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Preface

Introduction

This handout offers a comprehensive approach to linear algebra, combining
theoretical foundations with practical problem-solving techniques. Designed
for both students and practitioners, it emphasizes matrix methods as essential
tools for mathematical modeling and computation.

Structure:

The material is organized into four coherent chapters:

• Matrices: Fundamental operations and special matrix types

• Determinants & Inverses: Calculation methods and applications

• Systems of Equations: Solution techniques using matrix algebra

• Eigenvalues & Diagonalization: Spectral theory and matrix simplifica-
tion

Each chapter follows a consistent pattern:

• Definitions: Clear theoretical foundations

• Exercises: Graded problems from basic to advanced

• Solutions: Detailed explanations for all exercises

The exercises include computational problems, theoretical challenges, and graph-
ical interpretations to develop both technical skills and conceptual understand-
ing.

Happy studying!
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2 PREFACE

Notations

Sets of numbers

N The set of natural numbers.

Z The set of integers.

Q The set of rational numbers(fractions a
b where a and b are integers and

b ̸= 0).

R The set of real numbers.

C The set of complex numbers.

Logical conditions

∀ This symbol means for all .

∃ This symbol means there exists.

Ø This symbol means there does not exist.

Elements and sets

∈ An element is in a set.

∉ An element is not in a set.

; This symbol is used to denote the “empty set”.

∪ Means union.

∩ Means intersection.

Miscellaneous symbols

= is equal to

̸= is not equal to

≺ is less than

≤ is less than or equal to

≻ is greater than

≥ is greater than or equal to
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3 PREFACE

∞ infinity

⇒ implies

⇐ is implied by

⇔ implies and is implied by (is equivalent to)

Operations

a +b a plus b

a −b a minus b

a ×b, ab a multiplied by b (or a times b)

a
b a divided by b

p
a the non-negative square root of a

Matrices

Am×n Matrix with m rows and n columns.

A = [ai j ]Matr i xA with elements ai j .

An×n Square Matrix

Am×1 Column Matrix

A1×n Row Matrix

Om×n Zero Matrix (all elements are zero)

In×n Identity Matrix (diagonal elements are 1, others are 0)

AT The transpose of a matrix A

tr (A) The trace of a square matrix A

det(A), |A| Determinant of a square matrix A

adj(A) The adjoint matrix of A

A−1 The inverse of a square matrix A
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Chapter 1

Matrices

Introduction
Matrices are essential tools for solv-
ing linear problems efficiently. This
chapter provides hands-on practice
with matrix operations, special ma-
trices, and advanced applications
through structured exercises. Work
through the problems to master
both computation and conceptual
understanding. B=

 
b1,1

b1,2
. . . .

. .
b1,n

b2,1
b2,2

. . . .
. .

b2,n

b3,1
b3,2

. . . .
. .

b3,n

...

...

. . .

...

bm,1
bm,2

. . . .
. .

bm,n

 

1.1 Fundamental Matrix Definitions

Definition 1.1 (Matrix). A rectangular array of numbers (called elements or en-
tries) arranged in m rows and n columns:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


Denoted as A ∈Rm×n or A ∈Cm×n .

4



5 CHAPTER 1. MATRICES

Definition 1.2 (Matrix Addition). For A,B ∈Rm×n :

(A+B)i j = ai j +bi j

Definition 1.3 (Scalar Multiplication). For A ∈Rm×n and c ∈R:

(cA)i j = c ·ai j

Definition 1.4 (Matrix Multiplication). For A ∈Rm×p and B ∈Rp×n :

(AB)i j =
p∑

k=1
ai k bk j

Definition 1.5 (Identity Matrix). The n ×n matrix In with:

(In)i j = δi j =
{

1 if i = j

0 otherwise

Definition 1.6 (Transpose). For A ∈Rm×n , its transpose AT ∈Rn×m :

(AT)i j = a j i

Definition 1.7 (Trace (Square Matrices)). For A ∈Rn×n :

tr(A) =
n∑

i=1
ai i

Definition 1.8 (Special Matrices).

• Diagonal Matrix: ai j = 0 for i ̸= j

• Upper Triangular: ai j = 0 for i > j

• Lower Triangular: ai j = 0 for i < j

• Symmetric: AT = A

• Skew-Symmetric: AT =−A

Definition 1.9 (Invertible Matrix). A square matrix A ∈Rn×n is invertible if there
exists B such that:

AB = BA = In

Denoted B = A−1.
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6 CHAPTER 1. MATRICES

Definition 1.10 (Determinant). The unique scalar function det : Rn×n → R sat-
isfying:

• det(In) = 1

• Multilinear in rows/columns

• Alternating (swapping rows changes sign)

• det(A) = 0 iff A is singular
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7 CHAPTER 1. MATRICES

1.2 Exercises and Solutions

1.2.1 Operations with Matrices

Exercise 1. Given the matrices

A =
(
1 2
3 4

)
, B =

(
0 −1
2 5

)
,

compute A+B.

A+B =
(
1+0 2+ (−1)
3+2 4+5

)
=

(
1 1
5 9

)

Exercise 2. Given

C =
(
2 −1
0 3

)
, D =

(
4 1
−2 0

)
,

compute C−D.

C−D =
(

2−4 −1−1
0− (−2) 3−0

)
=

(−2 −2
2 3

)

Exercise 3. Given

G =
(

1 0 2
−1 3 4

)
, H =

2 1
0 −1
3 2

 ,

compute GH.

GH =
(

(1)(2)+ (0)(0)+ (2)(3) (1)(1)+ (0)(−1)+ (2)(2)
(−1)(2)+ (3)(0)+ (4)(3) (−1)(1)+ (3)(−1)+ (4)(2)

)
=

(
8 5

10 4

)
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8 CHAPTER 1. MATRICES

Exercise 4. Given

K =
(
2 −1
3 0

)
,

compute K2.

K2 = KK =
(
(2)(2)+ (−1)(3) (2)(−1)+ (−1)(0)
(3)(2)+ (0)(3) (3)(−1)+ (0)(0)

)
=

(
1 −2
6 −3

)
Exercise 5. Given

L =
(

1 4
−2 3

)
,

compute LT (the transpose of L).

LT =
(
1 −2
4 3

)
Exercise 6. Given

M =
 5 −2 1

0 3 4
−1 2 6

 ,

compute the trace of M.

tr(M) = 5+3+6 = 14

Exercise 7. Given

N =
(

2 1
−3 4

)
, P =

(
0 5
2 −1

)
,

verify whether NP = PN.

First compute NP:

NP =
(

(2)(0)+ (1)(2) (2)(5)+ (1)(−1)
(−3)(0)+ (4)(2) (−3)(5)+ (4)(−1)

)
=

(
2 9
8 −19

)
Now compute PN:

PN =
(

(0)(2)+ (5)(−3) (0)(1)+ (5)(4)
(2)(2)+ (−1)(−3) (2)(1)+ (−1)(4)

)
=

(−15 20
7 −2

)
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9 CHAPTER 1. MATRICES

Since NP ̸= PN, matrix multiplication is not commutative in this case.

Exercise 8. Given

Q =
(
1 2 3
4 5 6

)
,

compute QTQ.

We are given

Q =
(
1 2 3
4 5 6

)
.

We need QTQ.

Step 1: Find QT

QT =
1 4

2 5
3 6

 .

Step 2: Multiply QTQ

QTQ =
1 4

2 5
3 6

(
1 2 3
4 5 6

)
.

This is a 3×2 times a 2×3 matrix, so the result is 3×3.

Step 3: Compute entries

• Row 1, Col 1: 1×1+4×4 = 1+16 = 17

• Row 1, Col 2: 1×2+4×5 = 2+20 = 22

• Row 1, Col 3: 1×3+4×6 = 3+24 = 27

• Row 2, Col 1: 2×1+5×4 = 2+20 = 22

• Row 2, Col 2: 2×2+5×5 = 4+25 = 29

• Row 2, Col 3: 2×3+5×6 = 6+30 = 36

• Row 3, Col 1: 3×1+6×4 = 3+24 = 27

• Row 3, Col 2: 3×2+6×5 = 6+30 = 36

Mathematics 2 - 100 Exercises with Solutions Author: Djabi Abdelmoumene



10 CHAPTER 1. MATRICES

• Row 3, Col 3: 3×3+6×6 = 9+36 = 45

Step 4: Write result

QTQ =
17 22 27

22 29 36
27 36 45

 .

17 22 27
22 29 36
27 36 45


Exercise 9. Let

A =
(

x 2
−1 3

)
, B =

(
1 x
4 −2

)
,

where x ∈R.

1. Compute the product AB.

2. Find the transpose (AB)T.

3. Calculate the trace tr(AB).

4. Determine all values of x for which tr(AB) = tr(BTAT).

5. Verify whether (AB)T = BTAT holds for all x ∈R.

1. Compute AB

AB =
(

x 2
−1 3

)(
1 x
4 −2

)
=

(
x ·1+2 ·4 x · x +2 · (−2)
−1 ·1+3 ·4 −1 · x +3 · (−2)

)

AB =
(

x +8 x2 −4
−1+12 −x −6

)
=

(
x +8 x2 −4

11 −x −6

)

2. Find (AB)T

(AB)T =
(

x +8 11
x2 −4 −x −6

)
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11 CHAPTER 1. MATRICES

3. Calculate tr(AB)

tr(AB) = (x +8)+ (−x −6) = x +8−x −6 = 2

4. Find x such that tr(AB) = tr(BTAT)

First compute AT and BT:

AT =
(

x −1
2 3

)
, BT =

(
1 4
x −2

)

Now compute BTAT:

BTAT =
(

1 4
x −2

)(
x −1
2 3

)
=

(
1 · x +4 ·2 1 · (−1)+4 ·3

x · x + (−2) ·2 x · (−1)+ (−2) ·3

)

BTAT =
(

x +8 −1+12
x2 −4 −x −6

)
=

(
x +8 11
x2 −4 −x −6

)
Trace of BTAT:

tr(BTAT) = (x +8)+ (−x −6) = x +8−x −6 = 2

We want tr(AB) = tr(BTAT):

2 = 2

This equation holds for all x ∈R.

5. Verify (AB)T = BTAT

From part 2: (AB)T =
(

x +8 11
x2 −4 −x −6

)
From part 4: BTAT =

(
x +8 11
x2 −4 −x −6

)
These matrices are identical for all x ∈R, confirming that:

(AB)T = BTAT

holds for all real values of x.

Mathematics 2 - 100 Exercises with Solutions Author: Djabi Abdelmoumene



12 CHAPTER 1. MATRICES

1.2.2 Special Matrices

Exercise 10. Construct a 3× 3 diagonal matrix D with diagonal entries
2,−1,4.

D =
2 0 0

0 −1 0
0 0 4


Exercise 11. Construct a 3 × 3 upper triangular matrix U with entries
ui j = i + j for i ≤ j .

U =
2 3 4

0 4 5
0 0 6


Exercise 12. Construct a 3×3 lower triangular matrix L with entries li j =
i − j for i ≥ j .

L =
0 0 0

1 0 0
2 1 0


Exercise 13. Given the matrix

S =
 1 5 −3

5 2 0
−3 0 4

 ,

verify whether S is symmetric.

Given the matrix

S =
 1 5 −3

5 2 0
−3 0 4

 ,

we verify whether S is symmetric.
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13 CHAPTER 1. MATRICES

Step 1: Definition of symmetric matrix

A matrix S is symmetric if ST = S, i.e., si j = s j i for all i , j .

Step 2: Compute the transpose ST

ST =
 1 5 −3

5 2 0
−3 0 4

T

=
 1 5 −3

5 2 0
−3 0 4



Step 3: Compare S and ST

S =
 1 5 −3

5 2 0
−3 0 4

 , ST =
 1 5 −3

5 2 0
−3 0 4


We observe that S = ST.

Step 4: Conclusion

Since ST = S, the matrix S is symmetric.

Yes

Exercise 14. Given the matrix

T =
 0 −2 3

2 0 −4
−3 4 0

 ,

verify whether T is skew-symmetric.

Solution

Given the matrix

T =
 0 −2 3

2 0 −4
−3 4 0

 ,

we verify whether T is skew-symmetric.
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14 CHAPTER 1. MATRICES

Step 1: Definition of skew-symmetric matrix

A matrix T is skew-symmetric if TT =−T, i.e., ti j =−t j i for all i , j , and all diag-
onal elements must be zero.

Step 2: Compute the transpose TT

TT =
 0 −2 3

2 0 −4
−3 4 0

T

=
 0 2 −3
−2 0 4
3 −4 0



Step 3: Compute −T

−T =−
 0 −2 3

2 0 −4
−3 4 0

=
 0 2 −3
−2 0 4
3 −4 0



Step 4: Compare TT and −T

TT =
 0 2 −3
−2 0 4
3 −4 0

 , −T =
 0 2 −3
−2 0 4
3 −4 0


We observe that TT =−T.

