 17974 2724 2225 54858 20495 5108 747 

𝐷𝑅 0.531 4.602 3.301 2.814 4.028 1.011 3.278 2.874 4.414 4.721 

𝛾(−2ω ;  ω, ω, 0) 52964740 2793484 2078111 7755519 880009 986328 29036070 6279438 777884 237633 

𝛾(−ω ;  ω, 0,0) 65946960 502537 836282 360031 441008 206335 255234 258541 241221 171978 

𝛾𝐷𝐹𝑊𝑀  83486794 1349053 1464793 2855886 632199 464161 9867198 2284888 438126 200419 

n2 (cm²/W) 6.91× 10−15 1.11× 10−16 1.21× 10−16 2.36× 10−16 5.23× 10−17 3.84× 10−17 8.17× 10−16 1.89× 10−16 3.62× 10−17 1.6595E-17 

λ=1906 

𝛽𝑆𝐻𝐺  (-2ω ; ω, ω) 29663 716168 6097 8840 6701 10212 3446 3877 4214 1454 

βHRS
  13779 317616 2370 3334 2899 8476 1473 1592 1709 592 

𝐷𝑅 2.541 2.588 5.721 7.856 4.271 0.885 4.800 4.595 5.161 5.299 

𝛾(−2ω ;  ω, ω, 0) 830340 732872500 271797 468308 735755 2325355 285028 294109 282428 184297 

𝛾(−ω ;  ω, 0,0) 3126709 1330356 211553 305011 355683 221614 221461 181224 211312 160842 

𝛾𝐷𝐹𝑊𝑀  3288410 245536545 237960 371795 498790 925783 249745 212461 243065 171504.333 

n2 (cm²/W) 2.72× 10−16 2.03× 10−14 1.97× 10−17 3.07× 10−17 4.13× 10−17 7.66× 10−17 2.06× 10−17 1.75× 10−17 2.01× 10−17 1.42× 10−17 
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Table III.5 Magnetic moment, static and dynamic first hyperpolarizability (𝛽𝐻𝑅𝑆
 , a.u), second harmonic generation [𝛽𝑆𝐻𝐺 (-2ω ; ω, ω), a.u], depolarization 

ratios (DR) and second-order hyperpolarizability (𝛾(0 ;  0, 0,0), 𝛾(−2ω ;  ω, ω, 0), 𝛾(−ω ;  ω, 0,0), 𝛾𝐷𝐹𝑊𝑀a.u and n2 (cm²/W) of M@b66Al12N12 nanoparticles 

 
M@b66Al12N12 Sc Ti V Cr Mn Fe Co Ni Cu Zn 

Most stable spin state Doublet Triplet Quartet Quintet Sextet Quintet Quartet Triplet Doublet Singlet 

 Magnetic moment 10.44 10.47 10.51 10.55 10.60 10.64 10.68 10.72 10.76 10.79 

λ = ∞ 

βHRS
∞  5857 4553 2701 2042 752 675 618 767 1012 428 

𝐷𝑅 7.748 7.124 7.313 7.457 4.138 4.174 4.402 5.710 5.902 6.059 

𝛾(0 ;  0, 0,0) 334662 531334 310923 278703 321552 222456 199732 199353 195136 152891 

λ=1064 

𝛽𝑆𝐻𝐺  (-2ω ; ω, ω) 3187634 109971 51710 10250 149819 47834 36273 23244 20372 2725 

βHRS
  1550925 55883 20770 4511 63933 20887 15803 9860 8468 1163 

𝐷𝑅 1.746 2.885 4.882 4.064 2.806 2.340 2.393 2.653 2.886 3.982 

𝛾(−2ω ;  ω, ω, 0) 155310900 26682340 822039 1915764 139672000 17137500 11033410 4442446 2299681 388926 

𝛾(−ω ;  ω, 0,0) 1233040 5526496 1608486 502203 752363 343558 267690 316381 319047 189152 

𝛾𝐷𝐹𝑊𝑀  52891786 14243498 1778858 1047890 47202512 5981906 3878916 1730745 1020562 267830 

n2 (cm²/W) 4.37× 10−15 1.17 × 10−15 1.47× 10−16 8.67× 10−17 3.91× 10−15 4.95× 10−16 3.21× 10−16 1.43× 10−16 8.45× 10−17 2.21× 10−17 

λ=1341 

𝛽𝑆𝐻𝐺  (-2ω ; ω, ω) 6248106 84759 21823 39096 5895 4809 3275 36376 21939 1764 

βHRS
  2587374.28 49485.370 11263.96 16938.99 2647.389 2435.229 1997.405 15324.284 9025.444 718.428 

𝐷𝑅
    5.005 1.946 2.569 2.394 2.813 1.604 0.617 3.215 4.169 5.087 

𝛾(−2ω ;  ω, ω, 0) 32077140000 16552660 5269732 6872853 942345 755401 719943 3069455 1482664 244096 

𝛾(−ω ;  ω, 0,0) 18196700000 2123532 19981540 382725 475032 283100 243691 260403 258023 173415 

𝛾𝐷𝐹𝑊𝑀  2.88× 1010 7463974 21634476 2580775 681963 460748 417094 1217103 687199 203816 

n2 (cm²/W) 2.39× 10−12 6.18× 10−16 1.79× 10−15 2.13× 10−16 5.64× 10−17 3.81× 10−17 3.45× 10−17 1.01× 10−16 5.69× 10−17 1.68× 10−17 

λ=1906 

𝛽𝑆𝐻𝐺  (-2ω ; ω, ω) 8205 10900 4135 8983 6774 108286 3270 3244 4650 1423 

βHRS
  4741 4247 1680 3419 2898 44318 1496 1328 1870 564 

𝐷𝑅
  1.010 6.705 3.706 6.743 4.448 5.150 3.664 4.821 5.244 5.834 

𝛾(−2ω ;  ω, ω, 0) 892444 297653 868389 488483 797644 63013320 268039 308134 309511 186375 

𝛾(−ω ;  ω, 0,0) 2154396 204326 399667 320182 377603 69204200 222236 226894 222761 161804 

𝛾𝐷𝐹𝑊𝑀  2042844 126432 585489 390108 536300 90134488 245005 263154 260886 172965 

n2 (cm²/W) 1.69× 10−16 1.04× 10−17 4.84× 10−17 3.23× 10−17 4.44× 10−17 7.46× 10−15 2.02× 10−17 2.17× 10−17 2.16× 10−17 1.43× 10−17 
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In this study, we report the first hyperpolarizability 𝛽HRS
  (Eq.II.17) and 𝛽𝑆𝐻𝐺

λ (−2𝜔; 𝜔, 𝜔)) 

(Eq.II.13), as well as the corresponding depolarization ratios (DRλ) under both static (λ = ∞) 

and frequency-dependent (dynamic) conditions for all M@b₆₄ and M@b₆₆ Al₁₂N₁₂ 

nanostructures.  

 

Figure III.4 Variation of hyper-Rayleigh scattering intensity 𝐼𝑉
2𝑤and polarization angle Ψ of 

M@b64/66Al12N12 

To explore dynamic NLO responses, three photon frequencies were employed: two laser-

relevant frequencies at 0.0340 a.u. (1341 nm) and 0.0428 a.u. (1064 nm), selected to minimize 

resonance effects, along with a third, non-resonant frequency of 0.0239 a.u. (1906 nm) to assess 

low-energy field interactions.  
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First hyperpolarizability values (𝛽HRS
∞ ) show distinct dependencies on both dopant type and 

topological configuration. Notably, Ti@b₆₆ Al₁₂N₁₂  and V@b₆₆ Al₁₂N₁₂  exhibit approximately 

double the 𝛽HRS
∞  values of their b₆₄Al₁₂N₁₂  counterparts, suggesting that structural topology 

particularly the presence of a closed quasi-ring (CQR) with a ring critical point (RCP) enhances 

intramolecular charge transfer (ICT) and NLO response more significantly than dopant identity 

alone. For metals such as Fe, Co, Ni, and Cu, 𝛽HRS
∞  is greater in b₆₄ Al₁₂N₁₂  isomers due to the 

CQR configuration present in these systems. 
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Figure III.5 Variation of static and dynamic first hyperpolarizability (βHRS
 ) and second 

hyperpolarizability (γ) of M@b64Al12N12  and M@b66Al12N12 (M from Sc to Zn) 

 

Sc@b₆₄ Al₁₂N₁₂  demonstrates the highest 𝛽HRS
∞  (6824 a.u.), nearly 15 times larger than Zn@b₆₄ 

Al₁₂N₁₂, the lowest in the series. The static first hyperpolarizability trends follow: 

Zn < Co < Fe < Mn < Ni < Cu < Cr < V < Ti < Sc, Among the studied M@b₆₆Al₁₂N₁₂ systems, 

follows the trend: Zn < Mn < Fe < Co < Ni < Cu < V < Cr < Ti < Sc. Polarization scans further 

indicate that depolarization ratios (DR) are dopant-dependent and range from 4.1 to 7.7, 
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consistent with a dominant dipolar NLO character. However, specific systems, particularly 

those involving Sc, Ti, and Co, exhibit octupolar character at certain excitation wavelengths. 

A number of years ago, Hohm and Thakkar established an empirical relationship connecting 

atomic polarizability (α) to the second ionization potential (I₂) and the Waber–Cromer atomic 

radius (𝑟𝑊𝐶) for 101 elements ranging from helium to nobelium. This relationship is expressed 

as [39]: 

𝛼 = 𝑃1𝐼2
−4 +  𝑃2𝑟𝑊𝐶

3 𝐼2
𝑦
                          (III.1) 

where the fitted parameters were P₁ = 2.26, P₂ = 3.912, and y = 0.439. The model suggests that 

atomic polarizability is largely governed by a combination of the atomic volume (𝑟𝑊𝐶³) and the 

inverse square root dependence on the ionization potential. 

Building upon this framework, we identified a similar trend in our work: the static first 

hyperpolarizability (𝛽𝐻𝑅𝑆) of M@b₆₄Al₁₂N₁₂ and M@b₆₆Al₁₂N₁₂ nanoclusters (with M ranging 

from Sc to Zn) shows a strong positive correlation with the Waber–Cromer radius of the metal 

center. Excluding the Mn-doped systems, this correlation yields a coefficient of determination 

(R²) of 0.910, indicating that atomic size is a key structural parameter influencing nonlinear 

optical response in these doped nanostructures. 

 

Figure III.6 Relation between the static first hyperpolarizability (𝜷𝑯𝑹𝑺
∞ ) and Waber-Cromer 

radius (𝒓𝑾𝑪) 
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Dynamic NLO responses were evaluated at three frequencies (λ = 1906, 1341, and 1064 nm). 

The results reveal that dynamic 𝛽HRS
λ  values are generally higher than their static counterparts, 

except for Sc@b₆₆, Ti@b₆₆, and V@b₆₆ at 1906 nm. A strong linear correlation (R² ≈ 0.98) was 

observed between 𝛽HRS
λ  and 𝛽SHG

λ  (−2ω; ω, ω), reinforcing the reliability of the data. 

Interestingly, 𝛽SHG
λ  values vary considerably between M@b₆₄Al₁₂N₁₂  and M@b₆₆Al₁₂N₁₂  

forms, with some metals (e.g., Sc, Ti, Mn, Co) showing 2–10 times enhancements in the 

M@b₆₆Al₁₂N₁₂  structures at 1064 nm. 
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Figure III.7 The dynamic first hyperpolarizabilities of the 𝑀@𝑏64/66
𝐴𝑙12𝑁12 (M= Sr-Zn) 

versus their static value at 1906, 1341 

Resonance effects at 1064 nm caused deviations from linearity in dispersion analysis, while 

trends at 1341 and 1906 nm remained largely consistent. These results highlight the crucial role 

of molecular topology, charge delocalization via CQR structures, and dopant selection in 

enhancing both static and frequency-dependent NLO properties, positioning M@Al₁₂N₁₂ 

nanoclusters as promising candidates for advanced photonic applications. 
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III.7.4. Frequency dispersion effects 

The frequency dispersion factor (FDFλ), describing the ratio between static and dynamic hyper-

Rayleigh scattering (HRS) hyperpolarizabilities [26] (𝛽HRS
λ /𝛽HRS

∞ ), exhibits significant 

wavelength-dependent variations in nanoclusters. Strong dispersion effects arise under near-

resonant conditions, where one- or two-photon excitation energies align with incident light 

frequencies (λ = 1064, 1341, 1906 nm). Notably, Sc@b₆₆, Ti@b₆₆, and Mn@b₆₆ show 

pronounced FDFλ enhancements due to two-photon resonance (2ω ≈ 2.33 eV), while Sc@b₆₄/₆₆ 

and V@b₆₆ exhibit one-photon resonance (ω ≈ 1.165 eV). Comparative analysis reveals that 

structural isomerism (b₆₄ vs. b₆₆) critically influences FDFλ magnitudes, with Sc@b₆₆ displaying 

a 9 times larger than that of Sc@b₆₄ at 1064 nm, attributed to higher oscillator strength (f = 

0.251). Conversely, off-resonant systems (e.g., V–Cr, Ni–Zn dopants at 1906 nm) exhibit 

modest FDFλ values (0.62 to 1.8). Time-dependent DFT simulations confirm that two-photon 

resonance dominates βλ enhancement, with oscillator strength acting as a key modulator.  

III.7.5. Second Hyperpolarizability 

This study investigates the second hyperpolarizability (γ) of Al₁₂N₁₂ and transition metal-doped 

M@b₆₄/₆₆Al₁₂N₁₂ nanoclusters (M = Sc to Zn), both in the static regime and under frequency-

dependent fields, using advanced quantum chemical methods. The static γ (0;0,0,0) values show 

significant enhancement upon doping with transition metals, with Ti@b₆₆ exhibiting the largest 

increase approximately eightfold compared to the undoped system. The overall ordering of γ 

values reveals a strong dependence on both the dopant identity and structural isomer, 

highlighting the role of metal-induced electronic effects. 

Dynamic third-order nonlinear optical responses were also evaluated at various wavelengths 

(1064, 1341, and 1906 nm), revealing that γ (−2ω; ω, ω, 0) (Eq.II.21) increases as the 

wavelength decreases, peaking at 1064 nm for most systems. Notably, Sc@b₆₆ and Ti@b₆₄ 

displayed contrasting trends, with maximum responses at 1341 and 1906 nm, respectively, 

indicating system-specific dispersion behaviors. 

A strong linear correlation (R² ≈ 0.92) between dynamic first (𝛽𝑆𝐻𝐺
λ ) and second 

hyperpolarizabilities (g (−2ω;  ω, ω, 0)) further confirms their coupled optical behavior. The 

dc-Kerr effect values γ (−ω; ω, 0, 0) were also analyzed, showing enhanced responses at 1064 

nm, with exceptions for Sc@b₆₆, V@b₆₄/₆₆, and Fe@b₆₆, which peaked at higher wavelengths. 
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Figure III. 8 Correlation between dynamic second and third order of NLO responses of 

𝑀@𝑏64/66𝐴𝑙12𝑁12 (M= Sc to Zn, b = slope) 

Additionally, notable values of the quadratic nonlinear refractive index (n₂) (Eq.II.24) were 

observed, particularly for Sc@b₆₆ at 1341 nm (2.39 × 10⁻¹² a.u.). Most systems exhibited 

decreasing n₂ values with increasing wavelength, although Ti@b64/66 and Fe@b66 based 

nanoclusters showed enhanced responses at 1906 nm.  

III.7.6. Two level model  

To better understand the factors governing the first hyperpolarizability (β₀) of the studied 

systems, we employed the two-level model, which offers a simplified yet insightful framework 

for analyzing nonlinear optical responses. According to this model, the first hyperpolarizability 

is expressed as [40], [41]: 

𝛽0 ∝  
𝑓× ∆𝜇

∆𝐸3                   (III.2) 

where Δμ represents the change in dipole moment between the ground and the relevant excited 

state, 𝑓 is the oscillator strength of the transition, and ΔE denotes the excitation energy. This 

relationship implies that systems exhibiting lower excitation energies, larger dipole moment 

differences, and stronger oscillator strengths will tend to have higher β₀ values. 
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To elucidate the origin of the variations in β₀ among the investigated compounds, the two-level 

model was applied (N = 120), and its predictions were compared with full theoretical 

calculations. Furthermore, a convergence study of the SOS approach demonstrated that βSOS 

attains numerical stability when 120 excited states are considered, indicating that this cutoff 

ensures accurate and reliable evaluation of the first hyperpolarizability for the present systems. 

For systems such as Fe@b₆₆Al₁₂N₁₂, Co@b₆₆Al₁₂N₁₂, Fe@b₆₄Al₁₂N₁₂, and Ni@b₆₄Al₁₂N₁₂, the 

dominant contributions originate from nonlocal transitions characterized by low electron-hole 

overlap (Sr ≈ 0.4), large charge separation (Dindex ≈ 3.1-3.3 Å), and positive tindex (1< tindex < 

1.35), indicating long-range charge transfer. 

 

 

Figure III.9 Calculated static HRS-Hyperpolarizability of M@b64/66Al12N12 by the different 

methods 
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Figure III.10 Plots of static first hyperpolarizability values as computed in the SOS formalism as a function of the number of excited states for  
M@b64/66Al12N12 (M= Sc to Zn)  along with electron density difference maps, in which purple and blue colors indicate accumulation and depletion 
of electron density, respectively, obtained at CAM-B3LYP/6-311+G(d)
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In contrast, most other doped nanoclusters, including Ti@b₆₄Al₁₂N₁₂, V@b₆₄Al₁₂N₁₂, and 

Cu@b₆₆Al₁₂N₁₂, exhibit local excitations with high overlap (Sr > 0.6), small Dindex (0.2–1.2 Å), 

and negative tindex, suggesting that electron-hole pairs remain spatially confined. These 

localized transitions contribute significantly to large β values when supported by favorable 

oscillator strengths and low excitation energies. 

The analysis further demonstrates that the first hyperpolarizability correlates strongly with the 

term 𝑓/∆𝐸3, with additional modulation by the dipole moment change (Δμ). For example, 

Ti@b₆₆Al₁₂N₁₂ and Sc@b₆₆Al₁₂N₁₂ show enhanced β values due to high 𝑓/∆𝐸3 and significant 

Δμ, while Zn@b₆₄/₆₆Al₁₂N₁₂ shows the lowest β owing to its high excitation energy and minimal 

dipole difference. Comparative analyses also reveal that for systems with similar 𝑓/∆𝐸3 values, 

differences in Δμ become the deciding factor in β magnitude, as seen in V@b₆₄Al₁₂N₁₂ vs. 

V@b₆₆Al₁₂N₁₂ and Cu@b₆₄Al₁₂N₁₂ vs. Zn@b₆₄Al₁₂N₁₂. In cases where 𝐼 × ∆𝜇 values are similar, 

the excitation energy and oscillator strength regain importance, as demonstrated by 

Cr@b₆₄Al₁₂N₁₂ having higher β than Mn@b₆₄Al₁₂N₁₂ due to a lower ΔE. 

Table III.6 Calculated transition energy ∆𝐸 (eV), oscillator strengths (𝑓), transition 

dipole moment (
0→𝑛

, Debye) and 𝐼 =  𝑓/∆𝐸3 of crucial excited state (S0Sn) 

 M@b64Al12N12 M@b66Al12N12 

M Sn ∆𝐸0→𝑛 𝑓0→𝑛 
0→𝑛

 𝐼 𝐼 × 
0→𝑛

 M Sn ∆𝐸0→𝑛 𝑓0→𝑛 
0→𝑛

 𝐼 𝐼 × 
0→𝑛

 

Sc S13 2.676 0.144 2.201 0.007 0.016 Sc S13 2.35 0.251 1.888 0.020 0.036 

Ti S16 2.895 0.055 1.441 0.002 0.003 Ti S13 2.100 0.177 1.59 0.020 0.030 

V S15 3.041 0.116 1.675 0.004 0.007 V S12 2.503 0.075 3.033 0.005 0.014 

Cr S7 2.558 0.088 2.267 0.005 0.012 Cr S7 2.504 0.097 2.636 0.006 0.016 

Mn S9 2.98 0.14 2.254 0.005 0.012 Mn S8 2.924 0.118 1.901 0.005 0.009 

Fe S9 2.42 0.057 5.929 0.004 0.024 Fe S9 2.416 0.05 6.208 0.003 0.022 

Co S9 1.848 0.072 0.672 0.011 0.008 Co S9 2.428 0.049 6.04 0.003 0.020 

Ni S7 2.582 0.055 5.838 0.003 0.019 Ni S5 1.909 0.068 0.75 0.010 0.008 

Cu S1 2.095 0.076 1.25 0.008 0.010 Cu S1 1.993 0.077 1.293 0.010 0.012 

Zn S3 2.994 0.215 0.412 0.008 0.003 Zn S3 2.901 0.197 0.439 0.008 0.003 
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III.8. Conclusion  

The present investigation systematically explores the molecular topology, electron 

delocalization characteristics, and nonlinear optical (NLO) properties specifically the first order 

hyperpolarizability of two series of transition metal-doped nanoclusters: M@b₆₄Al₁₂N₁₂ and 

M@b₆₆Al₁₂N₁₂, where M spans the 3d transition metals from Sc to Zn. Both static and dynamic 

NLO responses were analyzed to evaluate their potential for advanced photonic applications. 

Our findings reveal that the incorporation of transition metals into the Al₁₂N₁₂ nanocage 

markedly enhances the first hyperpolarizability. This enhancement, particularly in the static 

regime, is closely linked to the presence of a closed quasi-ring (CQR) structure connecting the 

metal dopant with the nanocage. This structural motif facilitates efficient charge delocalization 

and contributes significantly to the nonlinear optical response. For example, Ti@b₆₆ displays a 

significantly higher static first hyperpolarizability (𝛽HRS
∞  = 4554 a.u.) than its Ti@b₆₄Al₁₂N₁₂  

counterpart (2844 a.u.), attributed to the presence of a CQR structure in the former. 

Sum-over-states (SOS) analysis indicates that the dominant excited states contributing to the β 

values exhibit characteristics of local excitations, evidenced by high hole-electron overlap (Sr), 

small spatial separation (Dindex), and negative tindex values. Additionally, UV–Vis spectral 

analysis shows that these nanoclusters are transparent below 200 nm, making them promising 

candidates for deep ultraviolet (DUV) optical devices. 

In the dynamic regime, the frequency-dependent hyperpolarizabilities 𝛽HRS
λ , 𝛽SHG

λ  (−2ω; ω, ω), 

are consistently higher than their static counterparts. This enhancement is attributed to strong 

one and two photon resonance effects, with the latter playing a more significant role in boosting 

dynamic NLO responses. The findings highlight the critical contribution of strong oscillator 

strengths and resonance conditions in maximizing NLO performance under laser excitation. 

Beyond theoretical predictions, the practical relevance of these findings is underscored by the 

growing importance of picosecond and femtosecond laser technologies. These ultrafast lasers 

are widely applied in microfabrication, surface modification, corrosion resistance enhancement, 

and 3D nanostructure fabrication, demonstrating the relevance of materials with strong ultrafast 

NLO properties. 

Finally, our analysis reveals a novel correlation between the static first hyperpolarizability of 

M@b₆₄/₆₆Al₁₂N₁₂ and the Waber–Cromer atomic radius of the transition metal, suggesting that 
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atomic size plays a predictive role in tuning NLO behavior. Additionally, in the dynamic 

regime, offering new insights into structure property relationships in metal-doped nanoclusters.  
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IV.1. Introduction  

Numerous strategies have been developed to enhance and modulate the nonlinear optical (NLO) 

response of molecular and supramolecular systems. These approaches encompass the 

reinforcement of intramolecular push–pull effects [1]–[4], the rational design of octupolar 

architectures[5], [6], and the construction of asymmetric coordination complexes [7]–[9].  

Additional methodologies include the incorporation of diffuse excess electrons, [10]–[13], the 

engineering of multi-decker sandwich clusters [14], [15], as well as the development of metal–

organic frameworks (MOFs) with tailored electronic environments [16]. Collectively, these 

strategies highlight the diversity of structural and electronic modifications that can be employed 

to achieve improved and tunable NLO performances. 

Among these, multi-decker sandwich clusters [14], [15] have recently emerged as particularly 

promising candidates owing to their unique π-conjugated frameworks, extensive electron 

delocalization, and remarkable structural tunability. In the present work, we introduce a new 

class of NLO-active materials based on multi-decker sandwich clusters and undertake a 

comprehensive investigation of their structural, electronic, linear optical, and nonlinear optical 

properties, with the objective of achieving enhanced and robust NLO responses. 

IV.2. Discovery of Sandwich Complexes 

The discovery of sandwich complexes began with the synthesis of ferrocene, the first and 

archetypal example, in 1951. T. J. Kealy and P. L. Pauson synthesized a novel organometallic 

compound with the empirical formula C₁₀H₁₀Fe by reacting cyclopentadienyl magnesium 

bromide with ferric chloride. The unusual properties of this compound prompted further 

investigation into its structure, eventually leading to its identification as ferrocene[17]. The 

structure of ferrocene remained uncertain until 1952–1953, when Wilkinson et al. determined 

that the iron atom was symmetrically sandwiched between two η⁵-cyclopentadienyl (Cp) rings, 

giving rise to the classic sandwich structure [18]. This structural elucidation of ferrocene 

marked the birth of the sandwich complex model, which would later apply to numerous other 

metallocene complexes. Fischer (1960) contributed critical theoretical insights into the bonding 

in ferrocene and other similar complexes. His work explained the η⁵-coordination of 

cyclopentadienyl ligands to the metal center and provided a deeper understanding of the 

metallocene bonding model, further cementing the significance of the sandwich structure in 

organometallic chemistry.[19] In 1973, Fischer and Wilkinson were awarded the Nobel Prize 

in Chemistry for their groundbreaking work on sandwich complexes, particularly for their 



Chapter IV 

80 
 

contributions to understanding the structure and bonding of ferrocene and related compounds. 

Since then, the concept of metallocene bonding has provided the foundation for the 

development of a broad range of organometallic systems with wide-ranging applications. 

 

Scheme IV.1: a: Pentagonal antiprismatic structure of ferrocene “The Structure of Iron Bis-

Cyclopentadienyl”; b: Sandwich courtesy of Prof. Peter W. Roesky.[18], [20] 

IV.3. Types of Sandwich Complexes 

Sandwich complexes are a diverse class of organometallic compounds characterized by a 

metal atom coordinated between two (or more) planar aromatic ligands. They can be 

classified based on several factors: 

IV.3.1. Based on the Nature of the Ligands: 

 

Scheme IV.2: Structures of sandwich complexes with {CnHn} π-aromatic carbocycles [20] 

 

o Cyclopentadienyl Complexes: These are the most common type and feature 

cyclopentadienyl (Cp, C₅H₅⁻) ligands. Examples include ferrocene (Fe(C₅H₅)₂) and 

chromocene (Cr(C₅H₅)₂). 

o Arene Complexes: These complexes have arene ligands (e.g., benzene, toluene). A 

classic example is dibenzenechromium (Cr(C₆H₆)₂). 
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o Cyclooctatetraene Complexes: These feature cyclooctatetraene (COT, C₈H₈²⁻) 

ligands, such as uranocene (U(C₈H₈)₂). 

o Mixed-Ligand Complexes: These contain different types of aromatic ligands. For 

example, a complex might have one Cp ligand and one arene ligand. 

IV.3.2. Based on the Number of Rings: 

o True Sandwich Complexes: These have two aromatic rings directly coordinated to the 

metal center in a parallel arrangement. This is the classic definition. 

o Half-Sandwich Complexes (Piano-Stool Complexes): These have only one aromatic 

ring coordinated to the metal. The coordination sphere is completed by other ligands 

(e.g., carbonyls, halides, phosphines). An example is (η⁵-C₅H₅)Fe(CO)₂Cl. 

o Triple-Decker Complexes: These are less common and feature three metal atoms 

sandwiched between two aromatic rings. 

IV.3.3. Based on the Metal: 

o Transition Metal Complexes: These are the most prevalent, involving transition 

metals such as iron, chromium, nickel, ruthenium, etc. 

o Lanthanide and Actinide Complexes: These feature f-block elements, such as 

uranium in uranocene. 

IV.3.4. Based on the Hapticity (η) of the Ligands: 

o η⁵-Complexes: This is the most common type, where all five carbon atoms of a 

cyclopentadienyl ring are bonded to the metal center. 

o η⁶-Complexes: All six carbon atoms of an arene ring are bonded to the metal center. 

Note: Hapticity describes the number of atoms in a ligand that are directly bonded to 

the metal. 

IV.3.5. Heterobimetallic Sandwich Complexes 

Description: These complexes feature two different metals sandwiched between ligands, such 

as cobalt and manganese. For example, [CoMn(CO)₄(η⁵-C₅H₅)₂] is a heterobimetallic sandwich 

complex. 
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IV.4. Heterotrimetallic triple-decker sandwich complex 

In 2020, Joseph et al.[21] reported the synthesis and characterization of a new class of 

heterotrimetallic triple-decker sandwich complexes with the general formula [(Cp*M)₂{µ-

B₂H₂E₂Pd(Cl₂)}] (M = Co, Rh, Ir; E = S, Se). These compounds feature a planar five-membered 

{B2E2Pd} palladacycle as the central deck, in which the Pd(II) center adopts an uncommon 

pseudo-octahedral coordination geometry (Scheme IV.3). Structural and spectroscopic 

analyses demonstrated high molecular symmetry, with strong Pd–E and Pd–Cl bonds 

accompanied by elongated, weak Pd–M interactions. Density functional theory (DFT) 

calculations supported these observations, revealing that the B2E2 fragment acts as the primary 

electron donor to the axial metals, while Pd–M interactions remain weak and essentially non-

covalent. Electronic absorption spectra, corroborated by time-dependent DFT (TD-DFT), 

displayed multiple bands between 290–700 nm attributable to metal-centered d–d transitions 

and metal-to-ligand charge transfer (MLCT) processes. Collectively, these results establish a 

novel synthetic route to stable, high-yield heterotrimetallic triple-decker complexes and 

highlight their unique bonding features, thereby opening promising perspectives for future 

catalytic applications. 

 

 

Scheme IV.3. Molecular structures of complexes synthesized by Joseph et al. [21] 

IV.5. Multidecker Sandwich Cluster and NLO 

To investigate strategies for enhancing nonlinear optical (NLO) properties and for the rational 

design of novel NLO-active organometallic systems, we selected the triple-decker sandwich 

complexes synthesized by Joseph et al. [21] as a prototypical framework. Building upon this 

structural motif, we developed two distinct series of molecular complexes, hereafter denoted as 

[{B2H2S2Pd(Cl)2} -(CoCp)n] where n = 2 to 5 (please see Scheme IV.4) 



Chapter IV 

83 
 

✓ The first series (MDSn/MDSna,) was engineered by systematically varying the number 

of (CoCp) units (n = 2–5) and the positional arrangement of the square-planar 

{B₂H₂S₂Pd(Cl)₂} fragment.  

✓ The second series (MDS′n) retained a fixed position of the {B₂H₂S₂Pd(Cl)₂} core while 

incrementally increasing the layer count (n = 2–5). 

✓ To evaluate these systems, we employed Density Functional Theory (DFT) and Time-

Dependent DFT (TD-DFT) calculations to probe their electronic structures, excited-

state properties, and frequency-dependent NLO responses (ω = 0, 0.0239, 0.0340, and 

0.0428 a.u.). This computational approach provides insights into how structural 

modifications influence first hyperpolarizabilities, offering a pathway to optimize NLO 

performance in multidecker organometallic frameworks. 

 

Scheme IV.4. Molecular Design of Multi-Decker Sandwich Complexes 

[(CoCp)n{B2H2E2Pd(Cl)2}], E=S, Se and n = 2 to 5 (from ref. [21] for triple-decker sandwich 

IV.6. Results and discussion 

IV.6.1. Choice of Computational Method 

The selection of an appropriate computational method is a critical step in ensuring the reliability 

and predictive accuracy of quantum chemical investigations. To determine the most suitable 

methodology for describing the structural, electronic, and optical properties of the multi-decker 

sandwich cluster (Scheme IV.4), a systematic assessment of density functional theory based 

approaches was carried out. Calculations were performed on a simplified model, 

[(CoCp)₂{B₂H₂S₂Pd(Cl)₂}], in which Cp* was replaced by Cp to reduce computational cost 
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without altering the essential electronic characteristics of the system. A range of exchange–

correlation functionals, including B3LYP,[22], [23] ωB97X-D, [24], [25] CAM-B3LYP,[26] 

TPSSH,[27]–[29] M06,[30] M06-2X[30], [31], were employed to evaluate their performance. 

For H, B, S, C and Cl atoms, the 6–311G(d) basis sets were employed, while the Stuttgart-

Dresden effective core potentials (ECPs) with SDD basis sets were used for the cobalt and 

palladium atom [32], [33].  Scalar relativistic effects were addressed through the use of ECPs. 

No symmetry constraints were imposed, and all ground state frequencies were verified as real 

at this theoretical level. The optimized geometrical parameters obtained with each functional 

are provided in Table S1 (Supplementary Information Annex II), while the simulated 

absorption spectra are presented in Figure IV. 1. Theoretical predictions were systematically 

benchmarked against the available experimental data for the parent complex 

[(CoCp*)₂{B₂H₂S₂Pd(Cl)₂}], enabling a rigorous validation of the computational protocol. 

The analysis of the geometrical parameters shows that the experimental Co-B distance is 2.118 

Å [21].  This value is smaller than those calculated by the ωB97X-D, B3LYP, CAM-B3LYP 

M06 and TPSSH functionals by 0.012, 0.01, 0.03, 0.017 and 0.022 Å, respectively, and larger 

than those obtained using M06-2X by 0.003 Å. Additionally, DFT calculations underestimate 

the experimental Co-Co, S-B and Pd-Cl distances by 0.051, 0.022 and 0.017 Å, respectively; 

in contrast, the Pd-Co and Co-S bond lengths are overestimated by 0.047 and 0.015 Å, 

respectively. Furthermore, it is observed that the bond lengths B1-B2 and S1-B1 exhibit minor 

discrepancies between the experimental measurements and the computed values. The calculated 

bond angles exhibit very slight deviations from the experimental results, ranging from 1° to 3°. 

Overall, there is excellent agreement between the calculated parameters and the 

crystallographic data of [(CoCp)2{B2H2S2Pd(Cl)2}] complex.  
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Figure IV.1 Calculated and experimental UV − vis of [(CoCp)2{B2H2S2PdCl2}] (experimental 

spectra from refs [21])  

Figure IV.1 illustrates the absorption spectra of the compound under investigation, 

incorporating both theoretical results derived from six distinct exchange–correlation functionals 

and the corresponding experimental data. The experimental spectrum prominently features a 

sharp absorption peak within the 200–400 nm range, broad absorption bands extending from 

400 to 800 nm, and a clearly defined shoulder near 400 nm. The results obtained using the M06 

and TPSSH functionals are nearly identical, indicating that both functionals provide a 

comparable depiction of the electronic excited states and transition energies of the 

[(CoCp)2{B2H2S2Pd(Cl)2}] complex. On the other hand, the CAM-B3LYP and ωB97X-D 

functionals yield nearly identical spectra, with a minor shift relative to B3LYP, which can be 

attributed to long-range correction effects. Among all the functionals tested, the UV-Vis 

absorption spectrum calculated using M06-2X exhibits the closest agreement with the 

experimental data, both in terms of spectral shape and absorption maxima. Notably, an 

electronic transition near 400 nm, observed experimentally, is also present in the simulated 
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spectrum obtained with M06-2X, further validating its accuracy in modeling the optical 

properties of this system. 

To assess the efficacy of the M06-2X functional in accurately predicting the first 

hyperpolarizability of the studied complexes, a comparative analysis was conducted. The 

second-order nonlinear optical (NLO) response of the organometallic complex MDS₂ was 

computed using various exchange–correlation functionals, including ωB97X-D, B3LYP, CAM-

B3LYP, M06, and TPSSH, while maintaining consistent basis sets for uniformity. As shown in 

Figure IV.2, the first hyperpolarizability values derived from M06-2X exhibit excellent 

agreement with those obtained from CAM-B3LYP and ωB97X-D, both of which are renowned 

for their accuracy in predicting the NLO responses of compounds.[2], [9], [34]–[39] In contrast, 

TPSSH and M06 functionals significantly underestimate the first hyperpolarizability (𝛽0) 

values. Based on these findings, the M06-2X functional was considered well-suited for the 

subsequent evaluation of the NLO properties of the multidecker sandwich complex derivatives 

investigated in this study. 

 

Figure IV. 2 First hyperpolarizability of MDS2 complex calculated at different 

theoretical levels 

Based on the obtained results, the M06-2X functional was chosen for the computation 

of both linear and nonlinear optical properties of all target complexes in this investigation. This 
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selection is further substantiated by prior studies that affirm the robustness and predictive 

reliability of the M06-2X functional, particularly in the context of transition metal 

complexes.[40]–[45] 

IV.6.2. Comparative study of NLO responses in metallocene complexes 

In order to gain a more comprehensive understanding of the nonlinear optical responses of the 

investigated complexes, the static first hyperpolarizability ((𝛽0 and 𝛽𝐻𝑅𝑆
0 )  was calculated at the 

M06-2X/6-311G(d)/SDD level of theory for the complexes MDS₂, MDS′₂, and a set of 

reference metallocenes, including 3NH2−VBz2−3CN, VBz2-(C2H2)3-NO2 and Fe1Cp2-

(C2H2)3-NO2, with urea serving as a standard benchmark. The computational results are 

presented in Table IV.1. Notably, the MDS′₂ complex demonstrates a significantly enhanced 

NLO response, with 𝛽0 and 𝛽𝐻𝑅𝑆
0 values approximately 194 times and 198 times greater, 

respectively, than those of urea. In contrast, the MDS2 complex exhibits moderate 

hyperpolarizability values, approximately 10 times greater than those of urea. 

On the other hand, within the metallocene-based series, VBz2-(C2H2)3-NO2 demonstrates the 

highest first hyperpolarizability (𝛽0 = 7.01×104 a.u.), exceeding that of MDS′2 by a factor of 

approximately 4.3. Notably, the 𝛽0  value for MDS′2 is nearly twice that of Fe1Cp2-(C2H2)3-

NO2 and more than 30 times greater than that of 3NH2−VBz2−3CN, highlighting its 

significantly superior nonlinear optical performance. In comparison, the MDS2 complex 

exhibits moderate NLO activity, with a 𝛽0 value approximately 1.6 times greater than that of 

3NH2−VBz2−3CN. Based on this comparative analysis, both MDS₂ and MDS′₂ emerge as 

promising molecular platforms for further structural optimization aimed at the development of 

efficient NLO materials. 
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Table IV.1. Calculated first hyperpolarizability value (𝛽0 and 𝛽𝐻𝑅𝑆
0 ) for MDS2, MDS′2, 

3NH2−VBz2−3CN, VBz2-(C2H2)3-NO2 and Fe1Cp2-(C2H2)3-NO2 and urea at the M06-

2X/6-311G(d)/SDD level of theory 

 𝜷𝟎 𝜷𝑯𝑹𝑺
𝟎  

MDS2 8.64 ⨯102 3.66⨯102 

MDS’2 1.63⨯104 6.72⨯103 

VBz2-(C2H2)3-NO2 7.01⨯104 2.93⨯104 

Fe1Cp2-(C2H2)3-NO2 8.96⨯103 3.75⨯103 

3NH2−VBz2−3CN 5.21⨯102 4.93⨯102 

urea molecule 84 34 

 

IV.6.3. Structural and electronic study multi-decker sandwich cluster 

The geometry optimization of the 10 multi-decker sandwich cluster [(CoCp)n{B2H2S2Pd(Cl)2}] 

with n = 2 to 5 was performed using the M06-2X/6–311G(d)/SDD method. The optimized 

geometries are illustrated in Figure IV.3, and the calculated bond distances and angles are 

detailed in Table S2.AII. 
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Figure IV. 3 The optimized geometry of multi-decker sandwich cluster 

[(CoCp)n{H2B2S2Pd(Cl)2}], n=2 to 5 

 

The optimized geometries of the MDS'n complexes exhibit inclined configurations, 

characterized by the angle (’) calculated at the centroid of the square planar arrangement {B2S2 

Cl2} between the cobalt (Co) atom and the centroid of the B-B bond (Scheme IV.2). These 

angles range from 54° to 65°, as illustrated in Fig. 3 and detailed in Table S2.AII. Notably, 

MDS'2 and MDS'3 exhibit inclinations of 54°, while MDS'5 shows an inclination of 65°. For 

the MDSn cluster, the angular parameter 𝜑 is defined as the angle formed between the centroids 

of the cyclopentadienyl (Cp) and centroids of the ring {B2S2Pd} and the palladium atom (see 

Scheme IV. 5), the calculated values for this angle are provided in Table S2.AII. As presented 

in Table S2.AII, the 𝜑 angle of MDSn ranges from 82° to 95°, indicating a slight inclination 

that is nearly perpendicular to the molecular axis (y-axis) of the multidecker sandwich 

complexes [(CoCp)n{H2B2S2Pd(Cl)2}] n=2 to 5. Additionally, the Cl...H induces a deformation 

in the {H2B2S2Pd(Cl)2} and Cp rings within the title complexes. 
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Scheme IV.5. The bond angles  and ’ of MDS’n and MDSn complexes 

 

One should notice that the geometry optimization of MDS5a does not retain the linearity of the 

Co alignment, as shown in Figure IV. 3. Indeed, some constrained geometry optimizations 

deliver quasi degenerated structures (no imaginary frequencies) which, however, reoptimize 

towards the tilted structure. In the meantime, the two chlorines move below the {B2S2Pd)2} 

plane (Figure. S1.AII). 

The computed values of the highest occupied molecular orbital (HOMO), lowest unoccupied 

molecular orbital (LUMO) energies, chemical potential (μ), and hardness (η) for MDSn, 

MDSna, and MDS'n complexes (where n = 2 to 5) are presented in Table S3.AII and 

Figure IV.4. Chemical hardness ()  serves as an indicator of a molecule's stability by reflecting 

its resistance to electron transfer, while the chemical potential (𝜇)  quantifies the molecule's 

tendency for electron escape from the equilibrium system [46].  

Where: 

 =   ɛL−ɛH      (IV.1) 

𝜇 =  1/2(ɛ𝐻 + ɛ𝐿)      (IV.2) 

The ionization potentials (I) of these complexes provide insight into their thermal stability. Most 

of the complexes exhibit ionization potential values greater than 5 eV, with exceptions for the 

MDS₅, MDS₅a, and MDS'₅ complexes, which have values of 4.534, 4.591, and 4.865 eV, 

respectively. These results suggest that the complexes generally exhibit good thermal stability. 



Chapter IV 

91 
 

 

Figure IV. 4 The calculated chemical hardness indices of MDSn, MDSna and MDS’n, (n=2 

to 5) at M06-2X/6–311G(d)/SDD level of theory. 

Chemical hardness (η) quantifies a compound's resistance to variations in electron distribution, 

with higher values corresponding to lower reactivity and enhanced stability. Our analysis 

reveals that the MDSn complexes exhibit higher hardness values than their corresponding 

MDS'n counterparts. For example, MDS2 has a hardness of 5.227 eV, which is 1.6 eV greater 

than that of MDS'2 (3.627 eV). Likewise, MDS3 demonstrates a higher hardness by 1.07 eV 

compared to MDS'3. Furthermore, it is observed that the hardness of the complexes increases 

as the number of (CoCp) units decreases within the clusters. The complexes can be ranked in 

ascending order of hardness as follows: 

MDS’5< MDS5< MDS’4< MDS4< MDS’3< MDS3 ≈ MDS’2< MDS2, as shown in 

Figure IV.4.  