Step 5: Check diagonal elements

All diagonal elements of T are zero, which is consistent with the definition of a
skew-symmetric matrix.

Step 6: Conclusion

Since TT =−T and all diagonal elements are zero, the matrix T is skew-symmetric.

Yes

Exercise 15. Construct the 4×4 identity matrix I4.
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15 CHAPTER 1. MATRICES

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Exercise 16. Construct a 2×3 zero matrix Z.

Z =
(
0 0 0
0 0 0

)

Exercise 17. Given

A =
(
1 2
2 4

)
,

show that A is symmetric.

Since A = AT, A is symmetric.

Exercise 18. Given

B =
(
0 −1
1 0

)
,

show that B is skew-symmetric.

Since BT =−B, B is skew-symmetric.

Exercise 19. Construct a 3×3 symmetric matrix with entries si j = i · j .

To construct a 3×3 symmetric matrix S with entries si j = i · j , we proceed
as follows:

Step 1: Understand the entry definition. The matrix entries are defined by
the product of their row and column indices:

si j = i · j for i , j = 1,2,3

Step 2: Compute each matrix element.
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16 CHAPTER 1. MATRICES

s11 = 1 ·1 = 1

s12 = 1 ·2 = 2 (= s21)

s13 = 1 ·3 = 3 (= s31)

s22 = 2 ·2 = 4

s23 = 2 ·3 = 6 (= s32)

s33 = 3 ·3 = 9

Step 3: Assemble the matrix.
The symmetric matrix S is:

S =
s11 s12 s13

s21 s22 s23

s31 s32 s33

=
1 2 3

2 4 6
3 6 9


Verification of symmetry: The matrix S is symmetric because si j = s j i for all

i , j , which follows from the commutative property of multiplication (i · j = j ·i ).
Note: This matrix has rank 1 because all rows are scalar multiples of the first

row (1,2,3). Its eigenvalues are:

• λ1 = tr(S) = 14 (since rank is 1)

• λ2 = λ3 = 0

Exercise 20. Construct a 3×3 skew-symmetric matrix with entries ki j =
i − j for i < j .

To construct a 3× 3 skew-symmetric matrix K with entries ki j = i − j for
i < j , we proceed as follows:

Step 1: Recall the properties of a skew-symmetric matrix. A matrix K is skew-
symmetric if:

KT =−K

This implies:

• Diagonal entries must satisfy ki i =−ki i ⇒ ki i = 0

• Off-diagonal entries satisfy ki j =−k j i for i ̸= j

Step 2: Compute the matrix entries.
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17 CHAPTER 1. MATRICES

Using the given formula ki j = i − j for i < j :

k12 = 1−2 =−1 ⇒ k21 = 1

k13 = 1−3 =−2 ⇒ k31 = 2

k23 = 2−3 =−1 ⇒ k32 = 1

Diagonal entries (must be zero):

k11 = k22 = k33 = 0

Step 3: Assemble the matrix.

The skew-symmetric matrix K is:

K =
0 −1 −2

1 0 −1
2 1 0


Verification of skew-symmetry: We can verify that:

KT =
 0 1 2
−1 0 1
−2 −1 0

=−K

Conclusion: The required 3×3 skew-symmetric matrix is:

0 −1 −2
1 0 −1
2 1 0



Note: This matrix has:

• All diagonal elements zero (characteristic of skew-symmetric matrices)

• Eigenvalues that come in pure imaginary conjugate pairs or zero

• Determinant zero (all odd-dimensional skew-symmetric matrices are sin-
gular)
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18 CHAPTER 1. MATRICES

Exercise 21. Let

A =
1 0 0

x 1 0
2 y 1

 , B =
0 a 3

0 0 b
0 0 0

 , I =
1 0 0

0 1 0
0 0 1

 , O =
0 0 0

0 0 0
0 0 0


where x, y, a,b ∈R.

1. Identify the type of each matrix (identity, zero, upper triangular,
lower triangular, or none).

2. Compute the product A · I and I ·A. What do you observe?

3. Compute B+O and O ·B. What do you observe?

4. Find all values of x and y for which A is both lower triangular and
satisfies A2 = I.

5. Determine if there exist values of a and b such that B2 = O.

1. Identify the type of each matrix

A =
1 0 0

x 1 0
2 y 1


Type: Lower triangular matrix (all entries above the main diagonal are zero)

B =
0 a 3

0 0 b
0 0 0


Type: Upper triangular matrix (all entries below the main diagonal are zero)

I =
1 0 0

0 1 0
0 0 1


Type: Identity matrix

O =
0 0 0

0 0 0
0 0 0


Type: Zero matrix
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2. Compute A · I and I ·A

A · I =
1 0 0

x 1 0
2 y 1

1 0 0
0 1 0
0 0 1

=
1 0 0

x 1 0
2 y 1

= A

I ·A =
1 0 0

0 1 0
0 0 1

1 0 0
x 1 0
2 y 1

=
1 0 0

x 1 0
2 y 1

= A

Observation: A · I = I ·A = A. The identity matrix acts as the multiplicative
identity for matrices.

3. Compute B+O and O ·B

B+O =
0 a 3

0 0 b
0 0 0

+
0 0 0

0 0 0
0 0 0

=
0 a 3

0 0 b
0 0 0

= B

O ·B =
0 0 0

0 0 0
0 0 0

0 a 3
0 0 b
0 0 0

=
0 0 0

0 0 0
0 0 0

= O

Observation: B+O = B (zero matrix is additive identity) and O·B = O (prod-
uct with zero matrix gives zero matrix).

4. Find values of x and y for which A is lower triangular and A2 =
I

First compute A2:

A2 =
1 0 0

x 1 0
2 y 1

1 0 0
x 1 0
2 y 1

=
 1 0 0

x +x 1 0
2+2+ y x y + y 1

=
 1 0 0

2x 1 0
4+ y x 2y 1


Set A2 = I:  1 0 0

2x 1 0
4+ y x 2y 1

=
1 0 0

0 1 0
0 0 1


This gives the system:

2x = 0

4+ y x = 0

2y = 0

Mathematics 2 - 100 Exercises with Solutions Author: Djabi Abdelmoumene



20 CHAPTER 1. MATRICES

From 2x = 0: x = 0
From 2y = 0: y = 0
Check 4+ y x = 4+0 = 4 ̸= 0 → Contradiction!

Conclusion: There are no values of x and y that satisfy A2 = I.

5. Determine if there exist values of a and b such that B2 = O

Compute B2:

B2 =
0 a 3

0 0 b
0 0 0

0 a 3
0 0 b
0 0 0

=
0 0 ab

0 0 0
0 0 0


Set B2 = O: 0 0 ab

0 0 0
0 0 0

=
0 0 0

0 0 0
0 0 0


This requires ab = 0.
Conclusion: Yes, there exist values of a and b such that B2 = O. Specifically,

any pair (a,b) with ab = 0 (i.e., at least one of a or b is zero).

Exercise 22. Given

E =
 0 a b
−a 0 c
−b −c 0

 ,

show that E is skew-symmetric for any real numbers a,b,c.

To show that the matrix

E =
 0 a b
−a 0 c
−b −c 0


is skew-symmetric for any real numbers a,b,c, we proceed as follows:

Step 1: Recall the definition of a skew-symmetric matrix. A matrix E is skew-
symmetric if it satisfies:

ET =−E

This requires two conditions:

1. All diagonal elements must be zero: ei i = 0

2. Off-diagonal elements must satisfy ei j =−e j i for all i ̸= j
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Step 2: Verify the conditions for matrix E.
Condition 1: Diagonal elements Examine the diagonal entries:

e11 = 0, e22 = 0, e33 = 0

All diagonal elements are indeed zero.
Condition 2: Off-diagonal elements Check the symmetric entries:

e12 = a and e21 =−a ⇒ e12 =−e21

e13 = b and e31 =−b ⇒ e13 =−e31

e23 = c and e32 =−c ⇒ e23 =−e32

Step 3: Transpose verification. Compute ET and compare with −E:

ET =
0 −a −b

a 0 −c
b c 0

=−
 0 a b
−a 0 c
−b −c 0

=−E

Conclusion: Matrix E satisfies ET = −E and therefore is skew-symmetric
for all real numbers a,b,c.

Note: This matrix has the following properties:

• All eigenvalues are purely imaginary or zero

• Determinant is zero (since det(E) = det(−ET) = (−1)3 det(ET) =−det(E))

• The rank is always even (except for the zero matrix case a = b = c = 0)

Exercise 23. Given

F =
1 2 3

0 4 5
0 0 6

 ,

compute FT and verify whether F is upper triangular.

Given the matrix

F =
1 2 3

0 4 5
0 0 6

 ,

we perform the following analysis:
Part 1: Compute the transpose FT
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The transpose of F, denoted FT, is obtained by interchanging rows and columns:

FT =
1 0 0

2 4 0
3 5 6


Part 2: Verify if F is upper triangular
An n×n matrix is upper triangular if all entries below the main diagonal are

zero, i.e., fi j = 0 for all i > j .
Examine F’s structure:

• Below-diagonal entries: f21, f31, f32

• These entries in F are: 0,0,0 respectively

Conclusion:
1. The transpose of F is:

FT =
1 0 0

2 4 0
3 5 6


2. The original matrix F is upper triangular since all elements below the

main diagonal are zero.
Note: Key observations about F:

• The eigenvalues are exactly the diagonal elements: 1, 4, 6

• The determinant is the product of diagonal elements: 1×4×6 = 24

• FT is lower triangular, which is always true for the transpose of an upper
triangular matrix

1.2.3 Advanced Exercises on Matrix Operations

Exercise 24. Let A be a square matrix satisfying A3 = 2A+ I. Prove that A
is invertible and find A−1 in terms of A.

Given a square matrix A satisfying the equation:

A3 = 2A+ I,

we prove its invertibility and find an expression for A−1.
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Part 1: Prove A is invertible
Rewrite the given equation:

A3 −2A = I

Factor out A on the left side:
A(A2 −2I) = I

This shows that:

• A has a right inverse: (A2 −2I)

• (A2 −2I)A = A3 −2A = I (using the original equation), so it’s also a left in-
verse

Part 2: Find A−1 in terms of A
From the factorization above, we immediately obtain:

A−1 = A2 −2I

Verification: Multiply A by its proposed inverse:

A(A2 −2I) = A3 −2A = (2A+ I)−2A = I

and similarly:
(A2 −2I)A = A3 −2A = I

Conclusion: The matrix A is invertible, and its inverse is given by:

A−1 = A2 −2I

Note: This result shows how matrix polynomials can be used to express in-
verses. The method works because:

• The equation relates A3 to lower powers of A

• We could solve for I in terms of A

• The inverse appears as a matrix polynomial in A

Exercise 25. Prove that for any square matrix C, the matrix C+CT is sym-
metric and C−CT is skew-symmetric.

Let C be an arbitrary n ×n square matrix. We prove the two properties sep-
arately.
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Part 1: C+CT is symmetric

A matrix A is symmetric if AT = A. Consider:

(C+CT)T = CT + (CT)T = CT +C = C+CT.

Thus, C+CT satisfies the definition of a symmetric matrix.
Part 2: C−CT is skew-symmetric

A matrix B is skew-symmetric if BT =−B. Consider:

(C−CT)T = CT − (CT)T = CT −C =−(C−CT).

Thus, C−CT satisfies the definition of a skew-symmetric matrix.
Conclusion: For any square matrix C:

• C+CT is symmetric (as it equals its own transpose)

• C−CT is skew-symmetric (as its transpose equals its negative)

Exercise 26. Let D be an n ×n strictly upper triangular matrix (zeros on
and below diagonal). Show that Dn = 0.

Let D be an n ×n strictly upper triangular matrix, meaning Di j = 0 for all
i ≥ j . We will prove that Dn = 0 by examining the structure of matrix powers.

Key Observation: For strictly upper triangular matrices, each multiplication
by D shifts the non-zero entries further above the diagonal. Specifically:

• In D, non-zero entries exist only in positions where j − i ≥ 1

• In D2, non-zero entries exist only where j − i ≥ 2

• In general, for Dk , non-zero entries exist only where j − i ≥ k

Proof by Matrix Multiplication: Consider the matrix multiplication Dk = Dk−1·
D. For any entry (Dk )i j :

(Dk )i j =
n∑

m=1
(Dk−1)i mDm j

By the induction hypothesis:

• (Dk−1)i m ̸= 0 only if m − i ≥ k −1

• Dm j ̸= 0 only if j −m ≥ 1
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Thus, for (Dk )i j ̸= 0, we must have:

j − i = ( j −m)+ (m − i ) ≥ 1+ (k −1) = k

Conclusion: For k = n, the condition becomes j − i ≥ n. However, since
1 ≤ i , j ≤ n, the maximum possible difference is n −1. Therefore:

(Dn)i j = 0 for all i , j

which proves that Dn = 0.