From this study, it is observed that the position of {H2B2S2Pd(Cl)2} and the number of (CoCp) 

units significantly influence the stability of the studied clusters. Notably, the  

[(CoCp)5{H2B2S2Pd(Cl)2}] complexes exhibit the lowest chemical hardness, indicating a 

higher reactivity and lower stability compared to other configurations.  

 



Chapter IV 

92 
 

IV.6.4. Absorption Spectra 

It is significant to note that the molecule's ability to exhibit a prominent absorption maximum 

positions it as a promising candidate for optoelectronic applications.[47] In this context, time-

dependent density functional theory (TD-DFT) calculations on the optimized geometries are 

crucial for predicting the excited-state properties of the complexes. Accordingly, TD-DFT 

calculations were performed at the TD-M06-2X/6-311G(d)/SDD level of theory to determine 

the vertical singlet excitation energies. A total of 120 excited states were considered in all 

optical property calculations to ensure a thorough spectral analysis. The detailed absorption 

spectra for the complexes MDSn, MDSna, and MDS'n are provided in Tables 2, 4S-5S, and 

Figures S2 and 5.AII. The optical properties analyzed include the excitation wavelength 

((0→n), nm), oscillator strengths (𝑓0→n), transition dipole moment (𝛥
CT

, a.u.), overlap 

integrals (Sr(r)), 𝐷𝐶𝑇 and t index (Å) associated with the S0→Sn transition. 

Table IV.2. Excitation wavelength (𝜆0→𝑛 , nm), oscillator strengths (𝑓0→𝑛, dimensionless), 

transition dipole moment (𝛥
CT

, a.u.) , overlap (𝑆𝑟 (r)), 𝐷𝐶𝑇 and t indice (Å) associated with 

the 𝑆0 → 𝑆𝑛 transitions, as calculated at M06-2X/SDD/6-311G(d) of the MDSn and MDS’n 

complexes 

 𝑆0→𝑛 𝛥0→𝑛 𝑓0→𝑛 𝛥
𝐶𝑇

 Sr 𝐷𝐶𝑇  t index 

MDS2 

𝑆0→8 761.74 0.021 2.034 0.643 2.145 0.770 

𝑆0→20 403.01 0.137 3.177 0.537 1.687 0.003 

MDS’2 

𝑆0→9 664.13 0.088 3.537 0.712 2.960 0.842 

𝑆0→18 474.84 0.051 6.547 0.171 4.471 3.227 

MDS3 

𝑆0→14 722.66 0.261 0.863 0.929 1.278 -1.011 

𝑆0→29 384.99 0.002 2.876 0.773 3.476 0.870 

MDS’3 

𝑆0→5 1876.95 0.003 2.657 0.722 2.706 0.274 

𝑆0→13 854.55 0.426 6.605 0.252 5.858 4.032 

MDS4a 𝑆0→14 1130.64 0.007 3.643 0.786 4.207 0.840 
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𝑆0→20 705.13 0.408 1.021 0.878 1.341 -0.866 

MDS4 

𝑆0→19 813.46 0.002 14.926 0.051 9.359 7.408 

𝑆0→25 605.04 0.405 2.007 0.786 2.153 -0.796 

MDSS’4 

𝑆0→6 1380.64 0.098 2.275 0.884 2.307 -2.027 

𝑆0→15 1080.53 0.692 2.299 0.822 2.871 -1.440 

MDS5 

𝑆0→3 1942.02 0.001 24.085 0.059 12.869 10.902 

𝑆0→29 671.82 0.017 15.233 0.209 8.025 5.911 

MDS’5 

𝑆0→6 1566.12 <0.001 1.852 0.499 1.583 -3.054 

𝑆0→21 1009.40 0.06 6.321 0.746 6.804 1.209 

MDS5a 

𝑆0→10 1243.56 <0.001 27.38 0.0001 14.794 13.052 

𝑆0→28 615.89 0.0025 17.194 0.062 10.058 7.858 

 

The TD-DFT calculations indicate that the simulated absorption spectra of the investigated 

clusters display two distinct absorption regions (Figure IV.5 and Figure S2.AII). The first 

region, observed between 200 and 350 nm, corresponds to intra-ligand π–π* transitions within 

the Cp ligands [48]. The second absorption region extends from 400 nm and spans beyond 1000 

nm; for example, the clusters with n = 3 exhibit absorption up to 2400 nm, as seen in the MDS'4 

cluster. 

Furthermore, a significant bathochromic shift is observed in the first electronic transitions with 

notable oscillator strength within the second absorption region of the MDS'n series, relative to 

the corresponding MDSn clusters (where n = 2 to 5). For example, in the case of n = 4, the first 

electronic transition of MDS'4 occurs at 1080 nm (f = 0.692), whereas for MDS4, it is positioned 

at 605 nm (f = 0.405) (Figure IV.5). This redshift is attributed to the specific positioning of the 

{H2B2S2Pd(Cl)2}  fragment within the MDS'n clusters, implying the potential for enhanced 

second-order nonlinear optical (NLO) responses under suitable conditions. 
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Figure IV.5. Calculated UV-Vis absorption spectra of MDSn and MDS’n (n= 3 and 4). 
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To attain a deeper insight into the nature of the electronic excitations within the investigated 

clusters, the essential excited-state wavefunctions were analyzed through the framework of 

natural transition orbitals (NTOs). This formalism enables the decomposition of the transition 

density matrix into its fundamental components, namely the "excited electron" and the 

corresponding "vacant hole" distributions. Furthermore, the electron density difference maps 

(EDDMs) associated with these representative excited states are illustrated in Figure IV.6 and 

systematically summarized in Table S4.AII. 

The simulated UV–Vis absorption spectrum of MDS2 reveals two principal bands located at 

761 nm (f = 0.021) and 403 nm (f = 0.137), which are attributed to intra-metallic d–d transitions 

in conjunction with metal-to-ligand charge transfer (MLCT) excitations, specifically from the 

Pd(Cl)₂ moiety toward the B–B bonding framework (Table S4.AII). In the case of the MDS’2 

derivative, distinct electronic excitations are identified: transition S9, characterized 

predominantly by a HOMO→LUMO contribution (23%) at 664 nm; transition S15, assigned 

to HOMO–2→LUMO (30%) at 567 nm; and transition S18, involving HOMO–6, –7→LUMO 

(12%) at 475 nm. Collectively, these transitions are diagnostic of charge-transfer (CT) 

processes, wherein electron density is redistributed from the Pd(Cl)₂ and Co metallic centers—

embedded within the square-planar [B₂S₂] coordination environment—toward the CoCp₂ 

fragment, as corroborated by the spectral data in Table S4.AII and Figure IV.6. 

For the MDS’3 complex, intense absorption features are observed at 854 nm and 705 nm, with 

appreciable oscillator strengths (f = 0.426 and 0.334, respectively). These transitions are 

predominantly ascribed to charge-transfer (CT) processes originating from the {B₂S₂Pd(Cl)₂} 

fragment and the Co metallic centers, coordinated within the [B₂S₂] environment, and directed 

toward the Co2Cp3 moiety. Moreover, the transition S0→S23, detected at 542 nm, corresponds 

to a PdCl₂-to-(CoCp)₃ charge transfer, arising specifically from the HOMO-3→LUMO 

excitation with a substantial 40% orbital contribution. In contrast, the MDS3 analogue exhibits 

a major absorption band at 722 nm (f = 0.261), which is primarily attributed to a 

HOMO→LUMO excitation. This process is classified as an intramolecular charge-transfer 

(ICT) transition, displaying a pronounced local excitation component (Sr = 0.929). This ICT 

character is further observed in electronic transitions at 759 nm and 385 nm. 

For the MDS4a cluster, the absorption features within the 700–800 nm region, 

characterized by appreciable oscillator strengths, are predominantly associated with charge-

transfer (CT) excitations emanating from the {S₂Pd(Cl)₂} moiety toward the Co centers 
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coordinated within the square-planar [B₂S₂] scaffold, as well as toward the B–B bond and the 

cyclopentadienyl (Cp) ligands (Table S4.AII). In contrast, the excitation S0→S26, located at 

566 nm (f = 0.05), is primarily governed by the HOMO→LUMO+1 transition (18%), which 

reflects CT processes originating from the peripheral CoCp₂ fragments and directed toward the 

{B₂S₂PdCl₂} and (CoCp) subunits (Figure IV. 6 and Table S4.AII). 

In the case of the MDS4 analogue, the electronic excitations observed at 813 nm and 

539 nm (f = 0.002 and 0.003, respectively) are predominantly assigned to CT from the outer 

CoCp₂ unit toward the {B₂S₂Pd(Cl)₂} and (CoCp) fragments anchored to the [B₂S₂] framework. 

Additionally, the absorption at 781 nm arises chiefly from CT localized within the PdCl₂ unit, 

directed toward the {B₂S₂Pd(Cl)₂} and (CoCp) moieties coordinated with the [B₂S₂] core. 

Notably, the pronounced band at 605 nm (f = 0.405) is assigned to an intramolecular charge-

transfer (ICT) process localized within the {B₂S₂Pd(Cl)₂} fragment. 

For the MDS’4 complex, pronounced low-energy absorptions are detected at 1380 nm 

and 1080 nm, with considerable oscillator strengths (f = 0.098 and 0.692, respectively). These 

transitions are predominantly assigned to charge-transfer processes originating from the 

peripheral CoCp fragment and the {B₂S₂Pd(Cl)₂} unit, directed toward the central (CoCp)₂ 

domain of the cluster. Additionally, the excitations corresponding to HOMO–1→LUMO (46%) 

and HOMO–2→LUMO (43%) are located at 902 nm and 728 nm, respectively. Both transitions 

are primarily characterized by CT events from the (CoCp)₄ to {B₂S₂Pd(Cl)₂} fragment. 

In the MDS5 cluster, the S0→S3 excitation at 1942 nm is attributed to CT from the 

CoCp₂ unit toward the {H₂B₂S₂Pd} moiety, dominated by a HOMO→LUMO contribution 

(49%). Furthermore, the S0→S10 transition at 1375 nm involves charge flow from CoCp₂ 

toward the {B₂S₂Pd(Cl)₂} fragment. Higher-energy transitions, located at 818 nm 

(HOMO→LUMO+2, 47%) and 672 nm (HOMO–1→LUMO+1, 39%), also reveal CT 

processes from CoCp₂ into the {B₂S₂Pd(Cl)₂} and CoCp units associated with the [B₂S₂] 

framework. 

For the MDS’5 analogue, the absorption band at 1566 nm is assigned to a CT excitation 

from the central core region toward the terminal Cp rings, specifically involving the HOMO–

1→LUMO transition. The transition at 1009 nm, largely defined by HOMO–3→LUMO (22%), 

represents an intramolecular charge-transfer process delocalized across the entire molecular 

scaffold. Additionally, the absorption feature at 912 nm corresponds to CT from the CoCp 

fragment into both the {H₂B₂S₂Pd} and CoCp moieties, as summarized in Table S4.AII. 
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For the MDS5a cluster, the electronic excitations S0→ S10, S23, and S26, appearing at 

1244 nm, 761 nm, and 650 nm, respectively, are predominantly associated with charge-transfer 

processes occurring between opposing CoCp₂ units within the cluster. These excitations are 

characterized by negligible frontier orbital overlap (approaching zero), highlighting the weak 

electronic coupling between the donor and acceptor fragments. Importantly, the {B₂S₂Pd(Cl)₂} 

fragment does not participate in these transitions. The corresponding orbital contributions are 

assigned to the HOMO→LUMO+1, HOMO–1→LUMO, and HOMO–2→LUMO excitations, 

respectively (see Figure IV. 6 and Table S4.AII). 

 

 

Figure IV.6 Electron density difference maps of MDS2 (𝑆12), MDS’2 (𝑆18), MDS’3 (𝑆23), 

MDS4a (𝑆20), MDS4 (𝑆28) and MDS’4 (𝑆20) complexes from the ground state to the crucial 

excited state 𝑆 0 →  𝑆𝑛 , plotted using 0.0006 a.u. isovalues (where orange and blue denote the 

electrons and holes, respectively). 

IV.6.5. Linear and Nonlinear optical parameters 

a- Dipole moments and polarizability 

According to the computed data summarized in Table S2.AII, the dipole moments (μ) 

follow the increasing trend: MDS2 < MDS3 < MDS4a (11.76 D) < MDS4 (13.46 D) < MDS5 

(21.51 D) < MDS5a (28.71 D). For the MDS’ series, the ordering is MDS’2 (21.69 D) < MDS’5 

(25.31 D) < MDS’4 (26.22 D) < MDS’3 (26.31 D). These results clearly demonstrate that the 
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dipole moment increases markedly with the number of (CoCp) substituents (n), reflecting the 

progressive asymmetry induced by the expansion of peripheral Cp-based fragments. An 

exception is noted within the MDS’n series, where the dipole moments converge to comparable 

values, suggesting that structural and electronic compensation effects mitigate further 

enhancement of polarity despite the increase in cluster size. 

The calculated static polarizabilities and their anisotropies are summarized in Table 

S6.AII and depicted in Figure IV.7. For the MDSn series, the static polarizability α(0,0) 

increases systematically as follows: 282 au (MDS2) < 500 au (MDS3) < 580 au (MDS4) < 

1532 au (MDS5a). A similar progression is observed in the MDS’n series: 323 au (MDS’2) 

< 599 au (MDS’3) < 1245 au (MDS’4) < 2154 au (MDS’5). The anisotropy of 

polarizability, Δα(0,0), mirrors these trends across the multidecker sandwich clusters, further 

corroborating the strong size-dependence of the electronic response. 

Our analysis reveals that increasing the number of layers markedly enhances both α(0,0) and 

Δα(0,0) for n = 2–5 in both families. An exception arises in the “a”-designated structures, where 

MDS5a (648 au) displays a lower α(0,0) than MDS4a (754 au), highlighting the sensitivity of 

polarizability to subtle structural variations. Furthermore, direct comparison between MDSn 

and MDS’n complexes demonstrates that the latter consistently exhibit higher α(0,0) and 

Δα(0,0) values. These findings further underscore that the positioning of the (CoCp) units 

plays a crucial role in determining the polarizability and anisotropy polarizability of 

these complexes. 
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Figure IV.7 Relationship between polarizability and anisotropy of polarizability with the 

number of (CoCp) units (n) and the positional of {H2B2S2Pd(Cl)2} fragment within the 

clusters 

b- 2nd-order NLO responses 

Quantum chemical methodologies have proven highly effective in elucidating, forecasting, and 

optimizing the nonlinear optical responses of materials. [9], [49] These computational 

techniques are instrumental in the advancement and rational design of novel NLO materials, 

offering a molecular-level understanding of electronic structures that is essential for predicting 

the materials' behavior under electromagnetic fields. Sophisticated approaches, such as DFT 

and TD-DFT are employed to simulate and predict the NLO behavior of materials, enabling 

the identification of optimal molecular configurations for enhanced performance. To examine 

and predict the influence of the number of (CoCp)ₙ units and the positioning of the 

{H₂B₂S₂Pd(Cl)₂} fragment on the NLO responses, we conducted quantum chemical 

calculations on the studied complexes within both static and dynamic regimes. The detailed 

results of these computations are summarized in Tables IV.3 and S6.AII of the Supplementary 

Information. Notably, for the dynamic regime, three frequencies (ω) were selected: two laser 

frequencies, 0.0340 a.u. (1341 nm) and 0.0428 a.u. (1064 nm), chosen to to avoid resonance 

enhancement effects, and a non-resonant frequency of 0.0239 a.u. (1906 nm) included in the 

analysis. It is noteworthy that the static first hyperpolarizability (𝛽0) exhibits an 
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excellent correlation with the hyper-Rayleigh scattering (𝛽𝐻𝑅𝑆
0 ) hyperpolarizability, with 

a correlation coefficient (R²) of 0.999 (see Figure. S3.AII). 

The computed first hyperpolarizability (𝛽0 and 𝛽𝐻𝑅𝑆
0 ) values for the MDSn complexes in the 

static regime, as illustrated in Figure IV.8-9 and summarized in Table IV.3, reveal a 

pronounced enhancement from n = 2 to n = 5. Specifically, the β value demonstrates a steady 

increase with the progressive incorporation of (CoCp) units from n = 2 to n = 5, reflecting a 

behavior akin to that observed in classical push-pull π-systems. For example, the β value of 

MDS3 is nearly ten times greater than that of MDS2. Likewise, MDS4 exhibits a β value 

approximately eight times higher than MDS3, and the β value of MDS5 is roughly five times 

greater than that of MDS4. This trend underscores a significant amplification in NLO responses 

with the successive addition of (CoCp) units.Moreover, a comparative analysis reveals that 

MDS4 displays a β value nearly two times that of MDS4a, and MDS5 exhibits a β value 

approximately four times greater than MDS5a. Notably, MDS5 achieves the highest first 

hyperpolarizability value (𝛽0 and 𝛽𝐻𝑅𝑆
0 ), which is approximately 407 times larger than that of 

MDS2. 

On the other hand, the analysis of the first hyperpolarizability (𝛽0 and 𝛽𝐻𝑅𝑆
0 ) for the MDS’n 

series reveals that the 𝛽𝐻𝑅𝑆
0  values in the static regime exhibit an increasing trend from n = 2 to 

n = 4, followed by a decrease from n = 4 to n = 5. This observed trend is in good agreement 

with the DFT calculations of Wang et al.. [14], [15] Notably, MDS’3 demonstrates a 𝛽𝐻𝑅𝑆
0  

value approximately three times greater than that of MDS’2, while MDS’4 shows a 𝛽𝐻𝑅𝑆
0  value 

roughly twice that of MDS’3. In contrast, the 𝛽𝐻𝑅𝑆
0  value for MDS’5 is about three times 

smaller than that of MDS’4. These trends for the calculated 𝛽𝐻𝑅𝑆
0  values mirror those observed 

for 𝛽0. For this series, MDS’4 stands out with the highest first hyperpolarizability, being 

approximately four times greater than that of MDS’2. Our results also indicate a clear 

correlation between the static first hyperpolarizability (𝛽) values and the chemical hardness (𝜂) 

of the MDSn complexes, as evidenced by the trend of increasing β with decreasing chemical 

hardness. 

Our results demonstrate that the static first hyperpolarizability values of the MDSn complexes 

increase as their chemical hardness decreases. A similar trend is observed in the MDS’n clusters, 

further strengthening the correlation between these two properties. This observation aligns with 

the established literature, which suggests that a reduction in chemical hardness can facilitate 

enhanced NLO responses in materials [50]. 
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Additionally, a comparative analysis between the two series reveals that the MDS’n complexes 

exhibit higher first hyperpolarizability values than their corresponding MDSn counterparts, 

with the exception of n = 5. The observed difference in first hyperpolarizability, 𝛽(MDS’n)  >

 𝛽(MDSn), which increases from n = 2 to n = 4, can be attributed to the tilted geometries of the 

MDS’n complexes, as defined by the angle  (Fig. S1). For instance, the 𝛽 values for MDS’2 

and MDS’3 ( = 51°) are 19 and 5 times greater, respectively, than those for MDS2 and MDS3 

( = 90°). In contrast, for MDS5 ( = 95°), the β value is observed to be 5 times greater than 

that of MDS’5. The highest first hyperpolarizability (𝛽0) value of 3.553 × 10⁵ a.u. (and 𝛽𝐻𝑅𝑆
0  

of 1.472 × 10⁵ a.u.) is recorded for the MDS5 cluster. 

As depicted in Figure IV.8, both the static polarizability and first hyperpolarizability generally 

increase with the number of (CoCp) units (n), indicating enhanced delocalization and 

polarizability as the structure elongates. Notably, the MDSn systems exhibit a more pronounced 

increase in first hyperpolarizability at n = 5, suggesting a significant NLO response at higher 

chain lengths. In contrast, MDS’ₙ shows a peak at n = 4, followed by a decline at n = 5, 

indicating potential structural or electronic saturation beyond this point [51]–[53]. 

 

Figure IV.8 Variation of static polarizability and first hyperpolarizability as a function of the 

number of (CoCp) Units (n) 

Based on this study, we conclude that four key factors play a significant role in enhancing the 

static first hyperpolarizability of the examined clusters: chemical hardness, the structural 

geometry of the multi-decker sandwich complexes, the number of (CoCp) units, and their 

specific spatial arrangements within the cluster. 
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Regarding the dynamic regime, it is observed that MDS'2, MDS3, MDS'4, MDS4, 

MDS4a, and MDS5a exhibit the highest values of dynamic second-order hyperpolarizability 

(𝛽𝑆𝐻𝐺
 ) at 0.034 a.u., in comparison to those measured at 0.0428 and 0.0239 a.u. In contrast, the 

MDS2, MDS’3, and MDS’5 clusters demonstrate enhanced SHG responses at 0.0239 a.u., 

surpassing the values observed at 0.0428 and 0.034 a.u. Notably, the MDS5 cluster exhibits the 

largest dynamic first hyperpolarizability at 0.0428 a.u., with an exceptional 𝛽𝑆𝐻𝐺
  value of 6.639 

× 10⁸ a.u. (see Figure IV. 9 and Table IV.3). For instance, at the frequency of 0.0239 a.u. (1906 

nm), the 𝛽𝑆𝐻𝐺
  values of the studied clusters decrease in the following order: MDS’4 > MDS5 

> MDS’3 > MDS’5 > MDS5a > MDS4 > MDS4a > MDS’2 > MDS2 > MDS3. At the frequency 

of 0.0428 a.u. (1064 nm), it is evident that the 𝛽𝑆𝐻𝐺
𝜔  values for MDS’2, MDS’3, and MDS’5 are 

approximately 17, 3, and 18 times greater than those of MDS2, MDS3, and MDS5, respectively. 

Furthermore, the variations in dynamic regime 𝛽𝐻𝑅𝑆
  values exhibit a close correspondence with 

the trends observed in 𝛽𝑆𝐻𝐺
  values (see Figure. S3.AII). 