Exercise 27. Matrix Properties Investigation

Consider the matrix

F =
1 1 0

1 1 0
0 0 −2


1. Verify whether F is symmetric.

2. Compute F2 and determine if F is nilpotent (i.e., Fk = 0 for some
positive integer k).

3. Find the rank of F.

4. Is F diagonalizable? Explain your reasoning.

5. Compute the eigenvalues of F by solving det(F−λI) = 0.

1. Verify whether F is symmetric

Given:

F =
1 1 0

1 1 0
0 0 −2


Compute the transpose:

FT =
1 1 0

1 1 0
0 0 −2

T

=
1 1 0

1 1 0
0 0 −2


Since F = FT, the matrix F is symmetric.
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2. Compute F2 and determine if F is nilpotent

Compute F2:

F2 =
1 1 0

1 1 0
0 0 −2

1 1 0
1 1 0
0 0 −2

=
 1 ·1+1 ·1+0 ·0 1 ·1+1 ·1+0 ·0 1 ·0+1 ·0+0 · (−2)

1 ·1+1 ·1+0 ·0 1 ·1+1 ·1+0 ·0 1 ·0+1 ·0+0 · (−2)
0 ·1+0 ·1+ (−2) ·0 0 ·1+0 ·1+ (−2) ·0 0 ·0+0 ·0+ (−2) · (−2)



F2 =
2 2 0

2 2 0
0 0 4


Since F2 ̸= 0 and F is symmetric (and thus diagonalizable), no power of F

will be the zero matrix.
Conclusion: F is not nilpotent.

3. Find the rank of F

Perform row operations:

F =
1 1 0

1 1 0
0 0 −2

 R2→R2−R1−−−−−−−→
1 1 0

0 0 0
0 0 −2


We have 2 nonzero rows, so rank(F) = 2.

4. Is F diagonalizable?

Since F is a symmetric matrix, by the Spectral Theorem, F is diagonalizable. All
symmetric matrices are orthogonally diagonalizable.

5. Compute the eigenvalues of F

Solve det(F−λI) = 0:

F−λI =
1−λ 1 0

1 1−λ 0
0 0 −2−λ



det(F−λI) = (−2−λ) ·det

(
1−λ 1

1 1−λ
)
= (−2−λ)

[
(1−λ)2 −1

]
= (−2−λ)(1−2λ+λ2 −1) = (−2−λ)(λ2 −2λ) = (−2−λ)λ(λ−2)

Mathematics 2 - 100 Exercises with Solutions Author: Djabi Abdelmoumene



27 CHAPTER 1. MATRICES

Set determinant to zero:

(−2−λ)λ(λ−2) = 0

Eigenvalues: λ=−2,0,2
The eigenvalues of F are −2,0,2.

Exercise 28. Using only the definition of matrix multiplication, prove
that:

1. If A and B are upper triangular, then AB is upper triangular

2. The diagonal entries of AB are the products of corresponding diag-
onal entries of A and B when both are upper triangular

We prove both properties using the definition of matrix multiplication.
Part 1: AB is upper triangular when A and B are upper triangular
Let A = (ai j ) and B = (bi j ) be n ×n upper triangular matrices, meaning:

ai j = 0 for i > j and bi j = 0 for i > j

The product AB = C = (ci j ) has entries defined by:

ci j =
n∑

k=1
ai k bk j

For i > j , we show ci j = 0:

• When k < i , since A is upper triangular, ai k = 0 (because i > k)

• When k ≥ i , since B is upper triangular and i > j , we have k ≥ i > j , so
bk j = 0

Thus, every term in the sum for ci j is zero when i > j , proving AB is upper
triangular.

Part 2: Diagonal entries of AB are products of diagonal entries
Consider the diagonal entries ci i :

ci i =
n∑

k=1
ai k bki

Again using the upper triangular property:

• For k < i , ai k = 0 (since i > k)
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• For k > i , bki = 0 (since k > i )

Thus, the only non-zero term in the sum is when k = i :

ci i = ai i bi i

This shows that each diagonal entry of AB is exactly the product of the cor-
responding diagonal entries of A and B.

Conclusion: For upper triangular matrices A and B:

1. The product AB remains upper triangular

2. The diagonal entries of AB are the products ai i bi i of corresponding diag-
onal entries

Exercise 29. From the definition of the matrix inverse, prove that:

1. If A is invertible, then (AT)−1 = (A−1)T

2. The inverse of a lower triangular matrix is lower triangular

1. Using (AB)T = BTAT:

I = IT = (AA−1)T = (A−1)TAT

Thus (A−1)T is the inverse of AT.

2. Let L be lower triangular. Inductively, solving LX = I column by column
from left to right, each column of X (the inverse) has zeros above the di-
agonal.

Exercise 30. Using only the trace definition tr(A) =∑
ai i , prove:

1. tr(AB) = tr(BA)

2. There exist no matrices A,B such that AB−BA = I

1. Prove tr(AB) = tr(BA) using the trace definition

Let A = (ai j ) and B = (bi j ) be n ×n matrices.
By definition: tr(AB) =∑n

i=1(AB)i i

The (i , i )-entry of AB is:

(AB)i i =
n∑

k=1
ai k bki
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Therefore:

tr(AB) =
n∑

i=1

n∑
k=1

ai k bki

Now consider tr(BA):

tr(BA) =
n∑

i=1
(BA)i i =

n∑
i=1

n∑
k=1

bi k aki

Re-index the double sum by swapping i and k:

tr(BA) =
n∑

k=1

n∑
i=1

bki ai k =
n∑

k=1

n∑
i=1

ai k bki

This is exactly the same expression as for tr(AB).
Therefore: tr(AB) = tr(BA).

2. Prove there exist no matrices A,B such that AB−BA = I

Assume for contradiction that there exist matrices A,B such that:

AB−BA = I

Take the trace of both sides:

tr(AB−BA) = tr(I)

Using linearity of trace:

tr(AB)− tr(BA) = tr(I)

But from part 1, we know tr(AB) = tr(BA), so:

tr(AB)− tr(AB) = tr(I)

0 = tr(I)

For an n ×n identity matrix, tr(I) = n ̸= 0.
This is a contradiction.
Therefore, no such matrices A,B exist such that AB−BA = I.

Exercise 31. From the definition of symmetric (AT = A) and skew-
symmetric (AT =−A) matrices:

1. Prove every square matrix can be written uniquely as S+K where S
is symmetric and K is skew-symmetric

2. Show that if A is invertible and skew-symmetric, then A−1 is skew-
symmetric
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1. Prove every square matrix can be written uniquely as S +K
where S is symmetric and K is skew-symmetric

Let A be an n ×n matrix.

Existence

Define:

S = A+AT

2
, K = A−AT

2

Check that S is symmetric:

ST =
(

A+AT

2

)T

= AT + (AT)T

2
= AT +A

2
= S

Check that K is skew-symmetric:

KT =
(

A−AT

2

)T

= AT − (AT)T

2
= AT −A

2
=−K

Now verify the sum:

S +K = A+AT

2
+ A−AT

2
= 2A

2
= A

Thus, every square matrix can be decomposed as A = S+K with S symmetric
and K skew-symmetric.

Uniqueness

Suppose A = S1 +K1 = S2 +K2 where S1,S2 are symmetric and K1,K2 are skew-
symmetric.

Then:

S1 −S2 = K2 −K1

Let M = S1 −S2 = K2 −K1.
Since S1 and S2 are symmetric, M is symmetric: MT = M.
Since K1 and K2 are skew-symmetric, M is skew-symmetric: MT =−M.
Therefore:

M = MT =−M ⇒ 2M = 0 ⇒ M = 0

Thus S1 = S2 and K1 = K2, proving uniqueness.
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2. Show that if A is invertible and skew-symmetric, then A−1 is
skew-symmetric

Assume A is invertible and skew-symmetric, so AT =−A.
We want to show (A−1)T =−A−1.
Start with AT =−A and take the inverse of both sides:

(AT)−1 = (−A)−1

Using the property (AT)−1 = (A−1)T and (−A)−1 =−A−1:

(A−1)T =−A−1

This shows that A−1 is skew-symmetric.

Alternative proof for part 2:

Since A is skew-symmetric: AT =−A.
Multiply both sides on left and right by A−1:

A−1ATA−1 = A−1(−A)A−1

Using (AB)−1 = B−1A−1 property and A−1A = I:

(A−1)T =−A−1

This completes the proof.

Exercise 32. Using only the definition of orthogonal matrices (QTQ = I),
prove:

1. The product of orthogonal matrices is orthogonal

2. If λ is an eigenvalue of Q, then |λ| = 1

3. The inverse of an orthogonal matrix is also orthogonal

1. Prove the product of orthogonal matrices is orthogonal

Let Q and R be orthogonal matrices, so QTQ = I and RTR = I.
Consider the product QR. We need to show that (QR)T(QR) = I.
Compute:

(QR)T(QR) = (RTQT)(QR) = RT(QTQ)R = RTIR = RTR = I

Therefore, QR is orthogonal.
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2. Prove if λ is an eigenvalue of Q, then |λ| = 1

Let λ be an eigenvalue of Q with eigenvector v ̸= 0, so Qv = λv .

Take the norm squared of both sides:

∥Qv∥2 = ∥λv∥2 = |λ|2∥v∥2

Now compute ∥Qv∥2 using the definition of norm:

∥Qv∥2 = (Qv)T(Qv) = vTQTQv = vTIv = vTv = ∥v∥2

Equating both expressions:

∥v∥2 = |λ|2∥v∥2

Since v ̸= 0, we can divide by ∥v∥2:

1 = |λ|2 ⇒ |λ| = 1

3. Prove the inverse of an orthogonal matrix is also orthogonal

Let Q be orthogonal, so QTQ = I.

Since QTQ = I, we have Q−1 = QT.

Now consider Q−1. We need to show that (Q−1)T(Q−1) = I.

Compute:

(Q−1)T(Q−1) = (QT)TQT = QQT

But since Q is orthogonal, QQT = I (this follows from QTQ = I and the fact
that Q is square and invertible).

Therefore:

(Q−1)T(Q−1) = I

This shows that Q−1 is orthogonal.

Alternative proof for part 3:

Since Q−1 = QT and we know from part 1 that the transpose of an orthogonal
matrix is orthogonal (as (QT)TQT = QQT = I), the result follows immediately.
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Exercise 33. Let A,B and C be three matrices, and let α= 3,β= 1
2 , such

that:

A =
(

1 −2 3 5
0 4 −3 2

)
,B =

(
1 6 4 −2
0 −4 5 3

)
,C =


1
2 5
3 4
2 1

4
−1 0


1. Perform the following operations if it is possible if it is not explain

why.
A+C,BT +C,αA−βB, A+B−CT

2. Find the matrix D that satisfies 2A+αB− 1
βD = O.

1. A+C : We can’t calculate, because A and C are not with the same order.

BT +C =


1 0
6 −4
4 5
−2 3

+


1
2 5
3 4
2 1

4
−1 0

=


3
2 5
9 0
6 21

4
−3 3


αA−βB = 3

(
1 −2 3 5
0 4 −3 2

)
− 1

2

(
1 6 4 −2
0 −4 5 3

)
=

( 5
2 −9 7 16
0 14 −23

2
9
2

)

A+B−CT =
(

1 −2 3 5
0 4 −3 2

)
+

(
1 6 4 −2
0 −4 5 3

)
−

( 1
2 3 2 −1
5 4 1

4 0

)
=

( 3
2 1 5 4
−5 −4 7

4 5

)
2.

D = 2βA+αβB

= 2× 1
2 ×

(
1 −2 3 5
0 4 −3 2

)
+3× 1

2 ×
(

1 6 4 −2
0 −4 5 3

)
=

( 5
2 7 9 2
0 −2 9

2
13
2

)
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Chapter 2

Determinant and Inverse of Matrix

Introduction
Determinants quantify matrix in-
vertibility and solve linear systems,
while matrix inverses enable effi-
cient equation-solving. This section
develops computational proficiency
through targeted exercises on deter-
minant evaluation, inversion tech-
niques, and their combined appli-
cations. Master these concepts by
working through progressively chal-
lenging problems with detailed so-
lutions.

|A| =
∑ n

j=1
(−1)i

+ j a i j · |A i j|

A
−1 =

1

det(A
)
ad j (A)

2.1 Essential Definitions: Determinants and Matrix
Inverses

2.1.1 Determinant Definitions

Definition 2.1 (Determinant (2×2)). For A =
(

a b
c d

)
:

det(A) = ad −bc

Definition 2.2 (Cofactor Expansion). For A ∈ Rn×n , the determinant along row

34
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i :

det(A) =
n∑

j=1
(−1)i+ j ai j det(Mi j )

where Mi j is the submatrix obtained by deleting row i and column j .

Definition 2.3 (Sarrus’ Rule (3×3 Only)). For A =
a b c

d e f
g h i

:

det(A) = aei +b f g + cdh − ceg −bdi −a f h

Definition 2.4 (Gauss Elimination Method).

det(A) = (−1)s ·
n∏

i=1
a(n)

i i

where s is the number of row swaps and a(n)
i i are the diagonal entries after row

reduction to upper triangular form.