 

Figure IV.9 Variation of the static and dynamic first hyperpolarizability 𝛽 (0; 0, 0), and 

𝛽𝑆𝐻𝐺 (-2𝜔; 𝜔, 𝜔) of MDSn and MDS’n. 
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The electro-optical Pockels effect (EOPE) values, β(-ω;ω,0), for the complexes 

{H₂B₂S₂Pd(Cl)₂}-(CoCp)ₙ (where n = 2 to 5) are provided in Table S6.AII. The 
𝐸𝑂𝑃𝐸


  values 

at 0.0428 a.u. are markedly higher compared to those at 0.034 and 0.0239 a.u., indicating that 

the electro-optical Pockels effect β(-ω;ω,0) is more pronounced at higher frequencies. However, 

exceptions are noted for MDS2 and MDS’4, where the highest 
𝐸𝑂𝑃𝐸


 values are observed at 

0.0239 a.u. and 0.034 a.u., respectively. 

For the MDSn series, the 
𝐸𝑂𝑃𝐸


 values generally increase with the number of (CoCp) units (n 

= 2, 3, 4), demonstrating a positive correlation between the number of layers and electro-optical 

sensitivity. Notably, a decline in 
𝐸𝑂𝑃𝐸


 values is observed when the number of layers is 

increased to 5. For most frequencies, the 
𝐸𝑂𝑃𝐸


 values increase with the addition of layers in 

the MDSn series (n = 1, 2, 3, 4, 5), except at ω = 0.0239 a.u., where the values follow the trend: 

MDS3 (1.13×10⁴) < MDS1 (2.15×10⁴) < MDS4 (8.91×10⁴) < MDS5 (1.13×10⁶). 

It is important to highlight that the values of 
𝐸𝑂𝑃𝐸


 at 0.0428 and 0.034 a.u. for the MDS'n 

series (n = 2 to 4) are significantly greater than those observed for the corresponding MDSn 

clusters. This observed trend is in strong agreement with the results derived from the first 

hyperpolarizability measurements, suggesting that the specific arrangement of the 

{𝐻2𝐵2𝑆2𝑃𝑑(𝐶𝑙)2} fragment and the number of (CoCp)n units within the multidecker sandwich 

complexes offer an efficient approach for the modulation and enhancement of nonlinear optical 

properties. 
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Table IV.3. Static and dynamic first hyperpolarizability  (𝛽0 , 𝛽𝐻𝑅𝑆
𝜔   a.u.), second harmonic generation [𝛽𝐻𝑅𝑆

𝜔 (-2𝜔; 𝜔, 𝜔), a.u.], depolarization 

ratios (DR) of MDSn, MDSna and MDS’n complexes  

 𝜷𝟎 𝜷𝑺𝑯𝑮
𝝎  𝜷𝑯𝑹𝑺

𝝎  𝑫𝑹𝝎 

 0 0.0428 0.0340 0.0239 0 0.0428 0.0340 0.0239 0 0.0428 0.0340 0.0239 

MDS2 8.64 ⨯102 2.42⨯103 2.09⨯102 2.31⨯104 3.66⨯102 1.11⨯103 8.31⨯102 2.19⨯104 4.63 3.55 0.80 0.35 

MDS’2 1.63 ⨯104 4.18⨯104 7.15⨯106 4.05⨯104 6.72⨯103 1.92⨯104 2.96⨯106 1.66⨯104 5.10 4.41 5.01 5.18 

MDS3 8.98 ⨯103 5.76⨯104 9.85⨯104 1.71⨯104 3.68⨯103 2.42⨯104 4.12⨯104 7.03⨯103 5.18 4.58 4.87 5.34 

MDS’3 4.51⨯104 1.91⨯105 1.80⨯105 7.46⨯105 1.88⨯104 1.11⨯105 7.61⨯104 3.11⨯105 4.84 0.95 4.18 4.85 

MDS4 6.93⨯104 6.28⨯104 3.68⨯105 1.39⨯105 2.86⨯104 2.72⨯104 1.53⨯105 8.60⨯104 5.04 3.90 5.19 0.77 

MDS’4 7.20⨯104 9.64⨯105 1.60⨯108 3.19⨯106 2.99⨯104 4.04⨯105 6.77⨯107 1.34⨯106 4.92 4.72 4.19 4.21 

MDS4a 4.18⨯104 5.25⨯104 1.39⨯105 8.47⨯104 1.74⨯104 4.63⨯104 6.01⨯104 3.54⨯104 4.89 0.46 3.28 4.66 

MDS5 3.55⨯105 6.63⨯108 1.11⨯107 1.25⨯106 1.47⨯105 2.75⨯108 4.59⨯106 5.18⨯105 4.99 4.87 4.97 4.96 

MDS’5 2.43⨯104 7.29⨯104 1.17⨯105 3.53⨯105 1.07⨯104 9.64⨯104 4.76⨯104 1.47⨯105 4.16 0.24 5.93 5.04 

MDS5a 8.67⨯104 5.96⨯104 4.86⨯106 2.11⨯105 3.56⨯104 2.99⨯104 2.06⨯106 8.68⨯104 5.14 1.78 3.9 5.08 
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c- Frequency dispersion effects 

To examine the influence of frequency dispersion on the nonlinear optical (NLO) behavior of 

these clusters, dynamic perturbations were introduced. This methodology facilitated the 

assessment of the effect of dispersion corrections on the NLO properties. To quantify this 

influence, the frequency dispersion factor (𝐹𝐷𝐹) was utilized, which represents the ratio of 

the static to dynamic HRS hyperpolarizability[39] at distinct wavelengths (λ = 1064, 1341, and 

1906 nm, corresponding to 1.165, 0.942, and 0.65 eV, respectively). The precise values of 𝐹𝐷𝐹 

are presented in Table IV.4. 

Table IV.4. Frequency dispersion factor (𝐹𝐷𝐹) for the static and dynamic HRS 

hyperpolarizability at specific frequencies ( = 0.0428, 0.034, 0.0239 a.u.) 

 

 

 

 

 

 

 

 

The TD-DFT calculations (Figure. S2.AII and Figure IV.5) reveal that the excitation energies 

for MDS'2 (1.867 eV, f = 0.088), MDS'4 (1.855 eV, f = 0.031), MDS5 (1.845 eV, f = 0.017), and 

MDS5a (1.893 eV, f = 0.214) are closely aligned with the energy of the incident light at 2ω 

(1.848 eV). Conversely, MDS3 (1.829 eV, f = 0.088) and MDS4 (1.885 eV, f = 0.009) exhibit 

small deviations from 1.848 eV, suggesting they are in near two-photon resonance, as indicated 

in Table IV.4. In contrast, the excitation energies for MDS3, MDS4, MDS'4, and MDS'5 at 

0.896, 0.931, 0.898, and 0.942 eV, respectively, are closer to the one-photon resonance energy 

of ω = 0.924 eV. Furthermore, the optical nonlinearity dispersion for MDS5 at 1.165 eV 

demonstrates a significant frequency dispersion factor (FDF = 1872), attributed to electronic 

transitions occurring at 2.136 eV (f = 0.451) and 1.167 eV (f = 0.002), suggesting that MDS5 is 

in proximity to both one- and two-photon resonance. The moderate 𝐹𝐷𝐹 values recorded for 

MDS3, MDS'3, MDS'4, and MDS'5 at 1.165 eV (6.59, 5.93, 13.49, and 9.01, respectively), and 

 
0.0428 a.u. 

(1.165 eV) 

0.034 a.u. 

(0.924 eV) 

0.0239 a.u. 

(0.65 eV) 

 FDF 

MDS2 3.03 2.27 60 

MDS’2 2.86 441 2.48 

MDS3 6.59 11.22 1.91 

MDS’3 5.93 4.04 16.48 

MDS4 0.95 5.35 3.00 

MDS’4 13.49 2259 45 

MDS4a 2.66 3.45 2.04 

MDS5 1872 31.22 3.52 

MDS’5 9.01 4.45 13.74 

MDS5a 0.84 58 2.44 
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for MDS'3 and MDS'5 at 0.65 eV (16.42 and 13.74, respectively), indicate that these clusters 

are approaching resonance conditions. In contrast, 𝐹𝐷𝐹  values below 5 suggest that the 

systems are significantly distant from resonance. 

To gain a deeper insight into the factors affecting the first hyperpolarizability of the complexes 

under investigation, polarization scans of the hyper-Rayleigh scattering (HRS) intensity, 

denoted as 𝐼𝑉
2 , were conducted. The relationship between 𝐼𝑉

2  and the polarization angle (ψ) 

was computed and the results are presented graphically (Figure IV.10 and S4.AII), with the 

corresponding 𝛽J=1 and  𝛽J=3  values provided in Table S7.AII. At λ = ∞, the depolarization 

ratio (DR) values were found to exhibit minimal dependence on the number of (CoCp) units, 

with 𝐷𝑅∞ values ranging from 4 to 5.2 (see Table IV.3). Specifically, the 𝐷𝑅∞ values follow 

the sequence: MDS'2 (5.1) > MDS'4 (4.92) ≈ MDS'3 (4.84) > MDS'5 (4.16). It is noteworthy 

that the MDSn and MDS'n clusters predominantly exhibit near-ideal dipolar symmetry in their 

nonlinear optical (NLO) responses, as indicated by DR values close to 5. However, exceptions 

were observed for MDS2 and MDS'5, which display a more pronounced dipolar character in 

their NLO responses (𝛽J=1 > 𝛽J=3 ), as evidenced by DR values that deviate from 5. 

 

 

Figure IV. 10 Relationship between 𝐼𝑉
2𝑤and polarization angle Ψ of MDS’n serie. 
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Regarding the dynamic depolarization ratio, the clusters MDS2, MDS'2, MDS3, MDS4, 

MDS'4, and MDS5 at ω = 0.0428 a.u. are classified as dipolar compounds, with the dipolar 

contributions βJ=1  being larger than βJ=3  (see Table IV.3 and Table S7.AII). In contrast, 

MDS5a is identified as an octupolar complex, exhibiting significant octupolar contributions 

(βJ=3> βJ=1), while the DR values for MDS'3, MDS4a, and MDS'5 are 0.95, 0.46, and 0.24, 

respectively. At ω = 0.0340 and 0.0239 a.u., the remaining complexes are considered dipolar 

compounds (Table S7.AII), except for MDS4a, which is characterized as an octupolar 

compound. Additionally, the clusters MDS2, MDS4 (at 0.0239 a.u.), and MDS4a (at 0.0340 

a.u.) exhibit DR values below 1.5. 

IV.6.6. Two level model 

Building on the definition introduced in Chapter III, we proceed here with the calculation of 

the first hyperpolarizability (Eq.III.2) as presented in Figure IV. 11 and Figure.S5.AII 

illustrate the relationship between the 𝛽SOS value and 120 excited states, showing that 120 

excited states are sufficient to achieve convergence of the 𝛽SOS value. Furthermore, the trend 

observed in hyper-Rayleigh scattering (HRS) hyperpolarizability, calculated via the SOS 

method, aligns well with the results obtained using the M06-2X/SDD/6-311G(d) level of theory, 

with only minor deviations attributed to the inherent limitations of the SOS method (Table 

S8.AII). The critical excited state data is presented in Figure IV. 11 and Figure. S5 in Annex II. 
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Figure IV. 11 Plots of static first hyperpolarizability values as computed in the SOS 

formalism as a function of the number of excited states for MDSn and MDS’n complexes, 

obtained at M06-2X/ SDD/6-311G(d) level 

 

To further investigate this trend, the values of ((𝑓 ×  ∆𝜇)/∆𝐸3) corresponding to the critical 

excited states were computed. The correlation between the static βHRS values and their 

respective ((𝑓 ×  ∆𝜇)/∆𝐸3) values for the examined complexes is presented in Figure IV. 12. 

A satisfactory level of agreement is observed for the βHRS  values of complexes 2−5. This 

observation suggests that the ((𝑓 ×  ∆𝜇)/∆𝐸3) value offers a reliable qualitative depiction of 

the trend, capturing a substantial fraction of the first hyperpolarizability and validating its 

effectiveness in forecasting nonlinear optical properties in these systems. 
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Figure IV.12 Relationship between the βHRS values (black) and the corresponding 

((𝑓 ×  ∆𝜇)/∆𝐸3) (red) for the studied complexes. 

To investigate the origin of the second-order nonlinear optical responses, the EDDM of the 

critical excited states was extensively analyzed (Figure IV.11, Figure. S5.AII, and Tables S4-

S5.AII). The two-level model analysis reveals that the excited states S8, S9, and S14 play a 

dominant role in the first hyperpolarizability of the MDS2, MDS'2, and MDS3 complexes. 

These states are characterized as local excitations, with relatively small charge transfer 

distances (dct) of 2.145, 2.960, and 0.278 Å, respectively, and correspondingly high Sr indices 

of 0.643, 0.712, and 0.929 (see Table IV.2). On the other hand, the critical excited states S19 

and S3 exhibit the highest first hyperpolarizability in the MDS4 and MDS5 complexes, 

associated with non-local charge transfer between the CoCp2 units located on opposite sides 

(Figure IV.11). These non-local excitations show significant variations in dipole moments, 

14.926 and 15.233 a.u., accompanied by negligible Sr indices (Sr ≈ 0). Furthermore, the non-

local excited state S13, with an Sr index of 0.252 (=6.605 a.u and dct = 5.858 Å), exhibits 

the highest hyperpolarizability in MDS'3, resulting from the charge transfer between the 

{B2S2Pd(Cl)2} fragment and the Co2Cp3 moiety (Figure IV.12). 

The excited state S6 predominantly contributes to the first hyperpolarizability of the MDS'4 

and MDS'5 complexes. In the case of MDS'5, the excited state S6 (=1.852 a.u and dct = 1.583 

Å) primarily arises from an electronic transition between the central CoCp2 moiety and the two 

CoCp2 fragments positioned at the periphery of the complex. Notably, the {B2S2Pd(Cl)2} group 

does not participate in this electronic transition, indicating a non-localized charge transfer (Sr 

= 0.499), which is confined to the CoCp2 fragments within the structure (see Figure IV.12). For 

the MDS4a and MDS5a complexes, the excited states S14 and S10, respectively, make 
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significant contributions to the hyperpolarizability. These correspond to local (= 3.643 a.u 

and dct = 4.207 Å) and nonlocal electronic transitions (= 27.38 a.u and dct = 14.794 Å). 

The transition energies (ΔE) of the critical excited states for the MDS'n complexes (n = 2 to 5) 

are quantified as 1.866 eV, 1.451 eV, 0.898 eV, and 0.792 eV, respectively. In contrast, the 

transition energies for the corresponding MDSn complexes are 2.034 eV, 1.715 eV, 1.524 eV, 

and 0.638 eV, respectively. It is apparent that, for both the MDS'n and MDSn complexes, the 

transition energies follow the trend: E(2) > E  (3) > E  (4) > E (5). Notably, the transition 

energies of MDSn complexes are generally higher than those of their MDS'n counterparts, with 

the exception of the n = 5 case, where MDS'5 (S1 → S6) demonstrates a higher transition energy 

compared to MDS5 (S1 → S3). The sequence of transition energies for the critical excited states 

closely mirrors the trend observed in the first hyperpolarizability values, suggesting a 

correlation between excitation energy and the nonlinear optical response of the complexes. 

The EDDM analysis provides insight into the variations in first hyperpolarizability among the 

MDS complexes. The significant increase in β for MDS4 and MDS5, compared to MDS1 and 

MDS2, can be primarily attributed to non-local charge transfer mechanisms. Notably, MDS'n 

complexes exhibit higher β values than their MDSn counterparts, with the exception of n = 5, 

where the charge transfer from the {B2S2Pd(Cl)2} fragment to the (CoCp)n units in the critical 

excited state leads to a higher β in MDS'5 (Figure IV. 11). The EDDM analysis reveals that the 

enhancement in β is driven by the increased transition dipole moments and the extended charge 

transfer distances in the key excited states, which are crucial factors in amplifying the nonlinear 

optical response of these systems. 

 

 

 

 

 

 

 

 



Chapter IV 

111 
 

IV.7. Conclusion  

A comprehensive investigation has been conducted on the structural characteristics, reactivity 

indices, and both linear and nonlinear optical properties of a series of ten multi-decker sandwich 

clusters, [{B2H2S2Pd(Cl)2 }-(CoCp)n] (n = 2 to 5). These clusters vary in the spatial arrangement 

of the {H2B2S2Pd(Cl)2} fragment and the number of (CoCp) units, categorized as MDSn, 

MDSna, and MDS'n. Advanced Density Functional Theory (DFT) and Time-Dependent DFT 

(TD-DFT) calculations were performed at the M06-2X/6-311G(d)/SDD level. The sum-over-

states (SOS) method was employed to investigate both static and frequency-dependent 

nonlinear optical (NLO) responses, offering a detailed understanding of their electronic and 

optical behavior. 

Our findings reveal that the MDS'n clusters exhibit inclined geometries, with angular deviations 

(φ) ranging from 50° to 64°, whereas the MDSn complexes display near-perpendicular 

orientations relative to the molecular axis. Additionally, MDS'n structures show Cl...H-induced 

deformations in the {{H2B2S2Pd(Cl)2} fragment and Cp rings, an effect absent in MDSn 

complexes. Notably, the MDSn complexes exhibit higher chemical hardness values compared 

to their corresponding MDS'n counterparts. TD-DFT calculations reveal that the absorption 

spectra of the clusters are divided into two distinct regions: one between 200–350 nm, attributed 

to intra-ligand π−π* transitions in the Cp ligands, and another between 400–1400 nm, 

characterized by mixed charge transfer (CT and ICT) interactions between the fragments. 

The NLO analysis indicates that increasing the number of (CoCp) units significantly enhances 

both the polarizability α (0,0) and its anisotropy Δα (0,0) across both MDSn and MDS'n 

series (n = 2 to 5). The first hyperpolarizability (β) of the MDS'n series demonstrates an 

increasing trend with the addition of (CoCp) units from n = 2 to 4, while a decrease in β is 

observed when n reaches 5. In contrast, the β values for the MDSn complexes consistently 

increase as the number of (CoCp) units increases from n = 2 to 5, exhibiting behavior typical 

of conventional push-pull π-systems. A detailed comparative analysis reveals that, in general, 

the MDS'n complexes exhibit higher first hyperpolarizability values than their MDSn 

counterparts, except in the case of n = 5. This deviation is attributed to charge transfer (CT) 

between the {H2B2S2Pd(Cl)2} fragment and the (CoCp)n units in the critical excited state of 

MDS'n. 

The EDDM analysis further highlights that enhanced transition dipole moments and extended 

charge transfer pathways in the essential excited states are key contributors to the observed 
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increase in β. In conclusion, this study provides a conceptual framework for designing highly 

efficient NLO materials based on multi-decker sandwich clusters. The significant enhancement 

in their NLO responses underscores their promising potential for advanced applications in 

nonlinear optoelectronic devices. 
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Figure V.1 Static second hyperpolarizability γ(0;0,0,0) of MDS2 calculated with 

different density functional approximations. Values are given in atomic units (a.u.). 
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Figure V-2. Static second hyperpolarizability γ(0;0,0,0) of multidecker sandwich 

complexes calculated at the M06-2X/6-311G(d)/SDD  level. 
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Figure V.3 Comparison of static first hyperpolarizability β(0;0,0) and second 

hyperpolarizability γ(0;0,0,0) values for selected sandwich complexes 
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Figure V.4 Static third-order NLO responses (γ(0;0,0,0)) of multi-decker sandwich 

complexes as a function of the number of (CoCp) units 
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V.4.3.2. Frequency-dependent 

 

Figure V.5 Variation of the dynamic second hyperpolarizability ((-2; ,,0)) of 

MDSn and MDS’n. 
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Figure V.6 Correlation plots of log
𝑆𝐻𝐺


 versus log (−2𝜔; 𝜔, 𝜔, 0) for multi-decker 

sandwich complexes at dynamic regime 
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V.4.3.3. DC Kerr effect  
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General Conclusion  

Nonlinear optical (NLO) responses have advanced significantly in recent decades, 

enabling a wide range of scientific and technological applications. Phenomena such as second-

harmonic generation, optical switching, and frequency conversion are now central to 

telecommunications, ultrafast laser systems, quantum information processing, and 

biophotonics. These developments highlight the crucial role of NLO-active materials in modern 

research and applied technologies. 

Alongside experimental progress, quantum chemical calculations have demonstrated 

remarkable efficiency in explaining and predicting NLO behavior. Methods such as Density 

Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) allow accurate evaluation of 

electronic structures, charge-transfer mechanisms, and hyperpolarizabilities. This theoretical 

insight not only supports experimental findings but also accelerates the discovery and design 

of new high-performance NLO materials. 

This thesis is dedicated to the exploration of the linear and nonlinear optical (NLO) 

properties of two distinct categories of molecular systems. The first category consists of two 

series of transition-metal-doped nanocages, M@B₆₄Al₁₂N₁₂ and M@B₆₆Al₁₂N₁₂, where M spans 

the transition metal series from Sc to Zn. The second category encompasses multidecker 

sandwich clusters of the type {µ-B₂H₂S₂Pd(Cl)₂}–(CoCp)ₙ, with n ranging from 2 to 5. These 

clusters differ in the positioning of the {H2B2S2Pd(Cl)2} fragment and the number of (CoCp) 

units namely MDSn, MDSna and MDS’n. 