2.1.2 Matrix Inverse Definitions

Definition 2.5 (Adjoint Method). For invertible A ∈Rn×n :

A−1 = 1

det(A)
adj(A)

where adj(A) is the transpose of the cofactor matrix.

Definition 2.6 (Cofactor Matrix). The matrix C where ci j = (−1)i+ j det(Mi j ).

Definition 2.7 (Gauss-Jordan Method). Augment A with In and perform row
operations:

[A|In] → [In |A−1]

Definition 2.8 (Singular Matrix). A square matrix A with det(A) = 0 (no inverse
exists).

Definition 2.9 (Properties).

• det(AB) = det(A)det(B)

• det(AT) = det(A)

• det(A−1) = det(A)−1

• det(cA) = cn det(A) for scalar c
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2.2 Exercises and Solutions

2.2.1 Determinants

Exercise 34. Compute the determinant of the matrix

A =
(
3 −1
2 4

)
using the formula for 2×2 matrices.

For a general 2×2 matrix:

A =
(

a b
c d

)
,

the determinant is given by:

det(A) = ad −bc.

Given the specific matrix:

A =
(
3 −1
2 4

)
,

we identify its elements as:

a = 3, b =−1, c = 2, d = 4.

Substituting these values into the determinant formula:

det(A) = ad −bc

= (3)(4)− (−1)(2) (substitution)

= 12− (−2) (multiplication)

= 12+2 (simplifying sign)

= 14 . (final result)

Thus, det(A) = 14 .

Exercise 35. Compute the determinant of

B =
1 2 3

0 −1 4
2 0 1


using the cofactor expansion along the first row.
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For a general 3×3 matrix:

B =
b11 b12 b13

b21 b22 b23

b31 b32 b33

 ,

the determinant via cofactor expansion along the first row is:

det(B) = b11 ·C11 −b12 ·C12 +b13 ·C13,

where Ci j is the (i , j )-cofactor of B, given by:

Ci j = (−1)i+ j det(Mi j ),

and Mi j is the submatrix obtained by deleting row i and column j .
Given the matrix:

B =
1 2 3

0 −1 4
2 0 1

 ,

we compute its determinant step-by-step.

Step 1: Identify entries and submatrices

For the first row (i = 1):

• Entry b11 = 1:

M11 =
(−1 4

0 1

)
, C11 = (−1)1+1 det(M11) = det(M11)

• Entry b12 = 2:

M12 =
(
0 4
2 1

)
, C12 = (−1)1+2 det(M12) =−det(M12)

• Entry b13 = 3:

M13 =
(
0 −1
2 0

)
, C13 = (−1)1+3 det(M13) = det(M13)

Step 2: Compute each minor determinant

det(M11) = (−1)(1)− (4)(0) =−1−0 =−1,

det(M12) = (0)(1)− (4)(2) = 0−8 =−8,

det(M13) = (0)(0)− (−1)(2) = 0+2 = 2.
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Step 3: Combine results

Substitute into the cofactor expansion formula:

det(B) = b11C11 −b12C12 +b13C13

= 1 · (−1)−2 · (−8)+3 ·2

=−1+16+6

= 21 .

Verification (Optional)

Using the Rule of Sarrus:

det(B) = (1)(−1)(1)+ (2)(4)(2)+ (3)(0)(0)

− (3)(−1)(2)− (1)(4)(0)− (2)(0)(1)

=−1+16+0− (−6)−0−0 = 21.

The determinant of B is 21 .

Exercise 36. Compute the determinant of

C =
2 5 1

0 3 −2
0 0 4


using the property of triangular matrices.

For an n×n triangular matrix (upper or lower), the determinant is the prod-
uct of its diagonal elements. This property holds because:

det(C) = c11 × c22 ×·· ·×cnn .

Given the upper triangular matrix:

C =
2 5 1

0 3 −2
0 0 4

 ,

we identify its diagonal elements:

c11 = 2, c22 = 3, c33 = 4.
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Step 1: Apply the triangular matrix property

Since C is upper triangular, its determinant is:

det(C) = c11 × c22 × c33.

Step 2: Compute the product

det(C) = 2×3×4 = 24.

Verification (Optional)

To confirm, we perform cofactor expansion along the first column:

det(C) = 2 ·det

(
3 −2
0 4

)
−0 ·det

(
5 1
0 4

)
+0 ·det

(
5 1
3 −2

)
= 2((3)(4)− (−2)(0))−0+0

= 2(12−0) = 24.

The determinant of C is 24 .

Exercise 37. Use Sarrus’ rule to compute the determinant of

D =
 1 2 0
−1 3 4
2 −2 1

 .

Sarrus’ rule is a method to compute the determinant of a 3×3 matrix. Given
a matrix:

D =
a b c

d e f
g h i

 ,

the determinant is calculated as:

det(D) = aei +b f g + cdh − ceg −bdi −a f h.

Step 1: Write the matrix and repeat the first two columns

For the matrix:

D =
 1 2 0
−1 3 4
2 −2 1

 ,
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we append the first two columns to the right:

1 2 0 1 2
−1 3 4 −1 3
2 −2 1 2 −2

Step 2: Compute the products of the diagonals

Positive diagonals (left to right):

1 ·3 ·1 = 3,

2 ·4 ·2 = 16,

0 · (−1) · (−2) = 0.

Negative diagonals (right to left):

0 ·3 ·2 = 0,

2 · (−1) ·1 =−2,

1 ·4 · (−2) =−8.

Step 3: Sum the products

det(D) = (3+16+0)− (0+ (−2)+ (−8)) = 19− (−10) = 29.

The determinant of D is 29 .

Exercise 38. Compute the determinant of

E =
1 0 2

3 1 −1
2 0 4


using row operations (Gauss elimination).

To compute the determinant using row operations, we perform Gaussian
elimination while tracking how each operation affects the determinant. For a
square matrix, the determinant changes as follows:

• Swapping two rows multiplies the determinant by −1

• Multiplying a row by a scalar k multiplies the determinant by k

• Adding a multiple of one row to another leaves the determinant unchanged
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Given the matrix:

E =
1 0 2

3 1 −1
2 0 4

 ,

we perform row operations to transform it into upper triangular form.

Step 1: Eliminate the first column below the pivot

• Row 2 ← Row 2 −3× Row 1:(
3 1 −1

)−3× (
1 0 2

)= (
0 1 −7

)
(Determinant unchanged)

• Row 3 ← Row 3 −2× Row 1:(
2 0 4

)−2× (
1 0 2

)= (
0 0 0

)
(Determinant unchanged)

After these operations, the matrix becomes:

E′ =
1 0 2

0 1 −7
0 0 0


Step 2: Analyze the triangular form

The matrix now has a row of zeros, which means:

det(E′) = 0

Since we only performed operations that either preserve the determinant
or multiply it by 1 (no row swaps or scalar multiplications), we conclude:

det(E) = det(E′) = 0

Verification (Optional)

We can verify this result using cofactor expansion along the second column:

det(E) = 0 · (−1)1+2 det

(
3 −1
2 4

)
+1 · (−1)2+2 det

(
1 2
2 4

)
+0 · (−1)3+2 det

(
1 2
3 −1

)
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= 0+1 · (1 ·4−2 ·2)+0 = 0+0+0 = 0

The determinant of E is 0 .

Exercise 39. Find the determinant of

F =
0 0 3

0 2 0
1 0 0


using cofactor expansion.

We will compute the determinant of

F =
0 0 3

0 2 0
1 0 0


using cofactor expansion. While we can expand along any row or column, we
choose the first row for this calculation as it contains two zeros, which will sim-
plify our computation.

Step 1: Cofactor Expansion Formula

For a 3×3 matrix, the determinant expanded along the first row is:

det(F) = f11C11 − f12C12 + f13C13

where:

• fi j are the matrix elements

• Ci j = (−1)i+ j det(Mi j ) are the cofactors

• Mi j is the minor matrix obtained by deleting row i and column j

Step 2: Calculate Cofactors

For our matrix F:

1. First element ( f11 = 0):

C11 = (−1)1+1 det

(
2 0
0 0

)
= 1× (2×0−0×0) = 0
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2. Second element ( f12 = 0):

C12 = (−1)1+2 det

(
0 0
1 0

)
=−1× (0×0−0×1) = 0

3. Third element ( f13 = 3):

C13 = (−1)1+3 det

(
0 2
1 0

)
= 1× (0×0−2×1) =−2

Step 3: Compute Determinant

Substituting into the expansion formula:

det(F) = f11C11 − f12C12 + f13C13

= 0×0−0×0+3× (−2)

= 0−0−6

= −6

Verification (Alternative Expansion)

To verify, let’s expand along the second column instead:

det(F) =− f12C12 + f22C22 − f32C32

where:

C22 = det

(
0 3
1 0

)
=−3, C32 = det

(
0 3
0 0

)
= 0

giving:
det(F) =−0+2× (−3)−0 = −6

Both methods confirm that the determinant of F is −6 .

Exercise 40. Compute the determinant of

G =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2


using cofactor expansion.
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We will compute the determinant of

G =


2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2


using cofactor expansion along the first row, which contains two zeros that will
simplify our calculations.

Step 1: Cofactor Expansion Formula

For a 4×4 matrix, the determinant expanded along the first row is:

det(G) =
4∑

j=1
(−1)1+ j g1 j det(M1 j )

where M1 j is the 3×3 minor matrix obtained by deleting the first row and j -th
column.

Step 2: Calculate Non-Zero Terms

Since g13 = g14 = 0, we only need to compute:

1. First element ( j = 1):

M11 =
2 1 0

1 2 1
0 1 2

 , det(M11) = 2

∣∣∣∣2 1
1 2

∣∣∣∣−1

∣∣∣∣1 1
0 2

∣∣∣∣+0 = 2(4−1)−1(2−0) = 4

Contribution: (−1)2 ×2×4 = 8

2. Second element ( j = 2):

M12 =
1 1 0

0 2 1
0 1 2

 , det(M12) = 1

∣∣∣∣2 1
1 2

∣∣∣∣−1

∣∣∣∣0 1
0 2

∣∣∣∣+0 = 1(4−1)−0 = 3

Contribution: (−1)3 ×1×3 =−3

Step 3: Combine Results

det(G) = 8+ (−3)+0+0 = 5
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Verification (Laplace Expansion)

Expanding along the first column instead:

det(G) = 2

∣∣∣∣∣∣
2 1 0
1 2 1
0 1 2

∣∣∣∣∣∣−1

∣∣∣∣∣∣
1 0 0
1 2 1
0 1 2

∣∣∣∣∣∣+0−0

= 2×4−1×
(
1

∣∣∣∣2 1
1 2

∣∣∣∣)
= 8−1×3 = 5

Both methods confirm that the determinant of G is 5 .

Exercise 41. Show that the determinant of an orthogonal matrix Q is ±1.

To show that the determinant of an orthogonal matrix Q is ±1, we proceed
as follows:

Definition: A matrix Q is orthogonal if it satisfies:

QTQ = I

where QT is the transpose of Q and I is the identity matrix.

Step 1: Take the determinant of both sides.

det(QTQ) = det(I)

Step 2: Simplify using determinant properties.

det(QT) ·det(Q) = 1

Since det(QT) = det(Q), this becomes:

(det(Q))2 = 1

Step 3: Solve for det(Q).
det(Q) =±1

Thus, the determinant of an orthogonal matrix Q must be +1 or −1.

Exercise 42. Given

H =
1 2 3

4 5 6
7 8 9

 ,

show that det(H) = 0 without full computation.
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To show that det(H) = 0 without full computation, we observe the linear
dependence of the rows (or columns) of the matrix:

H =
1 2 3

4 5 6
7 8 9

 .

Step 1: Examine the rows of H. Notice that the third row is a linear combination
of the first two rows:

R3 = 2R2 −R1,

where:
2
(
4 5 6

)− (
1 2 3

)= (
7 8 9

)
.

Step 2: Implication for the determinant. Since one row is a linear combination
of the others, the rows of H are linearly dependent.
Step 3: Conclusion. A matrix with linearly dependent rows (or columns) has a
determinant of zero. Therefore:

det(H) = 0.

Exercise 43. Compute the determinant of

K =
1 a a2

1 b b2

1 c c2


(Vandermonde matrix).

To compute the determinant of the Vandermonde matrix:

K =
1 a a2

1 b b2

1 c c2

 ,

we use the formula for the determinant of a Vandermonde matrix of order
3×3:

Step 1: Recall the Vandermonde determinant formula. For a general 3 × 3
Vandermonde matrix:

det(K) =
∣∣∣∣∣∣
1 a a2

1 b b2

1 c c2

∣∣∣∣∣∣ ,
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the determinant is given by:

det(K) = (b −a)(c −a)(c −b).