The results demonstrate that doping Al₁₂N₁₂ nanocages with transition metals leads to a 

substantial enhancement of both first- and second-order hyperpolarizabilities. Delocalization 

index (DI) analysis confirms a stronger degree of electron delocalization between the transition 

metal and nitrogen atoms compared to that between the metal and aluminum. Furthermore, 

QTAIM analysis highlights that the formation of a closed quasi-ring structure involving the 

transition metal, combined with charge delocalization, plays a decisive role in amplifying the 

first-order hyperpolarizability. TD-DFT calculations further suggest that these doped 

nanocages are promising candidates for deep ultraviolet laser applications due to their strong 

transparency below 200 nm. The SOS analysis reveals that the dominant excited states 

contributing to the NLO response correspond to local excitations, characterized by large Sr 

values, small D values, and negative t values. In the dynamic regime, the computed values of 

βHRS
 , 𝛽𝑆𝐻𝐺

 (−2𝜔; 𝜔, 𝜔) and 𝛾𝐸𝑆𝐻𝐺(−2ω;  ω, ω, 0) were found to be significantly larger than 
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their static counterparts. This enhancement is primarily attributed to resonance effects, where 

two-photon resonances, coupled with large oscillator strengths, contribute more effectively than 

one-photon processes. Importantly, our findings establish a correlation between the static first 

hyperpolarizability of M@B₆₄/₆₆Al₁₂N₁₂ and the Waber–Cromer atomic radius of the 

incorporated transition metal. Moreover, under dynamic conditions, a clear relationship 

emerges between the first- and second-order hyperpolarizabilities, providing deeper insight into 

the structure–property interplay governing these systems. 

For the multidecker sandwich clusters (MDSn, MDSna and MDS’n, n = 2–5), our study 

shows that MDS′ₙ clusters adopt inclined geometries with φ angles between 50° and 64°, while 

MDSₙ complexes maintain nearly perpendicular orientations. The TD-DFT absorption spectra 

show two distinct regions: 200–350 nm, dominated by intra-ligand π–π* transitions in the Cp 

ligands, and 400–1400+ nm, governed by mixed charge-transfer (CT/ICT) processes between 

fragments. Nonlinear optical calculations highlight that increasing the number of (CoCp) units 

significantly enhances both the mean polarizability α (0,0) and its anisotropy Δα(0,0) across 

both series (n = 2–5). In the MDS′ₙ series, the first hyperpolarizability increases steadily from 

n = 2 to 4, but decreases when n = 5, whereas in the MDSₙ series first hyperpolarizability grows 

consistently with the number of (CoCp) units, displaying behavior analogous to conventional 

push–pull π-systems. A comparative analysis shows that, overall, MDS′ₙ clusters exhibit larger 

first hyperpolarizability values than MDSₙ, except at n = 5. This exception is attributed to strong 

charge transfer from the {H₂B₂S₂Pd(Cl)₂} fragment toward the (CoCp)ₙ moieties in the key 

excited state of MDS′ₙ. Furthermore, EDDMs confirm that extended charge-transfer pathways 

and enhanced transition dipole moments are the principal contributors to the amplified NLO 

responses.  

On the other hand, the third-order nonlinear optical responses of multidecker sandwich 

clusters (MDSₙ and MDS′ₙ, n = 2–5) demonstrate a strong dependence on molecular length and 

topology. The static second hyperpolarizability increases significantly with the number of 

decks, reaching its maximum in the longest cluster. Under dynamic conditions, marked 

frequency dispersion and topology-dependent alternation are observed: MDS′ₙ complexes 

dominate at lower deck numbers, while cooperative length effects render the longest MDS 

clusters overwhelmingly superior. In the dc-Kerr regime, the analysis highlights an inversion 

of the nonlinear refractive index, reflecting a transition from self-focusing to self-defocusing 

behavior. Examination of the series further confirms that the nonlinear refractive index grows 

consistently with the addition of (CoCp) units. Overall, these results establish that both 
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molecular length and fragment topology are decisive parameters governing static and dynamic 

third-order NLO responses. The emergence of colossal hyperpolarizabilities, parity-dependent 

alternation, and sign inversion underscores the promise of multidecker sandwich clusters as 

versatile candidates for advanced nonlinear optical and photonic applications. 
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Supplementary Information 

 

Table S1.AI Delocalization Indices (δ(M, A) where A= N or Al and M: from Sc to Zn) for M@b64Al12N12 and   M@b66Al12N12 

 
M@b64Al12N12 Sc Ti V Cr Mn Fe Co Ni Cu Zn M@b66Al12N12 Sc Ti V Cr Mn Fe Co Ni Cu Zn 

1(AL) 0.93 0.94 0.95 0.81 0.72 0.81 0.81 0.82 0.77 0.65 1(AL) 0.01 0.01 0.01 0.01 0.009 0.009 0.009 0.008 0.009 0.007 

2(AL) 0.27 0.27 0.23 0.18 0.15 0.16 0.15 0.14 0.15 0.11 2(AL) 0.005 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 

3(N) 1.74 1.74 1.65 1.29 1.14 1.17 1.12 1.08 1.20 0.80 3(N) 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

4(N) 0.11 0.11 0.09 0.06 0.06 0.06 0.05 0.05 0.06 0.05 4(N) 0.01 0.01 0.01 0.009 0.008 0.008 0.007 0.007 0.008 0.005 

5(AL) 0.01 0.01 0.01 0.01 0.009 0.009 0.01 0.009 0.01 0.007 5(AL) 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

6(AL) 0.01 0.01 0.01 0.008 0.008 0.009 0.008 0.008 0.009 0.007 6(AL) 0.90 0.87 0.86 0.84 0.74 0.85 0.83 0.83 0.79 0.66 

7(N) 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 7(N) 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

8(N) 0.003 0.003 0.003 0.002 0.002 0.003 0.002 0.002 0.002 0.002 8(N) 0.04 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

9(AL) 0.0008 0.0007 0.0006 0.0005 0.0006 0.0006 0.0005 0.0004 0.0004 0.0004 9(AL) 0.005 0.004 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 

10(AL) 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 10(AL) 0.01 0.01 0.01 0.01 0.009 0.009 0.009 0.008 0.009 0.007 

11(N) 0.001 0.001 0.001 0.0007 0.0007 0.0006 0.0005 0.0005 0.0005 0.0004 11(N) 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

12(N) 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 12(N) 0.01 0.01 0.01 0.009 0.008 0.008 0.007 0.007 0.008 0.005 

13(AL) 0.005 0.004 0.004 0.003 0.004 0.004 0.003 0.003 0.004 0.003 13(AL) 0.001 0.0009 0.0007 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0003 

14(AL) 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 14(AL) 0.01 0.009 0.008 0.007 0.008 0.008 0.007 0.007 0.007 0.007 

15(N) 0.0008 0.0008 0.0006 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0003 15(N) 0.001 0.0009 0.0007 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0004 

16(N) 0.01 0.01 0.011 0.009 0.01 0.01 0.009 0.008 0.009 0.008 16(N) 0.001 0.0009 0.0007 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0004 

17(AL) 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 17(AL) 0.23 0.21 0.19 0.16 0.01 0.14 0.13 0.12 0.13 0.08 

18(AL) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 18(AL) 0.24 0.22 0.19 0.17 0.14 0.14 0.13 0.12 0.13 0.08 

19(N) 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 19(N) 1.58 1.46 1.41 1.28 1.14 1.18 1.12 1.10 1.19 0.80 

20(N) 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 0.001 20(N) 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.01 

21(AL) 0.29 0.28 0.26 0.20 0.17 0.16 0.16 0.14 0.16 0.11 21(AL) 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

22(AL) 0.008 0.008 0.007 0.005 0.005 0.005 0.004 0.004 0.004 0.004 22(AL) 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

23(N) 0.031 0.02 0.02 0.01 0.01 0.009 0.009 0.008 0.01 0.005 23(N) 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

24(N) 0.01 0.01 0.01 0.009 0.009 0.009 0.008 0.008 0.008 0.008 24(N) 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 

25(M) 3.55 3.55 3.40 2.69 2.39 2.52 2.45 2.38 2.50 1.85 25(M) 3.21 3.01 2.86 2.65 2.34 2.50 2.39 2.35 2.42 1.79 
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Table S2a.AI Excitation energy (𝐸0→𝑛, eV) and wavelength (0→𝑛, nm), oscillator strengths (𝑓0→𝑛, dimensionless), Integral of hole and electron, 

transition dipole moment (𝛥
0→𝑛

, a.u),  S𝑚 index, Sr(r) overlap, charge transfer distance (D index, Å), RMSD of hole and electron (Å), H and t 

indexes (Å),  the hole delocalization index (HDI) and electron delocalization index (EDI)associated to the S0 → Sn transition, as calculated at the cam-

b3lyp/6-311+g(d) of the studied compounds M@b64Al12N12 

 

 𝑺𝟎→𝒏 𝜟𝑬𝟎→𝒏 𝜟𝟎→𝒏 𝒇𝟎→𝒏 
Integral of  

𝜟
𝟎→𝒏

 Sm Sr D index 
RMSD 

hole 

RMSD 

electron 
H index t index HDI EDI 

hole electron 

S
c@

b
6
4
A

l 1
2
N

1

2
 

𝑆0→5 1.617 766.853 0.009 0.999 0.988 2.037 0.499 0.795 1.085 2.210 2.607 2.408 -0.434   

𝑆0→11 2.478 500.262 0.01 0.997 0.986 3.399 0.398 0.690 1.813 2.196 3.711 2.953 -0.095 8.77 4.39 

𝑆0→13 2.676 463.235 0.144 0.999 0.964 2.201 0.278 0.578 1.187 2.368 3.284 2.826 -0.443 6.94 7.12 

𝑆0→15 2.925 423.836 0.121 0.999 0.986 1.952 0.377 0.667 1.04 2.379 2.456 2.418 -0.534 6.87 10.08 

T
i@

b
6
4
A

l 1
2
N

1

2
 

𝑆0→5 1.245 996.102 0.005 0.999 0.986 1.177 0.305 0.597 0.628 1.481 2.030 1.755 -0.455 20.22 13.05 

𝑆0→15 2.886 429.638 0.022 0.998 0.987 4.024 0.282 0.589 2.144 2.115 3.814 2.964 0.237 11.54 3.73 

𝑆0→18 3.151 393.528 0.126 0.999 0.988 1.178 0.425 0.732 0.628 2.163 2.597 2.38 -0.796 10.72 8.07 

𝑆0→16 2.895 428.302 0.055 0.999 0.983 1.441 0.366 0.662 1.044 2.252 3.693 2.972 -0.749 7.91 4.34 

V
@

b
6

4
A

l 1
2
N

1
2
 𝑆0→5 1.508 822.454 0.001 0.999 0.993 0.831 0.292 0.596 0.442 1.327 1.984 1.655 -0.588 25.90 15.88 

𝑆0→14 2.985 415.346 0.057 0.999 0.984 2.59 0.286 0.579 1.381 2.302 3.913 3.107 -0.602 7.84 3.76 

𝑆0→15 3.041 407.751 0.116 0.999 0.979 1.675 0.453 0.757 0.896 2.250 2.742 2.496 -0.773 8.61 7.87 

𝑆0→17 3.358 369.211 0.024 1.000 0.987 2.82 0.329 0.628 1.502 2.207 3.692 2.949 -0.329 12.52 4.12 

C
r@

b
6

4
A

l 1
2
N

1

2
 

𝑆0→1 1.352 917.319 0.001 0.999 0.990 1.048 0.321 0.602 0.558 1.460 2.115 1.788 -0.736 29.66 14.99 

𝑆0→7 2.558 484.695 0.088 0.998 0.980 2.267 0.285 0.590 1.213 2.305 3.931 3.118 -0.664 7.31 3.7 

𝑆0→11 3.08 402.588 0.110 0.999 0.986 0.629 0.353 0.669 0.335 1.814 2.977 2.396 -1.147 19.82 5.23 

𝑆0→16 3.508 353.465 0.054 0.999 0.981 1.512 0.456 0.759 0.808 2.349 3.547 2.948 -0.935 9.9 7.96 

M
n

@
b

6
4
A

l 1
2
N

1
2
 

𝑆0→1 1.458 850.610 0.01 0.997 0.993 0.46 0.603 0.86 0.245 2.223 2.487 2.355 -1.195 6.73 6.34 

𝑆0→6 2.563 483.730 0.043 0.996 0.993 3.736 0.322 0.631 1.987 2.319 3.543 2.931 0.020 6.64 8.82 

𝑆0→8 2.928 423.402 0.073 0.999 0.987 1.525 0.41 0.715 0.813 2.301 3.456 2.878 -1.067 8.85 14.91 

𝑆0→9 2.98 416.112 0.140 0.999 0.98 2.254 0.414 0.733 1.205 2.289 2.795 2.542 -0.443 8.8 8.75 
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F
e@

b
6
4
A

l 1
2
N

1

2
 

𝑆0→4 1.301 952.704 0.023 0.997 0.993 0.309 0.603 0.872 0.164 2.126 2.286 2.206 -1.171 9.6 11.55 

𝑆0→9 2.42 512.334 0.057 0.996 0.991 5.929 0.187 0.486 3.156 2.348 3.891 3.12 1.111 7.88 3.11 

𝑆0→13 3.17 391.119 0.085 0.999 0.980 1.568 0.421 0.727 0.839 2.104 2.913 2.508 -0.842 14.84 7.7 

𝑆0→15 3.538 350.467 0.022 0.999 0.989 4.551 0.2 0.465 2.421 2.56 3.944 3.252 0.279 13.44 2.92 

C
o

@
b

6
4
A

l 1
2
N

1
2
 

𝑆0→8 1.728 717.713 <0.001 1.000 0.996 0.620 0.293 0.581 0.329 1.565 1.394 1.479 -0.633 27.88 36.89 

𝑆0→9 1.848 671.059 0.072 0.997 0.988 0.672 0.512 0.805 0.358 2.179 2.573 2.376 -1.001 8.77 6.24 

𝑆0→11 2.545 487.113 0.064 0.997 0.991 6.270 0.158 0.435 3.336 2.342 3.901 3.121 1.325 7.55 2.98 

𝑆0→13 3.062 404.862 0.008 1.001 0.987 0.124 0.18 0.45 0.066 1.244 2.563 1.903 -1.186 38.63 6.19 

N
i@

b
6
4
A

l 1
2
N

1
2
 

𝑆0→5 1.833 676.220 0.037 0.998 0.989 0.306 0.594 0.845 0.163 1.963 2.461 2.212 -1.305 18.65 8.03 

𝑆0→7 2.582 480.152 0.055 0.997 0.991 5.838 0.175 0.469 3.107 2.35 3.884 3.117 1.098 8.29 2.99 

𝑆0→13 3.657 339.007 0.002 0.999 0.987 1.209 0.225 0.519 0.644 3.035 4.007 3.521 -1.244 9.55 4.70 

𝑆0→14 3.755 330.221 <0.001 0.999 0.986 0.764 0.271 0.562 0.407 3.499 4.082 3.79 -1.782 7.33 2.62 

C
u

@
b

6
4
A

l 1
2
N

1
2
 

𝑆0→1 2.095 591.955 0.076 0.998 0.984 1.25 0.445 0.726 0.667 2.175 2.54 2.357 -0.782 11.00 5.77 

𝑆0→2 2.647 468.362 0.057 0.998 0.99 5.548 0.194 0.489 2.952 2.328 3.930 3.129 0.927 9.12 2.89 

𝑆0→9 3.61 343.448 0.001 0.999 0.988 0.817 0.277 0.586 0.435 3.072 3.916 3.494 -1.369 10.80 4.56 

𝑆0→11 3.745 331.041 <0.001 0.999 0.988 0.362 0.209 0.501 0.193 3.264 4.015 3.639 -1.765 8.63 2.71 

Z
n

@
b

6
4
A

l 1
2
N

1
2
 

𝑆0→3 2.994 414.111 0.215 0.999 0.990 0.412 0.409 0.699 0.219 2.286 2.649 2.468 -1.546 9.10 6.09 

𝑆0→5 3.332 372.070 0.09 0.999 0.992 5.752 0.153 0.413 3.057 2.425 3.887 3.156 1.006 8.24 3.03 

𝑆0→8 3.863 320.922 0.085 0.999 0.993 1.449 0.329 0.598 0.770 2.496 3.28 2.888 -0.699 8.04 3.66 

𝑆0→11 3.977 311.723 0.002 0.999 0.987 0.671 0.233 0.514 0.357 3.289 4.085 3.687 -1.748 8.36 2.49 
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Table S2b.AI Excitation energy (𝐸0→𝑛, eV) and wavelength (0→𝑛, nm), oscillator strengths (𝑓0→𝑛, dimensionless), Integral of hole and electron, 

transition dipole moment (𝛥
0→𝑛

, A.u.),  S𝑚 index, Sr(r) overlap, charge transfer distance (D index, Å), RMSD of hole and electron (Å), H and t 

indexes (Å),  the hole delocalization index (HDI) and electron delocalization index (EDI)associated to the S0 → Sn transition, as calculated at the cam-

b3lyp/6-311+g(d) of the studied compounds  M@b66Al12N12 

 𝑺𝟎→𝒏 𝑬𝟎→𝒏 𝟎→𝒏 𝒇𝟎→𝒏 
Integral of 

𝜟
𝟎→𝒏

 Sm Sr D index 
RMSD 

hole 

RMSD 

electron 
H index t index HDI EDI 

hole electron 

S
c@

b
6
6
A

l 1
2
N

1

2
 

𝑆0→6 1.401 885.227 0.001 0.997 0.996 0.982 0.398 0.706 0.522 1.882 2.268 2.084 -0.710 11.90 9.94 

𝑆0→10 2.095 591.898 0.013 0.998 0.990 3.866 0.387 0.702 2.058 2.012 3.617 2.814 0.238 10.98 4.55 

𝑆0→13 2.350 527.618 0.251 0.998 0.957 1.888 0.348 0.658 1.022 2.413 3.045 2.729 -0.739 6.24 6.04 

𝑆0→24 3.482 356.125 0.121 0.998 0.989 2.618 0.354 0.641 1.394 2.413 3.224 2.818 -0.141 6.14 4.78 

T
i@

b
6
6
A

l 1
2
N

1

2
 

𝑆0→8 1.480 837.905 <0.001 0.999 0.996 0.247 0.521 0.802 0.131 1.927 2.277 2.102 -1.166 11.43 9.98 

𝑆0→13 2.100 590.264 0.177 0.998 0.975 1.590 0.356 0.670 0.853 2.310 2.942 2.626 -0.837 7.16 7.15 

𝑆0→15 2.330 532.192 <0.001 0.998 0.991 3.371 0.368 0.667 1.793 2.380 3.689 3.034 -0.229 6.62 6.69 

𝑆0→16 2.392 518.310 0.01 0.999 0.993 3.392 0.343 0.640 1.802 1.684 3.427 2.556 0.187 15.77 4.92 

V
@

b
6
6
A

l 1
2
N

1
2
 𝑆0→7 1.443 859.34 <0.001 0.999 0.990 0.966 0.256 0.544 0.514 1.078 1.749 1.414 -0.455 28.06 16.45 

𝑆0→8 1.830 677.550 0.003 0.998 0.991 1.382 0.570 0.847 0.735 2.157 2.488 2.322 -0.691 8.06 7.41 

𝑆0→12 2.503 495.325 0.075 0.999 0.991 3.033 0.309 0.594 1.841 2.297 3.770 3.033 -0.195 7.33 7.50 

𝑆0→16 2.834 437.552 0.059 0.998 0.984 2.476 0.340 0.652 1.321 2.139 3.361 2.750 -0.308 8.60 9.12 

C
r@

b
6

6
A

l 1
2
N

1
2
 𝑆0→1 1.439 861.664 <0.001 0.999 0.991 1.008 0.318 0.601 0.536 1.383 2.022 1.702 -0.723 30.24 15.24 

𝑆0→7 2.504 495.127 0.097 0.999 0.981 2.636 0.278 0.579 1.409 2.272 3.890 3.081 -0.411 7.46 3.61 

𝑆0→11 3.072 403.610 0.006 0.999 0.994 2.829 0.422 0.737 1.502 2.203 2.816 2.510 0.118 8.69 7.10 

𝑆0→16 3.473 356.976 0.061 0.999 0.987 4.548 0.277 0.582 2.423 2.313 3.868 3.089 0.367 11.94 3.34 

M
n

@
b

6
6
A

l 1
2
N

1

2
 

𝑆0→1 1.466 845.563 0.011 0.995 0.995 0.624 0.594 0.858 0.332 2.195 2.478 2.336 -1.199 6.72 6.23 

𝑆0→4 2.354 526.699 0.024 0.994 0.992 4.788 0.269 0.566 2.550 2.297 3.631 2.964 0.560 6.85 5.59 

𝑆0→8 2.924 424.054 0.118 0.998 0.990 1.901 0.469 0.771 1.011 2.230 2.874 2.552 -0.542 9.51 8.10 

𝑆0→9 2.990 414.665 0.085 0.998 0.989 4.717 0.289 0.561 2.512 2.318 3.905 3.112 0.416 8.82 7.14 
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F
e@

b
6
6
A

l 1
2
N

1

2
 

𝑆0→4 1.431 866.119 0.022 0.997 0.995 0.400 0.576 0.848 0.213 2.082 2.299 2.191 -1.111 8.64 9.01 

𝑆0→9 2.416 513.182 0.05 0.996 0.991 6.208 0.157 0.439 3.305 2.304 3.761 3.032 1.354 7.60 3.24 

𝑆0→13 3.244 382.162 0.129 0.999 0.985 1.181 0.435 0.723 0.630 2.092 3.139 2.615 -0.852 14.39 6.42 

𝑆0→14 3.143 356.555 0.037 0.999 0.989 5.005 0.194 0.445 2.663 2.387 3.899 3.143 0.608 13.28 2.97 

C
o

@
b

6
6
A

l 1
2
N

1
2
 

𝑆0→7 1.542 804.000 0.031 0.998 0.993 0.252 0.587 0.856 0.134 1.926 2.367 2.147 -1.170 15.37 8.94 

𝑆0→9 2.428 510.604 0.049 0.997 0.991 6.040 0.158 0.438 3.214 2.307 3.770 3.039 1.260 8.13 3.28 

𝑆0→13 3.284 377.508 0.088 0.999 0.986 0.815 0.374 0.659 0.435 1.865 3.010 2.437 -0.962 22.13 5.36 

𝑆0→18 3.769 328.968 0.022 1.000 0.988 2.971 0.226 0.506 1.582 3.510 4.075 3.792 -1.001 11.58 2.62 

N
i@

b
6
6
A

l 1
2
N

1
2
 𝑆0→5 1.909 649.646 0.068 0.997 0.989 0.750 0.501 0.803 0.400 2.101 2.501 2.301 -0.940 10.00 6.09 

𝑆0→7 2.479 500.221 0.056 0.997 0.991 5.983 0.161 0.444 3.184 2.301 3.818 3.060 1.221 8.35 3.12 

𝑆0→14 3.685 336.467 <0.001 0.999 0.990 1.219 0.202 0.485 0.648 2.982 3.925 3.454 -1.345 10.55 3.63 

𝑆0→16 3.843 322.642 0.001 0.999 0.987 1.024 0.240 0.523 0.546 2.848 3.857 3.353 -1.413 10.75 2.88 

C
u

@
b

6
6
A

l 1
2
N

1

2
 

𝑆0→1 1.993 622.195 0.077 0.997 0.987 1.293 0.437 0.711 0.689 2.120 2.476 2.298 -0.701 11.12 5.97 

𝑆0→2 2.521 491.847 0.053 0.997 0.991 5.799 0.158 0.424 3.085 2.295 3.836 3.065 1.128 9.29 3.14 

𝑆0→9 3.609 343.525 <0.001 0.999 0.991 1.435 0.235 0.533 0.763 2.800 3.800 3.300 -1.040 11.07 4.60 

𝑆0→12 3.776 328.385 <0.001 0.999 0.989 0.629 0.215 0.508 0.335 3.256 3.995 3.625 -1.638 8.29 2.63 

Z
n

@
b

6
6
A

l 1
2
N

1
2
 

𝑆0→3 2.901 427.416 0.197 0.999 0.992 0.439 0.404 0.694 0.233 2.286 2.581 2.434 -1.505 9.41 6.12 

𝑆0→5 3.198 387.695 0.076 0.999 0.993 5.527 0.137 0.386 2.936 2.448 3.769 3.108 0.940 8.66 3.25 

𝑆0→11 3.975 311.888 0.02 0.999 0.990 0.555 0.245 0.525 0.296 3.428 4.195 3.812 -1.776 8.26 2.35 

𝑆0→15 4.076 304.190 0.002 0.999 0.990 1.240 0.229 0.506 0.660 2.704 3.807 3.255 -1.252 11.14 2.93 
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Table S3.AI Static and dynamic of 𝛽J=1 and 𝛽J=3  of 𝑀@𝑏64/66𝐴𝑙12𝑁12 (M= Sc to Zn) 