Step 2: Verification (optional). To verify, we can compute the determinant us-
ing cofactor expansion along the first column:

det(K) = 1 ·
∣∣∣∣b b2

c c2

∣∣∣∣−1 ·
∣∣∣∣a a2

c c2

∣∣∣∣+1 ·
∣∣∣∣a a2

b b2

∣∣∣∣ .

Simplifying each minor:∣∣∣∣b b2

c c2

∣∣∣∣= bc2 −b2c = bc(c −b),

∣∣∣∣a a2

c c2

∣∣∣∣= ac2 −a2c = ac(c −a),

∣∣∣∣a a2

b b2

∣∣∣∣= ab2 −a2b = ab(b −a).

Substituting back:

det(K) = bc(c −b)−ac(c −a)+ab(b −a).

Factorizing:

det(K) = (b −a)(c −a)(c −b),

which matches the Vandermonde determinant formula.

Conclusion: The determinant of the given Vandermonde matrix is:

det(K) = (b −a)(c −a)(c −b).

2.2.2 Inverse of Matrices

Exercise 44. Find the inverse of

A =
(
2 1
1 1

)
using the adjoint method.
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To find the inverse of the matrix

A =
(
2 1
1 1

)
using the adjoint method, we follow these steps:

Step 1: Compute the determinant of A.

det(A) = (2)(1)− (1)(1) = 2−1 = 1.

Since det(A) ̸= 0, the matrix A is invertible.

Step 2: Find the adjugate matrix of A.

For a 2×2 matrix A =
(

a b
c d

)
, the adjugate (or adjoint) is given by:

adj(A) =
(

d −b
−c a

)
.

Applying this to our matrix A:

adj(A) =
(

1 −1
−1 2

)
.

Step 3: Compute the inverse of A.
The inverse of A is given by:

A−1 = 1

det(A)
adj(A).

Substituting the known values:

A−1 = 1

1

(
1 −1
−1 2

)
=

(
1 −1
−1 2

)
.

Conclusion: The inverse of the matrix A is:

A−1 =
(

1 −1
−1 2

)
.

Exercise 45. Find the inverse of

B =
1 0 2

0 1 0
1 0 1


using the adjoint method.
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To find the inverse of the matrix

B =
1 0 2

0 1 0
1 0 1


using the adjoint method, we follow these steps:

Step 1: Compute the determinant of B.
Using cofactor expansion along the second row (for simplicity):

det(B) = 0 · (−1)2+1
∣∣∣∣0 2
0 1

∣∣∣∣+1 · (−1)2+2
∣∣∣∣1 2
1 1

∣∣∣∣+0 · (−1)2+3
∣∣∣∣1 0
1 0

∣∣∣∣
= 1 · (1 ·1−2 ·1) = 1 · (1−2) =−1.

Since det(B) =−1 ̸= 0, the matrix is invertible.

Step 2: Find the matrix of cofactors.
Compute each cofactor Ci j = (−1)i+ j det(Mi j ), where Mi j is the minor ma-

trix:

C11 = (−1)1+1
∣∣∣∣1 0
0 1

∣∣∣∣= 1 · (1) = 1

C12 = (−1)1+2
∣∣∣∣0 0
1 1

∣∣∣∣=−1 · (0) = 0

C13 = (−1)1+3
∣∣∣∣0 1
1 0

∣∣∣∣= 1 · (−1) =−1

C21 = (−1)2+1
∣∣∣∣0 2
0 1

∣∣∣∣=−1 · (0) = 0

C22 = (−1)2+2
∣∣∣∣1 2
1 1

∣∣∣∣= 1 · (−1) =−1

C23 = (−1)2+3
∣∣∣∣1 0
1 0

∣∣∣∣=−1 · (0) = 0

C31 = (−1)3+1
∣∣∣∣0 2
1 0

∣∣∣∣= 1 · (−2) =−2

C32 = (−1)3+2
∣∣∣∣1 2
0 0

∣∣∣∣=−1 · (0) = 0

C33 = (−1)3+3
∣∣∣∣1 0
0 1

∣∣∣∣= 1 · (1) = 1
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Thus, the cofactor matrix is:

C =
 1 0 −1

0 −1 0
−2 0 1

 .

Step 3: Compute the adjoint matrix.
The adjoint is the transpose of the cofactor matrix:

adj(B) = CT =
 1 0 −2

0 −1 0
−1 0 1

 .

Step 4: Compute the inverse matrix.
Using the formula B−1 = 1

det(B) adj(B):

B−1 = 1

−1

 1 0 −2
0 −1 0
−1 0 1

=
−1 0 2

0 1 0
1 0 −1

 .

Conclusion: The inverse of matrix B is:

B−1 =
−1 0 2

0 1 0
1 0 −1

 .

Exercise 46. Find the inverse of

C =
(
1 2
3 4

)
using the Gauss-Jordan method.

To find the inverse of the matrix

C =
(
1 2
3 4

)
using the Gauss-Jordan method, we follow these steps:

Step 1: Form the augmented matrix [C|I].
We augment C with the identity matrix I of the same size:(

1 2 1 0
3 4 0 1

)
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Step 2: Perform row operations to obtain reduced row echelon form.
a) Eliminate the entry below the first pivot (3):

R2 → R2 −3R1(
1 2 1 0
0 −2 −3 1

)
b) Make the second pivot equal to 1:

R2 →−1

2
R2

(
1 2 1 0
0 1 3

2 −1
2

)
c) Eliminate the entry above the second pivot (2):

R1 → R1 −2R2(
1 0 −2 1
0 1 3

2 −1
2

)
Step 3: Verify the left side is the identity matrix.

The left side of the augmented matrix is now:(
1 0
0 1

)
= I

Step 4: Extract the inverse matrix.
The right side of the augmented matrix is now C−1:

C−1 =
(−2 1

3
2 −1

2

)

Conclusion: The inverse of matrix C is:

C−1 =
(−2 1

3
2 −1

2

)
Verification: We can verify that CC−1 = I:(

1 2
3 4

)(−2 1
3
2 −1

2

)
=

(
1(−2)+2( 3

2 ) 1(1)+2(−1
2 )

3(−2)+4( 3
2 ) 3(1)+4(−1

2 )

)
=

(
1 0
0 1

)
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Exercise 47. Find the inverse of

D =
1 0 0

2 1 0
3 2 1


using the Gauss-Jordan method.

To find the inverse of the lower triangular matrix

D =
1 0 0

2 1 0
3 2 1


using the Gauss-Jordan method, we follow these steps:

Step 1: Form the augmented matrix [D|I].
We augment D with the 3×3 identity matrix: 1 0 0 1 0 0

2 1 0 0 1 0
3 2 1 0 0 1


Step 2: Perform row operations to obtain the identity matrix on the left.

a) Eliminate the entries below the first pivot (2 and 3 in first column):

R2 → R2 −2R1

R3 → R3 −3R1

Resulting matrix:  1 0 0 1 0 0
0 1 0 −2 1 0
0 2 1 −3 0 1


b) Eliminate the entry below the second pivot (2 in second column):

R3 → R3 −2R2

Resulting matrix:  1 0 0 1 0 0
0 1 0 −2 1 0
0 0 1 1 −2 1


Step 3: Verify the left side is the identity matrix.
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The left side is now: 1 0 0
0 1 0
0 0 1

= I

Step 4: Extract the inverse matrix.
The right side of the augmented matrix is D−1:

D−1 =
 1 0 0
−2 1 0
1 −2 1


Conclusion: The inverse of matrix D is:

D−1 =
 1 0 0
−2 1 0
1 −2 1


Verification:

DD−1 =
1 0 0

2 1 0
3 2 1

 1 0 0
−2 1 0
1 −2 1

= I

Exercise 48. Show that the matrix

E =
(
1 2
2 4

)
is not invertible.

To show that the matrix

E =
(
1 2
2 4

)
is not invertible, we can use several methods. Here we present two different
approaches:

Method 1: Determinant Approach

Step 1: Compute the determinant of E. For a 2×2 matrix

(
a b
c d

)
, the determi-

nant is ad −bc.

det(E) = (1)(4)− (2)(2) = 4−4 = 0

Step 2: Interpret the result. A matrix is invertible if and only if its determinant
is non-zero. Since det(E) = 0, the matrix E is not invertible.
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Method 2: Row Reduction Approach
Step 1: Perform row operations.(

1 2
2 4

)
R2→R2−2R1−−−−−−−−→

(
1 2
0 0

)
Step 2: Analyze the row echelon form. The reduced matrix has a row of zeros,
indicating that the rows are linearly dependent.
Conclusion: A matrix is invertible if and only if it can be row reduced to the
identity matrix. Since E reduces to a matrix with a row of zeros, it is not invert-
ible.

Method 3: Rank Approach (Alternative)
The rank of E is 1 (since the rows are proportional), which is less than its

size (2). This confirms that E is not invertible.

Final Conclusion: All three methods consistently show that matrix E is not in-
vertible. The key observations are:

• The determinant is zero

• The rows are linearly dependent (second row is exactly twice the first row)

• The matrix cannot be reduced to the identity matrix

Exercise 49. Find the inverse of

F =
(
cosθ −sinθ
sinθ cosθ

)
(rotation matrix).

To find the inverse of the rotation matrix

F =
(
cosθ −sinθ
sinθ cosθ

)
,

we can use both the adjoint method and the property of orthogonal matrices.

Method 1: Adjoint Method
Step 1: Compute the determinant of F.

det(F) = (cosθ)(cosθ)− (−sinθ)(sinθ) = cos2θ+ sin2θ= 1

Step 2: Find the adjugate matrix of F. For a 2×2 matrix

(
a b
c d

)
, the adjugate is(

d −b
−c a

)
.
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adj(F) =
(

cosθ sinθ
−sinθ cosθ

)
Step 3: Compute the inverse.

F−1 = 1

det(F)
adj(F) =

(
cosθ sinθ
−sinθ cosθ

)

Method 2: Orthogonal Matrix Property
Step 1: Verify F is orthogonal. A matrix is orthogonal if FTF = I. Let’s check:

FTF =
(

cosθ sinθ
−sinθ cosθ

)(
cosθ −sinθ
sinθ cosθ

)
=

(
1 0
0 1

)
= I

Step 2: Use the orthogonal matrix property. For any orthogonal matrix, F−1 =
FT. Thus:

F−1 = FT =
(

cosθ sinθ
−sinθ cosθ

)
Geometric Interpretation: The inverse rotation matrix corresponds to a rota-
tion by −θ:

F−1 =
(
cos(−θ) −sin(−θ)
sin(−θ) cos(−θ)

)
=

(
cosθ sinθ
−sinθ cosθ

)
Conclusion: Both methods yield the same result. The inverse of the rotation
matrix F is:

F−1 =
(

cosθ sinθ
−sinθ cosθ

)
Verification: We can verify that FF−1 = I:(

cosθ −sinθ
sinθ cosθ

)(
cosθ sinθ
−sinθ cosθ

)
=

(
1 0
0 1

)

Exercise 50. Find the inverse of

G =
1 1 1

0 1 1
0 0 1


using back substitution.
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To find the inverse of the upper triangular matrix

G =
1 1 1

0 1 1
0 0 1


using back substitution, we proceed as follows:

Step 1: Set up the system GX = I

Let X = G−1 =
x11 x12 x13

x21 x22 x23

x31 x32 x33

. We solve for each column of X separately.

First column (solving Gx1 = e1):
1x11 +1x21 +1x31 = 1

0x11 +1x21 +1x31 = 0

0x11 +0x21 +1x31 = 0

Back substitution:

1. From third equation: x31 = 0

2. From second equation: x21 +0 = 0 ⇒ x21 = 0

3. From first equation: x11 +0+0 = 1 ⇒ x11 = 1

Second column (solving Gx2 = e2):
1x12 +1x22 +1x32 = 0

0x12 +1x22 +1x32 = 1

0x12 +0x22 +1x32 = 0

Back substitution:

1. From third equation: x32 = 0

2. From second equation: x22 +0 = 1 ⇒ x22 = 1

3. From first equation: x12 +1+0 = 0 ⇒ x12 =−1

Third column (solving Gx3 = e3):
1x13 +1x23 +1x33 = 0

0x13 +1x23 +1x33 = 0

0x13 +0x23 +1x33 = 1

Back substitution:
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1. From third equation: x33 = 1

2. From second equation: x23 +1 = 0 ⇒ x23 =−1

3. From first equation: x13 −1+1 = 0 ⇒ x13 = 0

Step 2: Construct the inverse matrix
Combining the solutions, we obtain:

G−1 =
1 −1 0

0 1 −1
0 0 1


Verification:

GG−1 =
1 1 1

0 1 1
0 0 1

1 −1 0
0 1 −1
0 0 1

=
1 0 0

0 1 0
0 0 1

= I

Conclusion: The inverse of matrix G is:

G−1 =
1 −1 0

0 1 −1
0 0 1


Remark: This result shows that for a unit upper triangular matrix, the inverse
maintains the same structure with alternating signs on the superdiagonals.

Exercise 51. Prove that if A and B are invertible, then (AB)−1 = B−1A−1.

To prove that if A and B are invertible matrices, then (AB)−1 = B−1A−1, we
proceed as follows:

Step 1: Recall the definition of matrix inverse
For any invertible matrix M, its inverse M−1 satisfies:

MM−1 = M−1M = I

where I is the identity matrix.

Step 2: Verify B−1A−1 satisfies the inverse property for AB
We need to show:

(AB)(B−1A−1) = I and (B−1A−1)(AB) = I
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a) Forward multiplication:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

b) Reverse multiplication:

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

Step 3: Uniqueness of the inverse
Since matrix inverses are unique (a matrix cannot have two different inverses),
the matrix B−1A−1 that satisfies both conditions must be the inverse of AB.

Step 4: Conclusion
We have shown that:

(AB)(B−1A−1) = I and (B−1A−1)(AB) = I

Therefore, by definition of matrix inverse:

(AB)−1 = B−1A−1

Remark:
This result shows that:

• The inverse of a product is the product of the inverses in reverse order

• The proof relies on the associative property of matrix multiplication

• The condition requires both A and B to be invertible, as otherwise the
inverses wouldn’t exist

Example Verification:

Let A =
(
1 1
0 1

)
and B =

(
1 0
1 1

)
. Then:

A−1 =
(
1 −1
0 1

)
, B−1 =

(
1 0
−1 1

)

AB =
(
2 1
1 1

)
, (AB)−1 =

(
1 −1
−1 2

)
= B−1A−1

Exercise 52. Find the inverse of

H =
2 0 0

0 3 0
0 0 5


(diagonal matrix).
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To find the inverse of the diagonal matrix

H =
2 0 0

0 3 0
0 0 5

 ,

we can use the properties of diagonal matrices.

Step 1: Verify invertibility
A diagonal matrix is invertible if and only if all its diagonal entries are non-zero.
Here, all diagonal entries (2, 3, 5) are non-zero, so H is invertible.

Step 2: Apply the inverse formula for diagonal matrices
For a diagonal matrix D = diag(d1,d2, . . . ,dn), its inverse is D−1 = diag(1/d1,1/d2, . . . ,1/dn).

Applying this to H:

H−1 =
1

2 0 0
0 1

3 0
0 0 1

5


Step 3: Verification
Let’s verify that HH−1 = I:2 0 0

0 3 0
0 0 5

1
2 0 0
0 1

3 0
0 0 1

5

=
2 · 1

2 0 0
0 3 · 1

3 0
0 0 5 · 1

5

=
1 0 0

0 1 0
0 0 1


Alternative Approach: Using the Adjoint Method
For completeness, we can also compute the inverse using the adjoint method:

1. Compute the determinant:

det(H) = 2×3×5 = 30 ̸= 0

2. The adjugate matrix for a diagonal matrix is also diagonal:

adj(H) =
3×5 0 0

0 2×5 0
0 0 2×3

=
15 0 0

0 10 0
0 0 6


3. Compute the inverse:

H−1 = 1

det(H)
adj(H) = 1

30

15 0 0
0 10 0
0 0 6

=
1

2 0 0
0 1

3 0
0 0 1

5


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Conclusion:
The inverse of the diagonal matrix H is:

H−1 =
1

2 0 0
0 1

3 0
0 0 1

5


Remark: This result demonstrates that:

• The inverse of a diagonal matrix is obtained by taking reciprocals of its
diagonal elements

• All off-diagonal elements remain zero

• This method is computationally efficient compared to general matrix in-
version

Exercise 53. Find the inverse of

K =
1 2 3

0 1 4
0 0 1


using forward substitution.

To find the inverse of the upper triangular matrix

K =
1 2 3

0 1 4
0 0 1


using forward substitution, we proceed as follows:

Step 1: Set up the system KX = I

Let X = K−1 =
x11 x12 x13

x21 x22 x23

x31 x32 x33

. We solve for each column of X separately.

First column (solving Kx1 = e1):
1x11 +2x21 +3x31 = 1

0x11 +1x21 +4x31 = 0

0x11 +0x21 +1x31 = 0

Forward substitution:
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1. From third equation: x31 = 0

2. From second equation: x21 +4(0) = 0 ⇒ x21 = 0

3. From first equation: x11 +2(0)+3(0) = 1 ⇒ x11 = 1

Second column (solving Kx2 = e2):
1x12 +2x22 +3x32 = 0

0x12 +1x22 +4x32 = 1

0x12 +0x22 +1x32 = 0

Forward substitution:

1. From third equation: x32 = 0

2. From second equation: x22 +4(0) = 1 ⇒ x22 = 1

3. From first equation: x12 +2(1)+3(0) = 0 ⇒ x12 =−2

Third column (solving Kx3 = e3):
1x13 +2x23 +3x33 = 0

0x13 +1x23 +4x33 = 0

0x13 +0x23 +1x33 = 1

Forward substitution:

1. From third equation: x33 = 1

2. From second equation: x23 +4(1) = 0 ⇒ x23 =−4

3. From first equation: x13 +2(−4)+3(1) = 0 ⇒ x13 = 5

Step 2: Construct the inverse matrix
Combining the solutions, we obtain:

K−1 =
1 −2 5

0 1 −4
0 0 1


Verification:

KK−1 =
1 2 3

0 1 4
0 0 1

1 −2 5
0 1 −4
0 0 1

=
1 0 0

0 1 0
0 0 1

= I
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Conclusion: The inverse of matrix K is:

K−1 =
1 −2 5

0 1 −4
0 0 1


Remark: This result demonstrates that:

• The inverse of an upper triangular matrix is also upper triangular

• The forward substitution method is particularly efficient for triangular
matrices

• The computation can be done column by column

• The pattern shows how the inverse "undoes" the operations of the origi-
nal matrix

2.2.3 Advanced Exercises on Determinants and Inverses

Exercise 54. Let A be an n ×n matrix with det(A) = 2. Compute:

1. det(A3)

2. det(2A−1)

3. det(ATA)

Given an n×n matrix A with det(A) = 2, we compute the following determi-
nants:

1. Computation of det(A3)
Property Used: For any square matrix A and integer k, det(Ak ) = (det A)k .

det(A3) = (det A)3 = 23 = 8

2. Computation of det(2A−1)
Properties Used:

• For an n ×n matrix A, det(kA) = kn det A

• det(A−1) = (det A)−1
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First, compute det(A−1):

det(A−1) = 1

det A
= 1

2

Then compute det(2A−1):

det(2A−1) = 2n det(A−1) = 2n · 1

2
= 2n−1

3. Computation of det(ATA)

Properties Used:

• det(AT) = det A

• det(AB) = det A ·detB

det(ATA) = det(AT) ·det A = det A ·det A = (det A)2 = 22 = 4

Final Answers:

1. det(A3) = 8

2. det(2A−1) = 2n−1

3. det(ATA) = 4

Remark: These results demonstrate important determinant properties:

• The power of a determinant scales exponentially

• The determinant of a scaled inverse depends on the matrix dimension n

• The product ATA preserves the determinant’s square
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Exercise 55. Prove the following statements for n ×n matrices:

1. If A is nilpotent (i.e., Ak = 0 for some k > 0), then det(A) = 0 and
I+A is invertible.

2. For any invertible matrix A, prove that det(adj(A)) = (det(A))n−1,
where adj(A) is the adjugate matrix of A.

3. Let A be a skew-symmetric matrix of odd order. Prove that det(A) =
0.

4. If A and B are similar matrices (i.e., B = P−1AP for some invertible
P), then:

(a) det(A) = det(B)

(b) tr(A) = tr(B)

(c) A is invertible if and only if B is invertible

1. Nilpotent matrices

Let A be nilpotent with Ak = 0 for some k > 0.
Taking determinants:

det(Ak ) = det(0) = 0

But det(Ak ) = (det(A))k , so:

(det(A))k = 0 ⇒ det(A) = 0

Now consider I+A. Suppose for contradiction that I+A is singular. Then
there exists v ̸= 0 such that:

(I+A)v = 0 ⇒ Av =−v

Then A2v = A(−v) =−Av = v , and by induction Ak v = (−1)k v ̸= 0 for all k, con-
tradicting nilpotence.

Alternatively, the inverse of I+A is given by the Neumann series:

(I+A)−1 = I−A+A2 −A3 +·· ·+ (−1)k−1Ak−1

which terminates since Ak = 0.
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2. Determinant of the adjugate matrix

We use the identity A ·adj(A) = det(A) · I.
Taking determinants:

det(A ·adj(A)) = det(det(A) · I)

det(A) ·det(adj(A)) = (det(A))n ·det(I) = (det(A))n

Since A is invertible, det(A) ̸= 0, so we can divide:

det(adj(A)) = (det(A))n−1

3. Skew-symmetric matrices of odd order

Let A be skew-symmetric: AT =−A.
Taking determinants:

det(A) = det(AT) = det(−A) = (−1)n det(A)

Since n is odd, (−1)n =−1, so:

det(A) =−det(A) ⇒ 2det(A) = 0 ⇒ det(A) = 0

4. Similar matrices

Let B = P−1AP.
(a) Determinant:

det(B) = det(P−1AP) = det(P−1)det(A)det(P) = 1

det(P)
det(A)det(P) = det(A)

(b) Trace:
tr(B) = tr(P−1AP) = tr(APP−1) = tr(A)

using the cyclic property of trace.
(c) Invertibility: If A is invertible, then B = P−1AP is invertible with inverse

P−1A−1P. If B is invertible, then A = PBP−1 is invertible with inverse PB−1P−1.

Exercise 56. Find the inverse of the block matrix:

C =
(

0 A
B 0

)
where A and B are invertible n ×n matrices.
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Find the inverse of the block matrix:

C =
(

0 A
B 0

)
where A and B are invertible n ×n matrices.

Let the inverse of C be:

C−1 =
(
X Y
Z W

)
where X,Y,Z,W are n ×n matrices to be determined.

Step 1: Use the definition of inverse

We require CC−1 = I2n : (
0 A
B 0

)(
X Y
Z W

)
=

(
In 0
0 In

)
Multiply the block matrices:(

0 ·X+A ·Z 0 ·Y+A ·W
B ·X+0 ·Z B ·Y+0 ·W

)
=

(
In 0
0 In

)
This gives us the system of equations:

AZ = In (1) (2.1)

AW = 0 (2) (2.2)

BX = 0 (3) (2.3)

BY = In (4) (2.4)

Step 2: Solve the equations

From equation (1): AZ = In ⇒ Z = A−1

From equation (2): AW = 0 ⇒ W = 0 (since A is invertible)
From equation (3): BX = 0 ⇒ X = 0 (since B is invertible)
From equation (4): BY = In ⇒ Y = B−1

Step 3: Write the inverse

C−1 =
(

0 B−1

A−1 0

)
Mathematics 2 - 100 Exercises with Solutions Author: Djabi Abdelmoumene



67 CHAPTER 2. DETERMINANT AND INVERSE OF MATRIX

Step 4: Verification

Let’s verify that C−1C = I2n :(
0 B−1

A−1 0

)(
0 A
B 0

)
=

(
0 ·0+B−1B 0 ·A+B−1 ·0

A−1 ·0+0 ·B A−1A+0 ·0

)
=

(
In 0
0 In

)
Also verify CC−1 = I2n :(

0 A
B 0

)(
0 B−1

A−1 0

)
=

(
0 ·0+AA−1 0 ·B−1 +A ·0

B ·0+0 ·A−1 BB−1 +0 ·0

)
=

(
In 0
0 In

)

Final Answer (
0 B−1

A−1 0

)

Remark

This result makes intuitive sense: the matrix C swaps blocks, so its inverse
should swap the inverses of the blocks.

Exercise 57. Let A be a 2×2 matrix with integer entries:

A =
(

a b
c d

)
where a,b,c,d ∈Z.

1. Find the formula for A−1 in terms of a,b,c,d .

2. Prove that if det(A) = 1 or det(A) = −1, then all entries of A−1 are
integers.

3. Give an example of a 2 × 2 matrix with integer entries where
det(A) = 2, and show that A−1 does not have all integer entries.

1. Find the formula for A−1

For a 2×2 matrix A =
(

a b
c d

)
, the inverse is given by:

A−1 = 1

det(A)

(
d −b
−c a

)
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where det(A) = ad −bc.

2. Prove that if det(A) = 1 or det(A) = −1, then all entries of A−1

are integers

Case 1: det(A) = 1
Then:

A−1 = 1

1

(
d −b
−c a

)
=

(
d −b
−c a

)
Since a,b,c,d are integers, all entries of A−1 are integers.

Case 2: det(A) =−1
Then:

A−1 = 1

−1

(
d −b
−c a

)
=

(−d b
c −a

)
Since a,b,c,d are integers, all entries of A−1 are integers.

Therefore, if det(A) =±1, then all entries of A−1 are integers.

3. Example with det(A) = 2

Let A =
(
1 1
1 3

)
.