 M@b64Al12N12 Sc Ti V Cr Mn Fe Co Ni Cu Zn 

λ=∞ 
𝛽

𝐽=1 
 14082.173 5891.150 3560.841 4142.269 1292.168 1374.754 1640.612 1777.973 1948.246 860.349 

𝛽
𝐽=3 

 5119.968 1993.380 1179.743 1696.278 1519.675 1589.217 1309.425 1253.303 1360.834 620.968 

λ=1064 
𝛽

𝐽=1 
 / / 6318.396 7379.356 12029.27 22404.68 / 7024.467 11448.645 1956.270 

𝛽
𝐽=3  

 800942.12 23387.25 20807.15 3471.322 22583.75 61527.43 25976.228 13889.98 16006.481 2150.988 

λ=1341 
𝛽

𝐽=1 
 / 36131.39 9285.109 25843.95 4731.52 / 86633.456 29896.341 9180.305 1372.268 

𝛽
𝐽=3  

  816418.85 32861.10 12613.71 42822.67 5067.94 8296.31 118686.56 48219.500 8795.594 1208.057 

λ=1906 

𝛽
𝐽=1 

 18301.438 428459.85 4600.096 6918.910 5148.929 / 2721.066 2900.709 3226.935 1125.387 

𝛽
𝐽=3  

 34813.893 794286.71 3096.453 2242.221 5137.823 32898.960 2344.314 2642.910 2523.836 848.388 

 M@b66Al12N12 Sc Ti V Cr Mn Fe Co Ni Cu Zn 

λ=∞ 
𝛽

𝐽=1 
 12125.018 9280.389 5533.168 4197.558 1319.535 1188.119 4197.558 1488.229 1979.818 842.727 

𝛽
𝐽=3 

 4145.306 4093.373 2276.701 1631.493 1368.097 1219.031 1631.493 1004.836 1268.424 516.981 

λ=1064 
𝛽

𝐽=1 
 1137438.70 81721.71 38578.18 7862.451 91739.242 25656.773 7862.451 13567.942 12388.328 2010.291 

𝛽
𝐽=3  

 4715675.00 131175.95 32515.08 8331.589 152580.42 55179.804 8331.589 24315.702 19872.785 2182.833 

λ=1341 
𝛽

𝐽=1 
 4841922.84 47146.105 15101.44 21294.39 3805.077 1193.521 21294.394 23943.400 15885.973 1350.866 

𝛽
𝐽=3  

  3948308.13 143268.74 28285.74 44212.05 6309.325 7677.550 44212.058 33586.982 16323.787 1077.724 

λ=1906 

𝛽
𝐽=1 

 / 8551.052 2817.618 6892.510 5221.953 83629.240 2496.547 2457.599 3547.729 1100.944 

𝛽
𝐽=3  

 17685.454 4336.656 3333.323 3454.442 4956.441 65608.133 2993.989 2105.365 2713.623 718.640 
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Table S4.AI The frequency dispersion factor (𝐹𝐷𝐹) between static and dynamic HRS hyperpolarizability at a specific wavelength (λ=1064, 

1341 and 1906 nm) 

𝑀@𝑏64𝐴𝑙12𝑁12 Sc Ti V Cr Mn Fe Co Ni Cu Zn 

𝐹𝐷𝐹1064 34.6664845 2.50648812 4.12105122 1.80046299 11.6878049 26.7342996 7.10155856 5.86796377 7.24475428 2.53310594 

𝐹𝐷𝐹1341 27.1856166 6.96903773 3.41029855 8.8909197 3.54362276 2.73763412 62.8675877 22.2032457 5.05852634 1.66451311 

𝐹𝐷𝐹1906 2.01924192 111.662467 1.37965208 1.64926272 3.77133919 10.4290727 1.68769196 1.72485592 1.69229307 1.31889156 

𝑀@𝑏66𝐴𝑙12𝑁12 Sc Ti V Cr Mn Fe Co Ni Cu Zn 

𝐹𝐷𝐹1064 264.789643 12.2723311 7.68900761 2.20928456 85.0416993 30.9573248 25.5779815 12.8545885 8.36765175 2.7158968 

𝐹𝐷𝐹1341 441.742669 10.8674289 4.1697784 8.29611044 3.52146153 3.60934547 3.23285776 19.978546 8.91788538 1.6781584 

𝐹𝐷𝐹1906 0.80945292 0.93275904 0.62191629 1.67478826 3.85503873 65.6862151 2.42172551 1.73170134 1.8480803 1.3183448 

 

Table S5.AI Static and dynamic second hyperpolarizability (au) for 𝐴𝑙12𝑁12 

γ (0;0,0,0) λ = ∞ 6.335988 × 104 

γ (-2ω ; ω, ω,0) 

λ=1064 8.257221× 104 

λ=1341 7.497657× 104 

λ=1906 6.927832 × 104 
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Table S6.AI Static and dynamic first hyperpolarizability (au) and depolarization ratio (DR) for 𝑀@𝑏64/66𝐴𝑙12𝑁12 (M= Sc- Zn) calculated by the 

sum-over-states method 

M@b64Al12N12 𝑫𝑹𝑺𝑶𝑺
𝝀=∞ 𝜷

𝑺𝑶𝑺
𝝀=∞ 𝑫𝑹𝑺𝑶𝑺

𝝀=𝟏𝟎𝟔𝟒 𝜷
𝑺𝑶𝑺
𝝀=𝟏𝟎𝟔𝟒 𝜷

𝑯𝑹𝑺,𝑺𝑶𝑺
𝝀=𝟏𝟎𝟔𝟒  𝑫𝑹𝑺𝑶𝑺

𝝀=𝟏𝟑𝟒𝟏 𝜷
𝑺𝑶𝑺
𝝀=𝟏𝟑𝟒𝟏 𝜷

𝑯𝑹𝑺,𝑺𝑶𝑺
𝝀=𝟏𝟑𝟒𝟏  𝑫𝑹𝑺𝑶𝑺

𝝀=𝟏𝟗𝟎𝟔 𝜷
𝑺𝑶𝑺
𝝀=𝟏𝟗𝟎𝟔 𝜷

𝑯𝑹𝑺,𝑺𝑶𝑺
𝝀=𝟏𝟗𝟎𝟔  

Sc 7.95 7169 3.39 579762.42 254237.97 3.77 25158.28 11935.39 2.91 25910.15   11545.39 

Ti 7.57 2705 1.26 5615.41  4934.89 9.04 8127.36  6420.25 2.23 50405.91  24799.03 

V 7.08 1677 2.29 32777.03   17301.48 5.24 9602.01  3848.64 8.11 6064.56  2288.99 

Cr 6.63 2482 2.51 9460.03  4564.17 2.58 136959.32  57986.40 5.26 10129.52  3998.01 

Mn 6.00 2225 4.23 44516.06   17989.43 7.06 15525.84  6215.46 5.46 15765.60  6287.04 

Fe 4.95 1861 2.53 100581.62  43999.02 2.70 13131.09  5623.80 8.46 357206.52  296872.55 

Co 5.07 1049 4.21 38457.14   15169.58 1.70 521762.19  244368.38 4.77 4471.14  1932.44 

Ni 4.52 921 3.00 25495.52  10581.42 1.85 65945.66  29236.42 4.51 3325.50  1440.67 

Cu 4.36 772 3.00 25131.65 10283.45 3.60E 9422.90 4051.41 4.21 3003.85 1305.23 

Zn 3.32 696 3.17 3858.29 1792.65 3.32 2480.44 1165.14 3.34 1826.75 873.24 

M@b66Al12N12 𝑫𝑹𝑺𝑶𝑺
𝝀=∞ 𝜷

𝑺𝑶𝑺
𝝀=∞ 𝑫𝑹𝑺𝑶𝑺

𝝀=𝟏𝟎𝟔𝟒 𝜷
𝑺𝑶𝑺
𝝀=𝟏𝟎𝟔𝟒 𝜷

𝑯𝑹𝑺,𝑺𝑶𝑺
𝝀=𝟏𝟎𝟔𝟒  𝑫𝑹𝑺𝑶𝑺

𝝀=𝟏𝟑𝟒𝟏 𝜷
𝑺𝑶𝑺
𝝀=𝟏𝟑𝟒𝟏 𝜷

𝑯𝑹𝑺,𝑺𝑶𝑺
𝝀=𝟏𝟑𝟒𝟏  𝑫𝑹𝑺𝑶𝑺

𝝀=𝟏𝟗𝟎𝟔 𝜷
𝑺𝑶𝑺
𝝀=𝟏𝟗𝟎𝟔 𝜷

𝑯𝑹𝑺,𝑺𝑶𝑺
𝝀=𝟏𝟗𝟎𝟔  

Sc 7.87 6899 1.99 895675.94 429355.59 1.95 100867.76 55537.23 2.56  13434.65  6274.06 

Ti 7.70 5076 3.48 1249970.54 534462.42 4.39 143939.35 56509.46 6.91 21802.09 8663.13 

V 7.46 2861 5.42 57731.03 24521.52 0.381 16862.81 20891.26 6.06 8546.79 3261.79 

Cr 7.21 2484 1.59 12078.97 6555.81 2.25 72657.45 31325.23 5.80 10999.14 4227.26 

Mn 6.14 2300 3.16 223110.52   93353.11 5.71 15095.19  6004.87 5.61 16605.87 6611.32 

Fe 5.47 1853 2.70 83657.01 35652.31 2.90 12622.29 5415.79 5.80 10788.63 4505.63 

Co 5.11 1398 2.92 68371.19 28797.71 1.42 8395.61 3905.82 5.42 6431.38 2763.05 

Ni 4.24 852 2.96 42823.59 17857.47 1.91 21322.15 10293.98 4.54 3452.04 1520.84 

Cu 4.20 672 2.86 33042.36 13688.67 3.21 16463.31 7098.13 4.15 3001.29 1318.85 

Zn 2.61 558 2.64 3307.94 1618.21 2.75 1913.48 973.17 2.69 1314.08 703.96 
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Liste of figures 

 

 

Scheme S1.AI Optimized geometry of the title compounds 

TM M@b64 M@b66  M@b64 M@b66 

Ti 

  

Fe 

  

V 

  

Ni 

  

Cr 

  

Cu 

 
 



Appendix I 

152 
 

Mn 

  

Zn 

  

 

 

Figure S1.AI Molecular topology of 𝑀@𝑏64/66𝐴𝑙12𝑁12 (M= Sc- Zn) where in the nanocage, nitrogen 

atoms: are small spheres, while aluminum atoms: are large spheres.
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Figure S2.AI Calculated UV − vis absorption spectra of  𝑀@𝑏64/66
𝐴𝑙12𝑁12 (M from Sr to Zn) 
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M@b64Al12N12 𝑺𝟎→𝒏 MO (EDDM) 

Sc@b64Al12N12 

𝑆0→5 

(β HOMO  β LUMO)) 49 % 

 

ICT in Metal Sc  

 

𝑆0→11 

(βHOMO βLUMO)+4) 10% 

 

(α HOMO  α LUMO)) 36% 

 

ICT in Metal Sc + MLCT from Sc to nanocage 

 

𝑆0→13 

(α HOMO-1  α LUMO)+1) 15% 

 

(βHOMO β LUMO)+1)31% 

 

ICT in Metal Sc + MLCT from Sc to nanocage  

 

𝑆0→15 

(β HOMO  β LUMO)+2) 18% 

 

(α HOMO-1 α LUMO)+3) 

29% 

 

ICT in Metal Sc + MLCT from Sc to nanocage  

 

Ti@b64Al12N12 

𝑆0→5 

 (α HOMO  α LUMO)+1) 22% 

 

ICT in Metal Ti  

 

𝑆0→15 

(β HOMO  β LUMO)+1) 10% 

 

 (α HOMO  α LUMO)) 43% 

 

ICT in Metal Ti + MLCT from Ti to nanocage

 

𝑆0→18 (α HOMO-2 α LUMO)+3) 13% (βHOMO  β LUMO)+3)11% ICT in Metal Ti + MLCT from Ti to nanocage  
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𝑆0→16 

 (β HOMO  β LUMO)+2) 17% 

 

 (β HOMO  β LUMO)) 25% 

 

ICT in Metal Ti + MLCT from Ti to nanocage

 

V@b64Al12N12 

𝑆0→5 

 (α HOMO-3  α LUMO)+2) 23% 

 

 

ICT in Metal V  

 

𝑆0→14 

 (β HOMO  β LUMO)+1) 10% 

 

 

 (β HOMO  β LUMO)) 54% 

 

ICT in Metal V + MLCT from V to nanocage

 

𝑆0→15 

 (α HOMO-1  α LUMO)+1)20% 

 

 

 (βHOMO β LUMO)+2) 14% 

 

ICT in Metal V + MLCT from V to nanocage  

 

𝑆0→17 

 (α HOMO  α LUMO)+1) 26% 

 

 

 (α HOMO  α LUMO)+3) 

12% 

 

 

 

ICT in Metal V + MLCT from V to nanocage
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Cr@b64Al12N12 

𝑆0→1 

 (α HOMO-1  α LUMO)+2) 55% 

 

ICT in Metal Cr  

 

𝑆0→7 

 (β HOMO  β LUMO)) 52% 

 

MLCT from Cr to nanocage 

 

𝑆0→11 

 (α HOMO  α LUMO)+2) 30% 

 

 MLCT from Cr to nanocage  

 

𝑆0→16 

 (β HOMO  β LUMO)+1) 10% 

 

 (α HOMO  α LUMO)) 25% 

 

ICT in Metal Cr + MLCT from Cr to nanocage 

 

 

Mn@b64Al12N12 

𝑆0→1 

 (α HOMO  α LUMO)+1) 44% 

 

ICT in Metal Mn  

 

𝑆0→6 

 (α HOMO  α LUMO)) 36% 

 

MLCT from Mn to nanocage 

 

𝑆0→8  (β HOMO  β LUMO)) 28% 
 (β HOMO  β LUMO)+6) 

10% 
 MLCT from Mn to nanocage  
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𝑆0→9 

 (β HOMO  β LUMO)+1) 33% 

 

 (α HOMO  α LUMO)+1) 

10% 

 

ICT in Metal Mn + MLCT from Mn to nanocage 

  

Fe@b64Al12N12 

𝑆0→4 

 (α HOMO  α LUMO)+1) 51% 

 

ICT in Metal Fe  

 

𝑆0→9 

 (α HOMO  α LUMO)) 73% 

 

MLCT from Fe to nanocage 

 

𝑆0→13 

 (β HOMO  β LUMO)+1) 29% 

 

 (β HOMO  β LUMO)+6) 

13% 

 

 MLCT from Fe to nanocage  

 

𝑆0→15 

 (β HOMO  β LUMO)) 61% 

 

 

ICT in Metal Fe + MLCT from Fe to nanocage 

 

Co@b64Al12N12 𝑆0→8  (β HOMO-2  β LUMO)+14) 35% ICT in Metal Co 
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𝑆0→9 

 (α HOMO  α LUMO)+1) 72% 

 

ICT in Metal Co 

 

𝑆0→11 

 (α HOMO  α LUMO)) 83% 

 

 MLCT from Co to nanocage  

 

𝑆0→13 

 (β HOMO  β LUMO)+2) 37% 

 

ICT in Metal Co + MLCT from Co to nanocage 

 

Ni@b64Al12N12 

𝑆0→5 

 (α HOMO  α LUMO)+1) 49% 

 

ICT in Metal Ni  

 

𝑆0→7 

 (α HOMO  α LUMO)) 81% 

 

MLCT from Ni to nanocage 

 

𝑆0→13  (β HOMO  β LUMO)) 36%  (α HOMO-1αLUMO)) 10%  LMCT from nanocage to Ni + ICT in nanocage 
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𝑆0→14 

 (β HOMO-2  β LUMO)) 40% 

 

LMCT from nanocage to Ni 

  

Cu@b64Al12N12 

𝑆0→1 

 (α HOMO  α LUMO)+1) 81% 

 

ICT in Metal Cu  

 

𝑆0→2 

 (α HOMO  α LUMO)) 83% 

 

MLCT from Cu to nanocage 

 

𝑆0→9 

 (β HOMO  β LUMO)) 55% 

 

 LMCT from nanocage to Cu  

 

𝑆0→11 

 (β HOMO-1  β LUMO)) 56% 

 

 

LMCT from nanocage to Cu 

  

Zn@b64Al12N12 𝑆0→3  (HOMO LUMO)+1 ) 43% ICT in Metal Zn  



Appendix I 

163 
 

  

𝑆0→5 

 (HOMO LUMO)) 39% 

 

MLCT from Zn to nanocage 

 

𝑆0→8 

 (HOMO LUMO)+2) 37% 

 

 MLCT from Zn to nanocage  

 

𝑆0→11 

 (HOMO -1 LUMO) ) 22% 

 

ICT in nanocage + LMCT from nanocage to Zn 

  

 

M@b66Al12N12 𝑺𝟎→𝒏 MO  EDDM 

Sc@b66Al12N12 

𝑆0→6 

 (α HOMO  α LUMO+1) 30% 

  

ICT in Metal Sc  

 

𝑆0→10 

(α HOMO  α LUMO) 45% 

  

MLCT from Sc to nanocage  

 

𝑆0→13  (α HOMO-1  α LUMO+2) 22%  (β HOMO  β LUMO) 20% ICT in Metal Sc + MLCT from Sc to nanocage 
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𝑆0→24 

 (α HOMO-1  α LUMO+3) 19% 

      

 (βHOMO  β LUMO+2) 21% 

       

ICT in Metal Sc + LMCT from nanocage to Sc  

 

Ti@b66Al12N12 

𝑆0→8 

 (α HOMO  α LUMO+2) 24% 

  

ICT in Metal Ti  

 

𝑆0→13 

 (β HOMO  β LUMO+2) 27% 

  

ICT in Metal Ti  

 

𝑆0→15 

 (β HOMO  β LUMO) 45% 

 

 (β HOMO  β LUMO+6)10% 

        

MLCT from Ti to nanocage +ICT in Metal Ti  

 

𝑆0→16 

 (α HOMO  α LUMO+2) 10% 

    

 (α HOMO  α LUMO) 41% 

    

ICT in Metal Ti + MLCT from Ti to nanocage 

 

V@b66Al12N12 

𝑆0→7 

 (αHOMO-3  α LUMO+2) 58% 

     

ICT in Metal V  

 

𝑆0→8  (βHOMO β LUMO+1) 44% ICT in Metal V  
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𝑆0→12 

 (βHOMO  β LUMO+2) 40% 

  

MLCT from V to nanocage  

 

𝑆0→16 

 (β HOMO  β LUMO+2) 35% 

  

 (α HOMO  α LUMO) 18% 

    

ICT in Metal V + MLCT from V to nanocage 

 

Cr@b66Al12N12 

𝑆0→1 

 (α HOMO-1 α LUMO+1) 56% 

 

ICT in Metal Cr  

 

𝑆0→7 

 (β HOMO  β LUMO) 53% 

 

MLCT from Cr to nanocage 

 

𝑆0→11 

 (α H  α LUMO+3) 41% 

 

 MLCT from Cr to nanocage  

 

𝑆0→16 

 (α HOMO  α LUMO) 58% 

    

 (α HOMO  α LUMO+2) 10% 

ICT in Metal Cr+ MLCT from Cr to nanocage 
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Mn@b66Al12N12 

𝑆0→1 

 (α HOMO  α LUMO+1) 49% 

  

ICT in Metal Mn  

 

𝑆0→4 

 (α HOMO  α LUMO) 56% 

  