Check the determinant:

det(A) = (1)(3)− (1)(1) = 3−1 = 2

Now compute the inverse:

A−1 = 1

2

(
3 −1
−1 1

)
=

( 3
2 −1

2
−1

2
1
2

)
The entries of A−1 are 3

2 ,−1
2 ,−1

2 , 1
2 , which are not integers.

This shows that when det(A) ̸= ±1, the inverse matrix may not have all inte-
ger entries, even when the original matrix has integer entries.

Exercise 58. Construct a 3×3 matrix E with:

• det(E) = 6

• All diagonal entries equal to 1

• All off-diagonal entries prime numbers

and verify its inverse has rational entries.
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Construct a 3×3 matrix E with:

• det(E) = 6

• All diagonal entries equal to 1

• All off-diagonal entries prime numbers

and verify its inverse has rational entries.

Step 1: Construct the matrix

Let’s try using the smallest prime numbers (2, 3, 5, 7, 11, 13) for the off-diagonal
entries. We need to find a combination that gives determinant 6.

Let:

E =
 1 2 3

5 1 7
11 13 1


All diagonal entries are 1, and all off-diagonal entries are prime numbers.

Step 2: Compute the determinant

Using the formula for 3×3 determinants:

det(E) = 1 ·
∣∣∣∣ 1 7
13 1

∣∣∣∣−2 ·
∣∣∣∣ 5 7
11 1

∣∣∣∣+3 ·
∣∣∣∣ 5 1
11 13

∣∣∣∣
= 1 · (1 ·1−7 ·13)−2 · (5 ·1−7 ·11)+3 · (5 ·13−1 ·11)

= 1 · (1−91)−2 · (5−77)+3 · (65−11)

= 1 · (−90)−2 · (−72)+3 · (54)

=−90+144+162

= 216 (Too large!)

Let’s try smaller prime numbers:

E =
1 2 2

3 1 3
5 5 1


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Compute the determinant:

det(E) = 1 ·
∣∣∣∣1 3
5 1

∣∣∣∣−2 ·
∣∣∣∣3 3
5 1

∣∣∣∣+2 ·
∣∣∣∣3 1
5 5

∣∣∣∣
= 1 · (1 ·1−3 ·5)−2 · (3 ·1−3 ·5)+2 · (3 ·5−1 ·5)

= 1 · (1−15)−2 · (3−15)+2 · (15−5)

= 1 · (−14)−2 · (−12)+2 · (10)

=−14+24+20

= 30 (Still too large)

Let’s try:

E =
1 2 2

2 1 3
3 2 1


Compute the determinant:

det(E) = 1 ·
∣∣∣∣1 3
2 1

∣∣∣∣−2 ·
∣∣∣∣2 3
3 1

∣∣∣∣+2 ·
∣∣∣∣2 1
3 2

∣∣∣∣
= 1 · (1 ·1−3 ·2)−2 · (2 ·1−3 ·3)+2 · (2 ·2−1 ·3)

= 1 · (1−6)−2 · (2−9)+2 · (4−3)

= 1 · (−5)−2 · (−7)+2 · (1)

=−5+14+2

= 11 (Still not 6)

Let’s try:

E =
1 2 3

2 1 2
3 2 1


Compute the determinant:

det(E) = 1 ·
∣∣∣∣1 2
2 1

∣∣∣∣−2 ·
∣∣∣∣2 2
3 1

∣∣∣∣+3 ·
∣∣∣∣2 1
3 2

∣∣∣∣
= 1 · (1 ·1−2 ·2)−2 · (2 ·1−2 ·3)+3 · (2 ·2−1 ·3)

= 1 · (1−4)−2 · (2−6)+3 · (4−3)

= 1 · (−3)−2 · (−4)+3 · (1)

=−3+8+3

= 8 (Closer!)
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Let’s try:

E =
1 2 2

3 1 2
2 3 1


Compute the determinant:

det(E) = 1 ·
∣∣∣∣1 2
3 1

∣∣∣∣−2 ·
∣∣∣∣3 2
2 1

∣∣∣∣+2 ·
∣∣∣∣3 1
2 3

∣∣∣∣
= 1 · (1 ·1−2 ·3)−2 · (3 ·1−2 ·2)+2 · (3 ·3−1 ·2)

= 1 · (1−6)−2 · (3−4)+2 · (9−2)

= 1 · (−5)−2 · (−1)+2 · (7)

=−5+2+14

= 11 (Still not 6)

After several trials, let’s use:

E =
1 2 3

2 1 2
1 2 1


Compute the determinant:

det(E) = 1 ·
∣∣∣∣1 2
2 1

∣∣∣∣−2 ·
∣∣∣∣2 2
1 1

∣∣∣∣+3 ·
∣∣∣∣2 1
1 2

∣∣∣∣
= 1 · (1 ·1−2 ·2)−2 · (2 ·1−2 ·1)+3 · (2 ·2−1 ·1)

= 1 · (1−4)−2 · (2−2)+3 · (4−1)

= 1 · (−3)−2 · (0)+3 · (3)

=−3+0+9

= 6 (Perfect!)

So our matrix is:

E =
1 2 3

2 1 2
1 2 1


Step 3: Compute the inverse

Using the adjugate method:

E−1 = 1

det(E)
adj(E) = 1

6
adj(E)
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First compute the cofactor matrix:

C11 =+
∣∣∣∣1 2
2 1

∣∣∣∣= 1−4 =−3

C12 =−
∣∣∣∣2 2
1 1

∣∣∣∣=−(2−2) = 0

C13 =+
∣∣∣∣2 1
1 2

∣∣∣∣= 4−1 = 3

C21 =−
∣∣∣∣2 3
2 1

∣∣∣∣=−(2−6) = 4

C22 =+
∣∣∣∣1 3
1 1

∣∣∣∣= 1−3 =−2

C23 =−
∣∣∣∣1 2
1 2

∣∣∣∣=−(2−2) = 0

C31 =+
∣∣∣∣2 3
1 2

∣∣∣∣= 4−3 = 1

C32 =−
∣∣∣∣1 3
2 2

∣∣∣∣=−(2−6) = 4

C33 =+
∣∣∣∣1 2
2 1

∣∣∣∣= 1−4 =−3

Cofactor matrix:

C =
−3 0 3

4 −2 0
1 4 −3


Adjugate matrix (transpose of cofactor matrix):

adj(E) = CT =
−3 4 1

0 −2 4
3 0 −3


Therefore:

E−1 = 1

6

−3 4 1
0 −2 4
3 0 −3

=
−1

2
2
3

1
6

0 −1
3

2
3

1
2 0 −1

2



Step 4: Verification

All entries of E−1 are rational numbers, as required.
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Final Answer

E =
1 2 3

2 1 2
1 2 1

 and E−1 =
−1

2
2
3

1
6

0 −1
3

2
3

1
2 0 −1

2


Exercise 59. Let A,B and C be three matrices, and let α,β,γ be real num-
bers, such that: : :

A =
 2 α 0

4 3 −2
0 5 α

 ,B =


−3β 4 7 0

1 2 −1 0
0 2 8 −1
3 6 2 β

 ,C =


2γ −γ −2 0 0
−2 6 7 3 1
4 4 5 7 6
1 0 −3 −2 5
0 3 1 2 3


1. Perform the following operations

det(A) , A2,det
(
A2) ,det(B) ,det(C) ,

1. ∣∣∣∣∣∣
2 α 0
4 3 −2
0 5 α

∣∣∣∣∣∣=−4α2 +6α+20

A2 =


9β2 +4 22−12β 52−21β −7
2−3β 6 −3 1
−1 14 60 −β−8

6−6β 6β+28 2β+31 β2 −2


det

(
A2)= 2916β4 +5184β3 +4464β2 +1920β+400∣∣∣∣∣∣∣∣∣

−3β 4 7 0
1 2 −1 0
0 2 8 −1
3 6 2 β

∣∣∣∣∣∣∣∣∣=−54β2 −48β−20

∣∣∣∣∣∣∣∣∣∣∣

2γ −γ −2 0 0
−2 6 7 3 1
4 4 5 7 6
1 0 −3 −2 5
0 3 1 2 3

∣∣∣∣∣∣∣∣∣∣∣
=−399γ−170
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Exercise 60. Let A and B two matrices, α and β are two real numbers,
such that:

A =
 α 1 0

0 −2 2
2 −1 3

 ,B =
 −1 −3

4
1
2

β 0 0
1 1

2 0


1. Calculate det(A) , det(B) , A×B and B×A.

2. Find the values of α and β for which the matrices A and B are in-
vertible.

3. For α= 0 and β= 1 , deduce A−1 and B−1.

1.

det(A) = 4−4α,det(B) = 1

4
β

2.

A×B =
 α 1 0

0 −2 2
2 −1 3

×
 −1 −3

4
1
2

β 0 0
1 1

2 0

=
 β−α −3

4α
1
2α

2−2β 1 0
1−β 0 1



B×A =
 −1 −3

4
1
2

β 0 0
1 1

2 0

×
 α 1 0

0 −2 2
2 −1 3

=
 1−α 0 0

αβ β 0
α 0 1


A is an invertible matrix for det(A) ̸= 0 ⇐⇒ 4−4α ̸= 0 this implies: α ̸= 1

α ∈R− {1}

B is an invertible matrix for det(B) ̸= 0 ⇐⇒ 1
4β ̸= 0 this implies: β ̸= 0

β ∈R− {0}

3. For α= 0 and β= 1,we have:

A×B =
 0 1 0

0 −2 2
2 −1 3

×
 −1 −3

4
1
2

1 0 0
1 1

2 0

=
 1 0 0

0 1 0
0 0 1


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B×A =
 −1 −3

4
1
2

1 0 0
1 1

2 0

×
 0 1 0

0 −2 2
2 −1 3

=
 1 0 0

0 1 0
0 0 1


then:

A−1 = B =
 −1 −3

4
1
2

1 0 0
1 1

2 0

 and B−1 = A =
 0 1 0

0 −2 2
2 −1 3


Exercise 61. Let A be the following matrix :

A =
 1 −3 6

6 −8 12
3 −3 4


1. Find A2 matrix then prove the existence of two real numbers α and

β such that: A2 = αA+βI3.

2. Calculate det(A) and det( 1
2 (A+ I3))

3. Deduce that the matrix A is invertible, then write A−1 in terms of A
and I3.

Part 1: Compute A2 and find α and β

First, we compute A2 = A×A:

A =
1 −3 6

6 −8 12
3 −3 4

 ,

A2 = A×A =
 1(1)+ (−3)(6)+6(3) 1(−3)+ (−3)(−8)+6(−3) 1(6)+ (−3)(12)+6(4)

6(1)+ (−8)(6)+12(3) 6(−3)+ (−8)(−8)+12(−3) 6(6)+ (−8)(12)+12(4)
3(1)+ (−3)(6)+4(3) 3(−3)+ (−3)(−8)+4(−3) 3(6)+ (−3)(12)+4(4)


Calculating each entry:

A2 =
1−18+18 −3+24−18 6−36+24

6−48+36 −18+64−36 36−96+48
3−18+12 −9+24−12 18−36+16

=
 1 3 −6
−6 10 −12
−3 3 −2

 .

Now, we seek real numbers α and β such that:

A2 = αA+βI3.
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Substituting A and I3: 1 3 −6
−6 10 −12
−3 3 −2

= α
1 −3 6

6 −8 12
3 −3 4

+β
1 0 0

0 1 0
0 0 1

 .

This gives the system of equations:

α ·1+β= 1,

α · (−3)+β ·0 = 3,

α ·6+β ·0 =−6,

α ·6+β ·0 =−6,

α · (−8)+β ·1 = 10,

α ·12+β ·0 =−12,

α ·3+β ·0 =−3,

α · (−3)+β ·0 = 3,

α ·4+β ·1 =−2.

From the second equation: −3α= 3 =⇒ α=−1.
Substituting α=−1 into the first equation: −1+β= 1 =⇒ β= 2.
Verifying with other equations (e.g., third equation: 6(−1) =−6, which holds

true).
Thus, A2 =−A+2I3, so α=−1 and β= 2.

Part 2: Compute det(A) and det
(

1
2(A+ I3)

)
First, compute det(A):

det(A) =
∣∣∣∣∣∣
1 −3 6
6 −8 12
3 −3 4

∣∣∣∣∣∣= 1 ·
∣∣∣∣−8 12
−3 4

∣∣∣∣− (−3) ·
∣∣∣∣6 12
3 4

∣∣∣∣+6 ·
∣∣∣∣6 −8
3 −3

∣∣∣∣ .

Calculating the 2×2 determinants:∣∣∣∣−8 12
−3 4

∣∣∣∣= (−8)(4)− (12)(−3) =−32+36 = 4,

∣∣∣∣6 12
3 4

∣∣∣∣= (6)(4)− (12)(3) = 24−36 =−12,∣∣∣∣6 −8
3 −3

∣∣∣∣= (6)(−3)− (−8)(3) =−18+24 = 6.
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Substituting back:

det(A) = 1 ·4+3 · (−12)+6 ·6 = 4−36+36 = 4.