MLCT from Mn to nanocage 

 

𝑆0→8 

 (β HOMO  β LUMO+1) 30% 

 

 (α HOMO  α LUMO+1) 11% 

    

 MLCT from Mn to nanocage + ICT in Metal Mn  

 

𝑆0→9 

 (β HOMO  β LUMO) 69% 

 

(β HOMO  β LUMO+1) 10% 

   

ICT in Metal Mn+ MLCT from Mn to nanocage 

 

Fe@b66Al12N12 

𝑆0→4 

 (α HOMO  α LUMO+1) 52% 

  

ICT in Metal Fe  

 

𝑆0→9  (α HOMO  α LUMO) 78% MLCT from Fe to nanocage 
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𝑆0→13 

 (β HOMO  β LUMO+1) 41% 

    

 (α HOMO  α LUMO+1) 10% 

   

 MLCT from Fe to nanocage +ICT in Metal Fe 

 

𝑆0→14 

 (β HOMO  β LUMO) 71% 

    

ICT in Metal Fe + MLCT from Fe to nanocage 

 

Co@b66Al12N12 

𝑆0→7 

 (α HOMO  α LUMO+1)  52% 

  

ICT in Metal Co  

 

𝑆0→9 

 (α HOMO  α LUMO) 80% 

  

MLCT from Co to nanocage 

 

𝑆0→13 

 (β HOMO  β LUMO+1) 44% 

  

 ICT in Metal Co  
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𝑆0→18 

 (β HOMO  β LUMO) 51% 

    

ICT in Metal Co + MLCT from Co to nanocage 

 

Ni@b66Al12N12 

𝑆0→5 

 (α HOMO  α LUMO+1) 67% 

  

ICT in Metal Ni  

 

𝑆0→7 

 (α HOMO  α LUMO) 83% 

  

MLCT from Ni to nanocage 

 

𝑆0→14 

 (β HOMO  β LUMO) 69% 

 

 LMCT from nanocage to Ni + ICT in nanocage 

 

𝑆0→16 

 (β HOMO-1  β LUMO) 27% 

    

ICT in Metal Ni +MLCT from Metal Ni to nanocage 

  

Cu@b66Al12N12 

𝑆0→1 

 (α HOMO  α LUMO+1) 78% 

     

ICT in Metal Cu  

 

𝑆0→2  (α HOMO  α LUMO) 85% MLCT from Cu to nanocage  
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𝑆0→9 

 (β HOMO  β LUMO) 69% 

  

 

 LMCT from nanocage to Cu  

 

𝑆0→12 

 (β HOMO-1  β LUMO) 48% 

    

 

LMCT from nanocage to Cu 

 

  

Zn@b66Al12N12 

𝑆0→3 

 (HOMO LUMO+1 ) 44% 

     

ICT in Metal Zn  

 

𝑆0→5 

 (HOMO LUMO) 40% 

  

MLCT from Zn to nanocage 

 

𝑆0→11 

 (HOMO-1 LUMO) 39% 

    

 LMCT from nanocage to Zn + ICT in nanocage  

 

𝑆0→15  (HOMO -3 LUMO ) 35% ICT in nanocage + LMCT from nanocage to Zn 
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Figure S3.AI Molecular orbitals (MO) and electron density difference maps (EDDM) for the crucial excited states of M@b64Al12N12 and 

M@b66Al12N12 
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Figure S4.AI Variation of first hyperpolarizability (𝛽𝐻𝑅𝑆
∞ ) and second hyperpolarizability 

(𝛾(0; 0,0,0)) of 𝑀@𝑏64𝐴𝑙12𝑁12 (red) and 𝑀@𝑏66𝐴𝑙12𝑁12 (blue) where M= Sc-Zn  
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Figure S5.AI Relationship between 𝐼𝑉

2𝑤and polarization angle Ψ of 𝑀@𝑏64/66
𝐴𝑙12𝑁12 
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Figure S6.AI Plot of 𝛽𝐻𝑅𝑆
λ  as a function of 𝛽𝑆𝐻𝐺

λ  for 𝑀@𝑏64/66𝐴𝑙12𝑁12, where M= Sc 

to Zn), 1906, 1341, and 1064 nm 
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Supporting information 

Table S1.AII Selected geometrical parameters (the bond angles θ (º) and the bond length (Ǻ)) 

of the [(CoCp)2 {B2H2S2Pd(Cl)2}] obtained at the B3LYP, B3LYP-GD3(BJ) , ωB97XD, M06-

2X and Cam-B3LYP methods and corresponding experimental data. 

  MDS2 

  exp B3LYP B3LYP-GD3BJ ωB97XD M06-2X Cam-B3LYP 

Distance 

Cp-Cp 6.529 6.581 6.495 6.443 6.643 6.481 

Co1-Co2 3.205 3.183 3.136 3.137 3.178 3.139 

B1-B2 1.684 1.687 1.680 1.686 1.711 1.684 

S-B 1.884 1.868 1.867 1.860 1.836 1.851 

Pd-Cl 2.330 2.324 2.312 2.300 2.300 2.298 

Pd-Co 2.802 2.887 2.824 2.818 2.895 2.852 

Pd-S 2.309 2.429 2.416 2.407 2.508 2.411 

Co-B 2.118 2.108 2.106 2.106 2.121 2.088 

Co-S 2.322 2.351 2.331 2.327 2.361 2.328 

Angle 

Co1-Pd-Co2 69.79 66.90 67.46 67.65 66.57 66.79 

S1-Pd-S2 86.70 83.82 84.86 84.88 82.73 84.16 

Co1-B2-Co2 98.0 98.0 96.27 96.27 97.10 97.45 

B1-S2-Pd 113.43 113.43 112.55 112.76 112.72 113.22 

Torsion  angle Pd-B16-C13-C11 5.09 3.38 3.97 11.42 4.02 3.27 

 

Table S2.AII Selected Bond Parameters (Distance in Å and Angles in deg) and Dipole moments 

(Debye) of MDSn and MDS’n 

 MDS2 MDS‘2 MDS3 MDS’3 MDS4 MDS4a MDS’4 MDS5 MDS5a MDS’5 

µ 11.265 21.695 11.522 26.315 13.468 11.766 26.114 21.515 28.707 25.314 

Pd − Co 2.922 2.684 2.895 2.700 2.973 2.772 2.668 2.848 3.234 2.645 

B1-B2 1.711 1.688 1.700 1.684 1.714 1.701 1.688 1.718 1.699 1.701 

Pd-Cl 2.300 2.383 2.318 2.397 2.301 2.320 3.375 2.294 2.396 2.355 

Co-B 2.121 2.474 2.113 2.447 2.108 2.107 2.435 2.110 2.076 2.380 

S1-S2 3.315 3.336 3.326 3.329 3.335 3.361 3.332 3.339 3.293 3.355 

Co1-Pd-Co2 66.57 44.68 67.26 44.82 66.34 67.33 42.09 66.36 70.61 38.85 

S1-Pd-S2 82.73 86.95 83.97 86.88 83.10 85.09 86.96 82.95 86.15 87.23 

Co1-B2-Co2 97.10 13.21 98.47 14.06 66.34 98.93 14.10 96.59 104.68 17.95 

B1-S2-Pd 112.72 108.47 111.27 108.79 111.87 110.24 108.91 111.98 105.42 108.65 

Pd-Co*-Cp 122.89 
102.58 114.46 97.45 119.80 125.11 

116.58 

102.40 118.66 103.57 

150.54 

109.06 

Torsion  angle 4.02 17.08 17.70 20.60 32.71 27.32 25.72 23.75 38.36 35.99 

 93.53 / 82.34 / 87.41 95.56 

84.56 

/ 86.93 70.84 

121.80 

/ 

’ / 57.09 / 54.14 / / 58.64 / / 65.75 

Co1 and Co2: metal atom coordinated to the square planar arrangement of [B2S2] 

Co*: metal atom coordinated to the square planar arrangement of [B2S2] 
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Table S3.AII HOMO/LUMO energy and Chemical potential (𝜇, eV), chemical hardness (𝜂, 

eV) and electrophilicity index (ω, eV) of multi-decker sandwich cluster [(CoCp)n 

{B2H2S2Pd(Cl)2}], n=2 to 5 

 EHOMO ELUMO 𝜇 𝜂 𝜔 

MDS2 -7.865 -2.638 -5.2515 5.227 2.638 

MDS’2 -7.033 -3.406 -5.2195 3.627 3.755 

MDS3 -6.517 -2.586 -4.5515 3.931 2.634 

MDS’3 -6.502 -3.641 -5.0719 2.861 4.494 

MDS4 -5.357 -2.894 -4.1260 2.463 3.455 

MDS4a -6.120 -2.455 -4.2878 3.664 2.508 

MDS’4 -5.603 -4.001 -4.8017 1.602 7.192 

MDS5 -4.534 -3.270 -3.9022 1.263 6.023 

MDS5a -4.591 -3.465 -4.0285 1.126 7.201 

MDS’5 -4.865 -4.301 -4.5833 0.563 18.638 
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Table S4.AII Molecular orbitals (MO) and electron density difference maps (EDDM) for the crucial excited states of MDSn , MDSna and 

MDS’n. 

 𝑺𝒏 𝜟𝑬𝟎→𝑛 𝜟𝟎→𝑛 𝒇 Excitation (% composition) Character 
M

D
S

2
 

𝑆8 1.627 761.74 0.021 

100 101(HOMOLUMO) 13 % 

  

 

𝑆10 2.074 597.64 0.001 

97 102(HOMO -3 LUMO+1) 20 % 

  

 

 

𝑆12 2.23 556.24 <0.001 

98102 (HOMO-2 LUMO+1) 23% 

  

 

 

𝑆20 3.076 403.01 0.137 

100 101 (HOMO LUMO) 10% 
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M
D
S
’2

 
𝑆9 1.866 664.13 0.088 

100 101 (HOMO LUMO) 23% 

   

 

 

𝑆15 2.26 546.70 0.018 

98 101 (HOMO-2 LUMO) 30% 

   

 

 

𝑆18 2.611 474.84 0.051 

93101 (HOMO-7LUMO) 12% 

  

94101(HOMO-6 LUMO)13% 

  

 

 

𝑆19 2.626 472.08 <0.001 

97 101 (HOMO -3LUMO) 40% 
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M
D

S
3

 
𝑆12 1.63 759.40 0.015 

125 128 (HOMO-1LUMO+1) 10% 

   

 

 

𝑆14 1.7157 722.66 0.261 

126 127 (HOMO LUMO) 12% 

   

 

 

𝑆26 2.9756 384.99 0.002 

126 129 (HOMO LUMO+2)10% 

  

 

 

 

 

𝑆29 3.2205 384.99 0.002 

126 129 (HOMO LUMO+2) 18%  
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M
D
S
’3

 
𝑆5 0.661 1876.95 0.003 

121 128 (HOMO-5LUMO+1) 10% 

   

 

 

𝑆13 1.451 854.55 0.426 

126 127 (HOMO LUMO) 40% 

   

 

 

𝑆14 1.76 704.67 0.334 

121 127 (HOMO -5LUMO) 11% 

    

 

  

 

 

𝑆23 2.28 541.94 <0.001 

123 127 (HOMO -3LUMO) 41% 
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M
D

S
4

a
 

𝑆14 1.096 1130.64 0.007 

152 153 (HOMO LUMO) 10% 

   

 

 

𝑆17 1.59 779.73 0.384 

150 153 (HOMO -1LUMO) 10% 

   

 

 

𝑆20 1.75 705.13 0.408 

151 153 (HOMO -1LUMO) 10% 

   

 

 

𝑆26 2.18 566.82 0.05 

152 154 (HOMO LUMO+1) 18% 
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M
D

S
4

 
𝑆19 1.5242 813.46 0.002 

152 153 (HOMO LUMO) 36% 

     

 

 

𝑆20 1.58 780.98 <0.001 

144 154 (HOMO-8LUMO+1) 12% 

     

 

 

𝑆25 2.049 605.04 0.405 

150 153 (HOMO-2LUMO) 10% 

     

 

  

𝑆28 2.30 539.05 0.003 

152 155 (HOMO LUMO+2) 40%  
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M
D

S
’4

 
𝑆6 0.836 1380.64 0.098 

152 153 (HOMO LUMO) 10%  

  

 

 

𝑆15 1.147 1080.53 0.692 

152 153 (HOMO LUMO) 33%  

   

 

 

𝑆18 1.374 902.08 0.003 

151 153 (HOMO -1LUMO) 46% 

   

 

 

  

𝑆20 1.701 728.95 0.003 

150 153 (HOMO-2 LUMO) 43%   
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M
D

S
5

 
𝑆3 0.638 1942.02 0.001 

178 179 (HOMO LUMO) 49% 

    

 

 

𝑆10 0.901 1375.22 0.001 

178 180 (HOMO LUMO+1) 47% 

   

 

 

𝑆23 1.516 817.67 0.002 

178 181 (HOMO LUMO+2) 47% 

   

  

 

𝑆29 1.845 671.82 0.017 

177 180 (HOMO-1 LUMO+1) 39% 
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M
D
S
’5

 
𝑆6 0.792 1566.12 <0.001 

177 179 (HOMO-1 LUMO) 10% 

   

 

 

𝑆21 1.228 1009.40 0.06 

175 179 (HOMO-3 LUMO) 22% 

  

 

 

𝑆23 1.397 912.70 <0.001 

161 179 (HOMO-17 LUMO) 20% 

 

  

 

 

𝑆24 1.397 887.04 0.22 

175179 (HOMO-3 LUMO) 42% 
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M
D

S
5

a
 

𝑆10 0.997 1243.56 <0.001 

178180(HOMOLUMO+1)  

   

 

 

𝑆23 1.629 761.12 0.0445 

177  179 (HOMO-1LUMO)  

      

 

 

𝑆26 1.907 650.09 0.0144 

176 -> 179 (HOMO-2LUMO)  

   

 

 

𝑆28 2.013 615.89 0.0025 

178 -> 181 (HOMOLUMO+2) 40% 

   

 

 



Appendix II 

186 
 

Table S5.AII Excitation energy (𝐸0→𝑛, eV) and wavelength (0→𝑛, nm), oscillator strengths (𝑓0→𝑛, dimensionless), variation in dipole moment between the 

ground and the excited states (𝛥
CT

, a.u), Sr(r) overlap, charge transfer length (𝐷𝐶𝑇, Å), RMSD of hole and electron (Å), H and t indexes (Å) associated to the 

S0 → Sn transition, as calculated at the M06-2X/ SDD/6-311G(d) of the studied compounds MDSn, MDSna and MDS’n. 
 𝑺𝟎→𝒏 𝜟𝑬𝟎→𝑛 𝜟𝟎→𝑛 𝒇𝟎→𝑛 

Integral of 
𝜟

𝑪𝑻
 Sr 𝐷𝐶𝑇  

RMSD 

hole 

RMSD 

electron 
H index t index 

hole electron 

M
D

S
2

 

𝑆0→8 1.627 761.74 0.021 0.502 0.502 2.034 0.643 2.145 2.467 2.420 2.443 0.770 

𝑆0→10 2.074 597.64 0.001 0.947 0.956 3.436 0.743 1.923 2.788 2.354 2.571 0.475 

𝑆0→12 2.229 556.24 <0.001 0.604 0.609 3.293 0.421 2.884 2.454 2.125 2.289 1.712 

𝑆0→20 3.076 403.01 0.137 0.994 0.998 3.177 0.537 1.687 2.489 2.565 2.527 0.003 

M
D

S
‘2

 

𝑆0→9 1.866 664.13 0.088 0.632 0.636 3.537 0.712 2.960 2.360 3.164 2.762 0.842 

𝑆0→15 2.267 546.70 0.018 0.800 0.803 6.855 0.179 4.534 2.090 2.330 2.210 3.262 

𝑆0→18 2.611 474.84 0.051 0.775 0.775 6.547 0.171 4.471 2.032 2.475 2.254 3.227 

𝑆0→19 2.626 472.08 <0.001 0.846 0.848 7.118 0.233 4.451 2.364 2.304 2.334 3.001 

M
D

S
3

 

𝑆0→12 1.632 759.40 0.015 0.423 0.424 1.096 0.900 1.373 2.842 3.248 3.045 -0.308 

𝑆0→14 1.715 722.66 0.261 0.359 0.359 0.863 0.929 1.273 2.999 3.092 3.046 -1.011 

𝑆0→26 3.220 384.99 0.002 0.420 0.421 1.952 0.832 2.459 2.799 3.717 3.258 0.054 

𝑆0→29 3.2205 384.99 0.002 0.438 0.440 2.876 0.773 3.476 3.029 3.434 3.232 0.870 

M
D

S
’3

 

𝑆0→5 0.661 1876.95 0.003 0.520 0.528 2.657 0.722 2.706 2.409 3.661 3.035 0.274 

𝑆0→13 1.451 854.55 0.426 0.597 0.598 6.605 0.252 5.858 2.539 2.461 2.500 4.032 

𝑆0→14 1.759 704.67 0.334 0.518 0.524 5.192 0.304 5.305 2.526 2.855 2.691 3.431 

𝑆0→23 2.287 541.94 <0.001 0.801 0.806 8.159 0.179 5.392 2.947 2.353 2.650 3.624 

M
D

S
4

a 

𝑆0→14 1.096 1130.64 0.007 0.458 0.458 3.643 0.786 4.207 3.799 3.943 3.871 0.840 

𝑆0→18 1.685 735.60 0.105 0.427 0.424 1.617 0.807 2.002 3.049 3.343 3.196 0.382 

𝑆0→20 1.758 705.13 0.408 0.403 0.400 1.021 0.878 1.341 2.904 4.224 3.564 -0.866 
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𝑆0→26 2.187 566.82 0.05 0.544 0.539 4.044 0.710 3.937 2.764 4.871 3.817 0.627 

M
D

S
4

 

𝑆0→19 1.524 813.46 0.002 0.844 0.843 14.926 0.051 9.359 2.677 2.195 2.436 7.408 

𝑆0→20 1.587 780.98 <0.001 0.633 0.637 3.563 0.438 2.981 2.800 2.288 2.544 1.696 

𝑆0→25 2.049 605.04 0.405 0.493 0.494 2.007 0.786 2.153 2.769 4.852 3.810 -0.796 

𝑆0→28 2.300 539.05 0.003 0.832 0.833 14.262 0.06 9.071 2.761 2.489 2.625 7.113 

M
D

S
’4

 

𝑆0→6 0.898 1380.64 0.098 0.522 0.519 2.275 0.884 2.307 4.447 5.836 5.141 -2.027 

𝑆0→15 1.147 1080.53 0.692 0.424 0.426 2.299 0.822 2.871 3.816 6.112 4.964 -1.440 

𝑆0→18 1.374 902.08 0.003 0.501 0.504 5.716 0.553 6.041 3.987 3.563 3.775 2.867 

𝑆0→20 1.701 728.95 0.003 0.848 0.851 10.374 0.174 6.475 4.255 2.404 3.329 4.180 

M
D

S
5

 

𝑆0→3 0.638 1942.02 0.001 0.982 0.992  24.438 0.002 13.167 2.557 2.078 2.318 11.273 

𝑆0→10 0.901 1375.22 0.001 0.957 0.961 23.220 0.002 12.845 2.953 2.217 2.585 10.952 

𝑆0→23 1.516 817.67 0.002 0.951 0.961 23.187 0.008 12.908 2.848 2.170 2.509 10.825 

𝑆0→29 1.845 671.82 0.017 0.947  0.974 18.024 0.026 10.074 2.780 2.358 2.569 8.144 

M
D

S
’5

 

𝑆0→6 0.791 1566.12 <0.001 0.619 0.638 1.852 0.499 1.583 1.852 4.707 5.098 -3.054 

𝑆0→21 1.228 1009.40 0.06 0.492 0.499 6.321 0.746 6.804 7.598 4.458 6.028 1.209 

𝑆0→23 1.358 912.70 <0.001 0.748 0.784 16.414 0.209 11.608 5.867 2.036 3.951 7.887 

𝑆0→24 1.397 887.04 0.22 0.514 0.523 6.634 0.724 6.826 7.724 4.552 6.138 1.134 

M
D

S
5

a 

𝑆0→10 0.997 1243.56 <0.001 0.980 -0.985 27.388 0.0001 14.794 2.140 2.126 2.133 13.052 

𝑆0→23 1.629 761.12 0.0445 0.863 -0.874 18.776 0.0619 11.508 2.395 3.311 2.853 9.030 

𝑆0→26 1.907 650.09 0.0144 0.940 -0.951 22.778 0.008 12.818 2.249 2.535 2.392 10.728 

𝑆0→28 2.013 615.89 0.0025 0.905 -0.897 17.194 0.062 10.058 3.070 2.634 2.852 7.858 
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Table S6.AII Static and dynamic of polarizability, anisotropy of polarizability and electro-optic Pockel's effect (EOPE, β𝐸𝑂𝑃𝐸
 ) of MDSn, MDSna 

and MDS’n. 

  MDS2 MDS‘2 MDS3 MDS’3 MDS4a MDS4 MDS’4 MDS5 MDS’5 MDS5a 

=0 
α (0;0) 282 323 500 599 754 580 1245 1532 2154 648 

Δα (0;0) 96 201 585 879 1192 668 2640 3417 5190 732 

= 

0.0428 

α (-ω;ω) 296 362 626 1094 1058 670 1301 1.14⨯104 841 734 

Δα (-ω;ω) 127 297 946 2337 2086 920 2579 1.77⨯104 1284 967 

 
𝐸𝑂𝑃𝐸


 1131 4.31⨯104 19879 5.43⨯105 1.99⨯105 1.76⨯105 2.61⨯106 9.48⨯107 1.56⨯106 2.13⨯105 

= 

0.034 

α (-ω;ω) 289 343 562 769 914 631 8528 1263 795 692 

Δα (-ω;ω) 111 250 764 1375 1662 817 2.44⨯104 2640 1090 852 

 
𝐸𝑂𝑃𝐸


 1071 2.83⨯104 1.39⨯104 1.43⨯105 1.06⨯105 1.12⨯105 2.42⨯107 3.01⨯107 5.55⨯104 1.38⨯105 

= 

0.0239 

α (-ω;ω) 276 331 526 660 812 590 1868 1891 703 664 

Δα (-ω;ω) 116 222 659 1057 1365 692 4500 4496 831 776 

 
𝐸𝑂𝑃𝐸


 2.15⨯104 2.08⨯104 1.13⨯104 7.21⨯104 5.57⨯104 8.91⨯104 4.01⨯105 1.46⨯106 4.99⨯104 1.15⨯105 
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Table S7.AII Static and dynamic of 𝛽J=1 and 𝛽J=3  of MDSn, MDSna and MDS’n. 

  MDS2 MDS‘2 MDS3 MDS’3 MDS4a MDS4 MDS’4 MDS5 MDS’5 MDS5a 

λ=∞ 
𝛽

𝐽=1 
 669 1.26⨯104 6959 3.49⨯104 3.23⨯104 5.37⨯104 5.58⨯104 2.75⨯105 1.88⨯104 6.71⨯104 

𝛽
𝐽=3 

 603 1.01⨯104 5404 2.97⨯104 2.71⨯104 4.33⨯104 4.65⨯104 2.25⨯105 1.93⨯104 5.28⨯104 

λ=1064 
𝛽

𝐽=1 
 1828 3.45⨯104 4.41⨯104 / / 4.68⨯104 7.43⨯105 5.11⨯108 / 2.36⨯104 

𝛽
𝐽=3  

 2270 3.31⨯104 4.03⨯104 4.25⨯105 2.09⨯105 5.20⨯104 6.54⨯105 4.32⨯108 4.78⨯105 9.01⨯104 

λ=1341 
𝛽

𝐽=1 
 / 5.55⨯106 7.66⨯104 1.34⨯105 9.51⨯104 2.90⨯105 1.19⨯108 8.58⨯106 9.32⨯104 3.57⨯106 

𝛽
𝐽=3  

  3309 4.51⨯106 6.46⨯104 1.37⨯105 1.29⨯105 2.24⨯105 1.21⨯108 7.05⨯106 5.93⨯104 3.87⨯106 

λ=1906 

𝛽
𝐽=1 

 / 3.14⨯104 1.34⨯104 5.76⨯105 6.50⨯104 / 2.38⨯106 9.68⨯105 2.76⨯105 1.63⨯105 

𝛽
𝐽=3  

 1.03⨯105 2.44⨯104 9977 4.89⨯105 5.80⨯104 3.46⨯105 2.41⨯106 7.97⨯105 2.22⨯105 1.30⨯105 
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Table S8.AII Static and dynamic first hyperpolarizability (au) and depolarization ratio (DR) 

for MDSn, MDSna and MDS’n (n=2-5) calculated by the sum-over-states method. 

 MDS2 MDS‘2 MDS3 MDS’3 MDS4 MDS4a MDS’4 MDS5 MDS5a MDS’5 

𝐷𝑅𝑆𝑂𝑆 6.10 5.48 4.89 4.84 5.01 4.83 4.70 5.00 5.23 4.98 

𝛽𝐻𝑅𝑆
𝑆𝑂𝑆 860 1.17⨯104 1.03⨯104 3.07⨯104 2.93⨯104 7.97⨯103 2.12⨯105 4.81⨯105 3.83⨯104 5.83⨯107 
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Figure. S1.AII The bond angles  of MDS5a cluster 
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Figure S2.AII Simulated absorption spectrum of MDSn, MDSna and MDS’n (n= 4 and 5) . 
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Figure S3.AII Correlation between the Hyper-Rayleigh scattering and dynamic second 

order NLO responses of MDSn, MDSna and MDS’n. 
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Figure S4.AII. Relationship between 𝐼𝑉
2𝑤and polarization angle Ψ of MDSn and MDSna 

complexes 
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Figure. S5.AII Plots of static first hyperpolarizability values as computed in the SOS 

formalism as a function of the number of excited states for MDS4a and MDS5a, obtained at 

M06-2X/ SDD/6-311G(d) level. 

 

Figure. S6.AII The optimized geometry of FeCp2-(C2H2)3-NO2 

 

Figure. S7.AII The optimized geometry of 3NH2-VBz2-3CN 
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Understanding the second and third order
nonlinear optical responses of M@b66/64Al12N12: a
comprehensive DFT and TD-DFT study†

Meriem Zaidi, ab Douniazed Hannachi, *cd Nahla Chaouia and
Henry Chermette *e

Materials with significant first hyperpolarizability values are essential for application in second harmonic

generation to achieve frequency doubling. Therefore, ideal NLO materials must not only exhibit a substantial

NLO response but also maintain transparency when exposed to laser light. In this study, we investigate two

series of nanoparticles, namely M@b64Al12N12 and M@b66Al12N12 (M ranges from Sc to Zn). The aim is to

evaluate the second and third NLO responses through DFT and TD-DFT calculations. These evaluations are

performed using the CAM-B3LYP/6-311+G(d) level of theory and the sum-over-states method in the static

and dynamic regime (l = N, 1906, 1341, and 1064 nm). These properties are further explained by

considering factors such as molecular topology, delocalization indices, Waber–Cromer radius, excitation

energy, oscillator strengths, variations of dipole moment of the excited state, and one/two-photon

resonance effects. The results indicate that incorporating transition metals into Al12N12 substantially increases

both the first and second hyperpolarizability. The delocalization index values reveal a higher degree of

electron delocalization between the transition metal and nitrogen compared to that between the transition

metal and aluminum. The QTAIM analysis displays that the presence of a closed quasi-ring structure

between the metal and the nanocage, combined with electron delocalization, significantly enhances the first

hyperpolarizability. TD-DFT calculations suggest potential application of these compounds in deep ultraviolet

laser devices due to their transparency below 200 nm. The SOS approach reveals that the most critical

excited states are local excitations, characterized by high Sr, small D, and negative t values. On the other

hand, in the dynamic regime, our results indicated that the values of bHRS, bSHG(�2o; o, o) and gESHG(�2o;

o, o, 0) are larger than their static counterparts. Additionally, one/two photon resonance energy, along with

substantial oscillator strength, plays a pivotal role in enhancing the dynamic hyperpolarizability of the

investigated nanoparticles. Our findings suggest that the increase in bl is primarily linked to two-photon

resonance rather than one-photon resonance. Based on our current understanding, this study provides

novel evidence that, at l = N, the first hyperpolarizability of M@b64/66Al12N12 is correlated with the Waber–

Cromer radius of the transition metal. Additionally, in the dynamic regime, the first hyperpolarizability is cor-

related with the second hyperpolarizability.

Introduction

Nonlinear optics (NLO) is a branch of science that deals with
the interaction of materials with strong oscillating electromag-
netic fields, resulting in the generation of new electromagnetic
fields with different phase, amplitude, frequency, and other
optical properties from the incident ones.1,2

When light propagates through a molecule, the valence elec-
trons create a charge transfer relative to the atoms in the
compound under the action of the induced electric field, resulting
in the polarization of matter (P). The integration of first-principles
methodologies with the finite-field (FF) approach is extensively
utilized in the exploration of nonlinear optical responses due to
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Predicting and controlling the second-order NLO response in a new class of 
multi-decker sandwich clusters {µ-B2H2S2Pd(Cl)2}-(CoCp) n, (n = 2 to 5)

Meriem Zaidi a,b , Douniazed Hannachi c,d,* , Djamila Samsar e , Guillaume Hoffmann f ,  
Henry Chermette f,*
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A R T I C L E  I N F O
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A B S T R A C T

Using density functional theory calculations, we have conducted a systematic investigation of the nonlinear 
optical properties of a series of multi-decker sandwich clusters, [{H2B2S2Pd(Cl)2}-(CoCp)n] (n = 2 to 5), which 
vary in structural configuration, shape and size namely MDSn, MDSna and MDS’n. The analysis encompassed 
polarizability, anisotropy of polarizability, and first-order hyperpolarizability, providing detailed insights into 
their geometric structure, stability, electronic properties, and absorption spectra. A comprehensive evaluation 
was performed to assess the impact of the {H2B2S2Pd(Cl)2} fragment’s positioning, the number of (CoCp) units, 
and the incident frequency (ω = 0, 0.0428, 0.034, 0.0239 a.u.) on their first and second-order NLO responses. 
The results indicate that these clusters exhibit a significant NLO response, which is further amplified under an 
external electric field. Notably, the first hyperpolarizability (β) of the MDS’n series increases with the number of 
(CoCp) units (n = 2 to 4). However, a decrease in β is observed when the (CoCp) unit count reaches 5. 
Conversely, for MDSn (n = 2 to 5), first hyperpolarizability consistently rises with the number of (CoCp) units 
from n = 2 to 5, reflecting behavior akin to traditional push–pull π-systems. These findings underscore that the 
design of multi-decker sandwich clusters is a highly effective strategy for enhancing second-order NLO responses, 
primarily due to efficient charge transfer across the layered structure.

1. Introduction

Nonlinear optics is a subdiscipline of optics in which focuses on 
materials that can strongly interact with the electric field of incident 
laser radiation and generate nonlinear optical (NLO) responses which 
have grown significantly in scientific and technological domains [1–5]. 
The strength of light-matter interaction is much more intense than that 
typically encountered in linear optics. It provides fundamental theories 
and principles of devices for laser radiation in the visible, ultraviolet and 
infrared spectral ranges. The origins of modern nonlinear optics are 
often attributed to the experimental demonstration of second-harmonic 
generation (SHG) by Franken et al [6]. The pivotal advancement 
enabling this breakthrough was the invention of the first laser by 

Maiman and Collins in 1960 [7,8].
Nonlinear optical (NLO) materials are compounds that demonstrate 

NLO phenomena, such as second-harmonic generation (SHG) and third- 
harmonic generation (THG). These materials are indispensable in 
various applications, including optical communications, optical 
computing, optical memory and laser technology. Additionally, they are 
crucial in photopharmacology, photoactuators, controlled drug trans
port and release etc. In this context, numerous strategies and techniques 
have been proposed to enhance and tune the NLO response of materials. 
These include reinforcing [9] push–pull effects [10–14], designing 
octupolar compounds [15,16] and creating asymmetric coordination 
complexes [17,18]. Other promising approaches include introducing 
diffuse excess electrons [19], employing multi-decker sandwich clusters 
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The effect of resonance-assisted hydrogen bond
on the second-order nonlinear optical properties
of pyridine hydrazone photoswitches: a quantum
chemistry investigation†

Douniazed Hannachi, *ab Noureddine Khelfaoui,a Meriem Zaidi, ac

Diha Yahiaoui,a Salima Lakehal, d Christophe Morell e and
Henry Chermette *e

The effect of hydrogen bonds on the NLO properties was not considered as essential, in particular in

pyridine hydrazone systems. Yet, we show in the present study that a control of these photoswitches

depends on the strength of hydrogen bonds. In this study, we investigate a selection of 18 E/Z pyridine

hydrazone photoswitch molecules to explore the impact of resonance-assisted hydrogen bond (RAHB)

on the NLO properties in the E/Z isomers. Using quantum calculations at the oB97XD/6-311+g(d) level

of theory, we determine various electronic parameters, reactivity descriptors, bond length alternation

(BLA) values, nuclear independent chemical shift (NICS) aromaticity indices, QTAIM topology, energy of

hydrogen bond (EHB), RAHB, and linear and nonlinear optical properties for these molecules. The

agreement between the quantum calculations and experimental spectra is illustrated through TD-DFT

calculations, showing small deviations. Contrary to conventional expectations, our findings

demonstrated that the delocalization strength of the electrons and NLO properties of the Z isomers are

significantly enhanced by the presence of a resonance-assisted hydrogen bond. The Z-isomer exhibited

a lower excited state energy, weaker energy gap, smaller BLA value, larger dipole moment variations for

the first excited state, higher FE-Z, and electron delocalization at the quasi-cycle closed (RAHB)

compared to the E-isomer. Furthermore, we find that the hyperpolarizability value of the title

photoswitches increases as the wavelength of the incident light decreases, i.e., b(695) 4 b(1064) 4

b(1340) 4 b(N), and the dispersion has less effect at l = 1064 and 1340 nm. Additionally, we observe a

strong relation between the photoisomerization quantum yield (FE$Z) and static hyperpolarizability (b) of

the first and second isomer, where FE$Z is proportional to b of the second isomer and inversely

proportional to b of the first isomer. This inverse trend between static hyperpolarizability and

photoisomerization quantum yields is attributed to the electron-withdrawing character of substituents

on the Ar ring. Our research provides valuable insights into optimizing the 2nd-order NLO properties of

pyridine hydrazone photoswitch molecules. By understanding the influence of hydrogen bonding on the

delocalization strength of the electrons (RAHB) and the shape-dependent NLO performance, we gain

the ability to design and synthesize novel photoswitch molecules with enhanced NLO characteristics.

Introduction

Molecular photoswitches are defined as chemical compounds
that can reversibly be transformed from one isomer into
another one with light irradiation. The two isomers differ from
each other in various chemical and physical properties, such as
geometrical structure, absorption spectra, oxidation/reduction
potentials, magnetic properties, dielectric constant, refractive
index, and others.1,2 This kind of molecules provides an
invaluable tool for a large variety of applications, such as in
information storage and processing,3 photo-pharmacology,
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Correlation between Second Ionization Potential and Nonlinear
Optical Properties of Bivalent Transition-Metal Complexes: A
Quantum Chemical Study
Meriem Zaidi, Douniazed Hannachi,* and Henry Chermette*
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ABSTRACT: Discovering new materials with excellent nonlinear optical responses has recently
become a very interesting research topic in the different domains of materials science. Currently,
density functional theory (DFT) has been shown to be a powerful tool in the explanation and
prediction of the performance of novel nonlinear optical (NLO) materials. Quantum chemical
calculations using DFT/TD-DFT with the B3LYP exchange−correlation functional are
reported to study the NLO properties of 26 bivalent transition-metal (TM) complexed by
six acyclic hexadentate ligands providing pyridyl/pyrazine−amide-thioether/ether coordination
and differing by the nature of the methylene dichalcogenate spacer between the rings. However,
the geometry parameters and the theoretically predicted UV−vis absorption spectra of the
optimized compounds M(II)Li are in excellent agreement with the experiment, when available,
the trends among the nature of the TM, the importance of the ligand spacer, and of the
substituents of the pyridine/pyrazine amide ligand are discussed. To the best of our knowledge,
our work evidences for the first time that the hyper-polarizability, second harmonic generation,
and hyper-Rayleigh scattering response of TM coordination complexes can be correlated to the
second ionization potential of metal and spin state of complexes.

1. INTRODUCTION

Currently, the discovery of new nonlinear optical (NLO)
materials has become one of the major challenging research
fields because of its potential applications in various fields such
as photonics, opto-electronics, optical communications, optical
switching, optical computing, optical memory, dynamic
holography photodynamic therapy, and biological imaging.1−4

Among systems, metal complexes with π-conjugated ligands
have emerged and grown as a respectable class of NLO
materials,5−8 owing to their thermal stability, redox switching
ability, and ultrafast response times.9 Also, the metal complexes
display a large variety of molecular geometry and electronic
properties by virtue of the coordinated metal center.
Furthermore, metal complexes have several additional
electronic properties that distinguish them from organic
compounds due to their low-energy charge-transfer transitions
such as the ligand to metal charge transfer (LMCT), metal to
ligand charge transfer (MLCT), and intra-metal charge transfer
(IMCT) electronic transition. On the other hand, to provide a
high NLO response, the coordination complex with the π-
conjugated ligand should be asymmetric, and it should possess
low-energy absorption with charge-transfer transitions, whereas
the difference between the excited-state and the ground-state
dipole moment should be large.5

The bonding model of transition-metal (TM) complexes can
explain many important properties of the TM complexes
including their magnetism, structures, stability, oxidation state,

reactivity, and optical (linear and nonlinear) properties. It is to
be noted that in the TM complexes, the energies of the five (n
− 1) d orbitals of the TM ion are affected by the nature of the
ligands (strong or weak field).
In the case of TM complexes in octahedral geometry, the

dx2−y2 and dz2 orbitals interact very strongly with the ligands and
form new σ bonding and antibonding molecular orbitals, called
the “eg” set of orbitals, in Oh symmetry. On the other hand, the
dxy, dxz, and dyz orbitals interact less strongly with the donor
ligands and develop π orbitals (bonding and antibonding
interactions), called the “t2g” set of orbitals. The filling of these
eg and t2g orbitals depends on the ligand field, leading to the
spin state of the complex. For the weak field, we have the high
spin (HS) state, with a filling of, successively, the t2g (α spin),
the eg (α spin), the t2g (β spin), and the eg (β spin). For the
strong field, we have low spin (LS) state with successively
filling the t2g (α spin), the t2g (β spin), the eg (α spin), and the
eg (β spin). Therefore, in the case of 3d4−3d7 configurations
(Scheme 1), the occupation of the eg orbital preferentially to a
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Abstract 

This thesis presents a detailed theoretical investigation of the second- and third-order nonlinear optical 

(NLO) properties of two classes of materials: transition metal-doped nanocages (M@Al₁₂N₁₂, M = Sc to 

Zn) and multi-decker organometallic sandwich clusters [{H₂B₂S₂Pd(Cl)₂}–(CoCp)ₙ] (n = 2–5). Using 

DFT, TD-DFT, and the Sum-Over-States (SOS) approach at various frequencies ( = 0.0428, 0.034, 

0.0239 a.u.), we explored both static and dynamic NLO responses. Key parameters including oscillator 

strengths, excitation energies, and charge-transfer features were analyzed. In nanocages, strong NLO 

responses were linked to charge delocalization and closed ring topologies. The sandwich complexes 

MDSn, MDSna, and MDS’n showed structure-dependent polarizability and hyperpolarizability trends, 

with MDSn exhibiting a consistent increase in β and MDS’n peaking at n = 4. Both systems 

demonstrated significant frequency-dependent enhancement, particularly under two-photon resonance. 

Furthermore, MDSn/ MDS’n complexes show colossal γ responses that grow with deck number, 

peaking in MDS₅. Molecular length and topology govern these effects. These results offer important 

guidance for the rational design of high-performance NLO materials aimed at next-generation photonic 

and optoelectronic technologies. 

Résumé 

Cette thèse présente une étude théorique approfondie des propriétés optiques non linéaires (NLO) du 

second et du troisième ordre de deux classes de matériaux : les nanocages dopées aux métaux de 

transition (M@Al₁₂N₁₂, avec M = Sc à Zn) et les complexes sandwich organométalliques multi-couches 

[{H₂B₂S₂Pd(Cl)₂}–(CoCp)ₙ] (n = 2–5). En utilisant la théorie de la fonctionnelle de la densité (DFT), la 

DFT dépendante du temps (TD-DFT), ainsi que l’approche de la somme des états (SOS) à différentes 

fréquences ( = 0.0428, 0.034, 0.0239 a.u.), nous avons exploré les réponses NLO statiques et 

dynamiques. Les paramètres clés tels que les forces d’oscillateur, les énergies d’excitation et les 

caractéristiques de transfert de charge ont été analysés. Dans les nanocages, les fortes réponses NLO 

sont attribuées à la délocalisation électronique et aux topologies en anneau fermé. Les complexes 

sandwich MDSn, MDSna et MDS’n ont montré des tendances dépendantes de la structure en 

polarisation et hyperpolarisation, avec une augmentation régulière de β pour MDSn et un pic pour 

MDS’n à n = 4. Les deux systèmes présentent un renforcement significatif dépendant de la fréquence, 

notamment en résonance à deux photons. De plus, les complexes MDSn/ MDS’n présentent des réponses 

γ colossales qui augmentent avec le nombre de ponts, atteignant un pic dans MDS₅. La longueur 

moléculaire et la topologie régissent ces effets. Ces résultats offrent des pistes prometteuses pour la 

conception de matériaux NLO performants destinés aux applications photoniques et optoélectroniques. 

 ملخص

لفئتين من المواد:  (NLOرتبتين الثانية والثالثة )متقُدم هذه الأطروحة دراسة نظرية مفصلة للخصائص البصرية غير الخطية من ال

، ومجمعات عضوية معدنية متعددة الطبقات من (Znإلى  Scمن  M، حيث M@Al₁₂N₁₂بالمعادن الانتقالية ) مطعمةأقفاص نانوية 

عند SOS منهجيةبالإضافة إلى TD-DFT  و  DFTباستخدام  .(n = 2–5) [ₙ(CoCp)–{H₂B₂S₂Pd(Cl)₂}]نوع الساندويتش 

جابات غير الخطية في كل من النظامين الساكن والديناميكي. ، تم استكشاف الاست(. = 0.0428, 0.034, 0.0239 a.u)ترددات مختلفة 

تم تحليل معلمات رئيسية مثل شدة المتذبذب، طاقة الإثارة، وخصائص انتقال الشحنة. في أنظمة الأقفاص النانوية، ارتبطت الاستجابات 

فقد أظهرت سلوكًا  MDS’nو MDSnaو MDSnات الساندويتشية من نوع القوية بانتشار الشحنة وتشكّل الحلقات المغلقة. أما المجمع

ذروتها  MDS’n، في حين بلغت βزيادة منتظمة في  MDSnيعتمد على البنية في قيم الاستقطابية والاستقطابية الفائقة، حيث أظهرت 

 /MDSn مجمعات أظهرت ذلك،على علاوة  أظهرت كلا النظامين تحسناً كبيرًا عند الرنين ثنائي الفوتون، n =4.  عند 

MDS’n استجاباتγضخمة تنمو بزيادة عدد الطبقات وتبلغ ذروتها في MDS₅  تتحكم كل من طول الجزيء و طوبولوجيته ي هذه

 موجهة لتقنيات الفوتونيات و البصريات الأداءعالية  NLOمواد ل جيالمنه تصميملل امهم هذه النتائج توجيها توفرو التاثيرات.

  .الالكترونات من الجيل القادم
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