Next, compute det
(1

2 (A+ I3)
)
:

A+ I3 =
2 −3 6

6 −7 12
3 −3 5

 ,
1

2
(A+ I3) =

 1 −1.5 3
3 −3.5 6

1.5 −1.5 2.5

 .

The determinant of a scalar multiple is:

det

(
1

2
(A+ I3)

)
=

(
1

2

)3

det(A+ I3).

Compute det(A+ I3):

det(A+ I3) =
∣∣∣∣∣∣
2 −3 6
6 −7 12
3 −3 5

∣∣∣∣∣∣= 2 ·
∣∣∣∣−7 12
−3 5

∣∣∣∣− (−3) ·
∣∣∣∣6 12
3 5

∣∣∣∣+6 ·
∣∣∣∣6 −7
3 −3

∣∣∣∣ .

Calculating the 2×2 determinants:∣∣∣∣−7 12
−3 5

∣∣∣∣= (−7)(5)− (12)(−3) =−35+36 = 1,

∣∣∣∣6 12
3 5

∣∣∣∣= (6)(5)− (12)(3) = 30−36 =−6,∣∣∣∣6 −7
3 −3

∣∣∣∣= (6)(−3)− (−7)(3) =−18+21 = 3.

Substituting back:

det(A+ I3) = 2 ·1+3 · (−6)+6 ·3 = 2−18+18 = 2.

Thus:

det

(
1

2
(A+ I3)

)
=

(
1

2

)3

·2 = 1

8
·2 = 1

4
.

Part 3: Invertibility of A and Expression for A−1

Since det(A) = 4 ̸= 0, the matrix A is invertible.
From Part 1, we have:

A2 =−A+2I3.
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Multiply both sides by A−1:

A =−I3 +2A−1 =⇒ 2A−1 = A+ I3 =⇒ A−1 = 1

2
(A+ I3).

Thus:

A−1 = 1

2

2 −3 6
6 −7 12
3 −3 5

 .

Verification:

Compute A×A−1:

A×A−1 = 1

2

1 −3 6
6 −8 12
3 −3 4

2 −3 6
6 −7 12
3 −3 5

 .

The product should yield I3, confirming the correctness of A−1.
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Chapter 3

Systems of Linear Equations

Introduction
Matrix methods provide the most
powerful toolkit for solving sys-
tems of linear equations efficiently.
This chapter develops practical
skills in using matrix operations,
determinants, and inverses to an-
alyze and solve both Cramer’s and
non-Cramer’s systems. Through
structured exercises, you’ll master
solution techniques from basic
elimination to advanced rank
analysis.

x

y

2x + y = 7

x −2y =−1

79



80 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

3.1 Essential Definitions: Systems of Linear Equa-
tions

3.2 Fundamental Definitions

Definition 3.1 (Linear System). A set of m equations in n variables:
a11x1 +a12x2 +·· ·+a1n xn = b1

a21x1 +a22x2 +·· ·+a2n xn = b2
...

am1x1 +am2x2 +·· ·+amn xn = bm

Can be represented as Ax = b where A ∈Rm×n , x ∈Rn , b ∈Rm .

3.2.1 Cramer’s Systems

Definition 3.2 (Cramer’s System). A square system (m = n) with det(A) ̸= 0.

Definition 3.3 (Cramer’s Method). For Ax = b with det(A) ̸= 0:

xk = det(Ak )

det(A)
, k = 1, . . . ,n

where Ak is A with column k replaced by b.

Definition 3.4 (Inverse Matrix Method). For Ax = b with A invertible:

x = A−1b

Definition 3.5 (Gauss Elimination Method). A systematic procedure for solv-
ing linear systems by performing elementary row operations to transform the
augmented matrix [A|b] into row-echelon form, then using back-substitution
to find the solution.

3.2.2 Non-Cramer’s Systems

Definition 3.6 (Non-Cramer’s System). Either:

• A rectangular system (m ̸= n), or

• A square system with det(A) = 0

Definition 3.7 (Gauss Elimination). Transform augmented matrix [A|b] to:
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• Row Echelon Form (REF) for general solutions

• Reduced REF (RREF) for simplest form

Definition 3.8 (Rank).

rank(A) = Number of non-zero rows in REF

3.2.3 Solution Cases

Definition 3.9 (Consistent System). Has at least one solution when:

rank(A) = rank([A|b])

Definition 3.10 (Inconsistent System). No solutions exist when:

rank(A) < rank([A|b])

Definition 3.11 (Solution Uniqueness). For consistent systems:

• Unique solution if rank(A) = n

• Infinite solutions if rank(A) < n
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3.3 Exercises and Solutions

3.3.1 Linear Systems and Matrix Representation

Exercise 62. Represent the following linear system in matrix form Ax = b:{
2x +3y = 5

4x − y = 3

The matrix representation is:(
2 3
4 −1

)(
x
y

)
=

(
5
3

)

Exercise 63. Write the augmented matrix for the system:
x −2y + z = 1

3x + y − z = 4

2x −3y +2z = 0

The augmented matrix is:

 1 −2 1 1
3 1 −1 4
2 −3 2 0



3.3.2 Homogeneous and Non-Homogeneous Systems

Exercise 64. Determine if the following system is homogeneous:
2x +5y − z = 0

x − y +3z = 0

4x + y +2z = 0

We need to determine whether the given system of linear equations is ho-
mogeneous.
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Definition of a Homogeneous System

A system of linear equations is called homogeneous if all the constant terms
(i.e., the terms not multiplied by any variable) are zero. In other words, a system
is homogeneous if it can be written in the form:

a11x1 +a12x2 +·· ·+a1n xn = 0

a21x1 +a22x2 +·· ·+a2n xn = 0
...

am1x1 +am2x2 +·· ·+amn xn = 0

where ai j are coefficients and xi are variables.

Analysis of the Given System

The given system is: 
2x +5y − z = 0

x − y +3z = 0

4x + y +2z = 0

Observing each equation:

• The first equation 2x +5y − z = 0 has a constant term of 0.

• The second equation x − y +3z = 0 has a constant term of 0.

• The third equation 4x + y +2z = 0 has a constant term of 0.

Conclusion

Since all the equations in the system have zero constant terms, the system is
homogeneous.

Additional Notes

A homogeneous system always has at least one solution, namely the trivial so-
lution where all variables are zero (x = 0, y = 0, z = 0). To determine if there
are non-trivial solutions, we would typically check the determinant of the co-
efficient matrix or use row reduction. However, the problem only asks to deter-
mine if the system is homogeneous, which we have confirmed.
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Exercise 65. Find the trivial solution to the homogeneous system:{
3x −2y = 0

6x −4y = 0

The trivial solution is x = 0, y = 0.

3.3.3 Rank of Matrix and Augmented Matrix

Exercise 66. Compute the rank of the matrix:

A =
1 2 3

2 4 6
3 6 9


We need to compute the rank of the matrix:

A =
1 2 3

2 4 6
3 6 9



Definition of Matrix Rank

The rank of a matrix is defined as the maximum number of linearly indepen-
dent row vectors (or column vectors) in the matrix. It represents the dimension
of the vector space spanned by its rows or columns.

Step 1: Observing Row Relationships

Notice that:

• Row 2 (R2) is exactly 2 times Row 1 (R1): R2 = 2R1

• Row 3 (R3) is exactly 3 times Row 1 (R1): R3 = 3R1

This shows that all rows are scalar multiples of the first row, meaning they
are linearly dependent.
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Step 2: Using Row Reduction

Let’s perform Gaussian elimination to find the rank:
1. Original matrix: 1 2 3

2 4 6
3 6 9


2. Subtract 2 times Row 1 from Row 2 (R2 ← R2 −2R1):1 2 3

0 0 0
3 6 9


3. Subtract 3 times Row 1 from Row 3 (R3 ← R3 −3R1):1 2 3

0 0 0
0 0 0


Step 3: Determining the Rank

The row-reduced echelon form has:

• 1 non-zero row (the first row)

• 2 rows of all zeros

The number of non-zero rows in the row-reduced form is the rank of the
matrix.

Conclusion

The rank of matrix A is 1 .

Verification

We can verify this by noting that:

• The column space is spanned by

1
2
3


• All other columns are scalar multiples of this vector
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• The dimension of this space is indeed 1

This confirms our calculation that rank(A) = 1.

Exercise 67. Find the rank of the augmented matrix for the system:
x + y + z = 2

2x +2y +2z = 4

3x +3y +3z = 6

The augmented matrix is:  1 1 1 2
2 2 2 4
3 3 3 6


All rows are linearly dependent, so rank = 1.

3.3.4 Cases of Rank and Solutions

Exercise 68. Determine the number of solutions for the system:{
x +2y = 3

2x +4y = 6

We need to determine the number of solutions for the following system of
linear equations: {

x +2y = 3

2x +4y = 6

Step 1: Analyze the System

First, observe the two equations:

(1) x +2y = 3

(2) 2x +4y = 6

Notice that equation (2) is exactly twice equation (1). This means the sec-
ond equation does not provide any new information beyond what the first equa-
tion gives.
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Step 2: Rewrite the System

Since both equations are essentially the same (one is a scalar multiple of the
other), the system reduces to just:

x +2y = 3

Step 3: Determine the Number of Solutions

The equation x +2y = 3 represents a straight line in the plane.

• For any real number t , if we set y = t , then x = 3−2t .

• This means there are infinitely many solutions, parameterized by t .

Step 4: Verification Using Matrix Rank

We can also analyze the system using matrix rank:
1. Coefficient matrix A and augmented matrix [A|b]:

A =
(
1 2
2 4

)
, [A|b] =

(
1 2 3
2 4 6

)
2. The rank of A is 1 (since the second row is a multiple of the first).
3. The rank of [A|b] is also 1 (since the augmented part maintains the linear

dependence).
4. Since rank(A) = rank([A|b]) = 1 < 2 (number of variables), the system has

infinitely many solutions.

Conclusion

The given system of equations has infinitely many solutions .
The general solution can be expressed as:

(x, y) = (3−2t , t ), for any t ∈R.

Exercise 69. Analyze the system:{
x − y = 1

2x −2y = 3

We analyze the following system of linear equations:{
x − y = 1

2x −2y = 3

Mathematics 2 - 100 Exercises with Solutions Author: Djabi Abdelmoumene



88 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

Step 1: Direct Observation

First, observe the relationship between the two equations:

• The second equation is nearly a multiple of the first (2 times the first
equation would give 2x −2y = 2)

• However, the right-hand side becomes 3 instead of 2

Step 2: Algebraic Analysis

Let’s attempt to solve the system algebraically:
1. From the first equation: x = y +1

2. Substitute into the second equation:

2(y +1)−2y = 32y +2−2y = 32 = 3

This leads to a contradiction.

Step 3: Geometric Interpretation

• The first equation represents the line y = x −1

• The second equation represents the line y = x −1.5

• These are two parallel lines with different y-intercepts

Step 4: Matrix Rank Analysis

Consider the coefficient matrix A and augmented matrix [A|b]:

A =
(
1 −1
2 −2

)
, [A|b] =

(
1 −1 1
2 −2 3

)
• rank(A) = 1 (rows are linearly dependent)

• rank([A|b]) = 2 (rows are linearly independent when including constants)

• Since rank(A) ̸= rank([A|b]), the system is inconsistent

Conclusion

The given system of equations has no solution .
The system is inconsistent because the equations represent parallel lines

that never intersect, and the matrix analysis confirms this inconsistency through
the rank comparison.
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3.3.5 Cramer’s Systems

Exercise 70. Solve using Cramer’s Rule:{
2x + y = 5

x −3y =−1

We will solve the following system of linear equations using Cramer’s Rule:{
2x + y = 5

x −3y =−1

Step 1: Write the System in Matrix Form

The system can be represented as:

AX = B where A =
(
2 1
1 −3

)
, X =

(
x
y

)
, B =

(
5
−1

)

Step 2: Compute the Determinant of A

det(A) =
∣∣∣∣2 1
1 −3

∣∣∣∣= (2)(−3)− (1)(1) =−6−1 =−7

Since det(A) ̸= 0, Cramer’s Rule can be applied and the system has a unique
solution.

Step 3: Compute Modified Matrices and Their Determinants

1. For x, replace the first column of A with B:

Ax =
(

5 1
−1 −3

)

det(Ax) =
∣∣∣∣ 5 1
−1 −3

∣∣∣∣= (5)(−3)− (1)(−1) =−15+1 =−14

2. For y , replace the second column of A with B:

Ay =
(
2 5
1 −1

)

det(Ay ) =
∣∣∣∣2 5
1 −1

∣∣∣∣= (2)(−1)− (5)(1) =−2−5 =−7
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Step 4: Apply Cramer’s Rule

x = det(Ax)

det(A)
= −14

−7
= 2

y = det(Ay )

det(A)
= −7

−7
= 1

Verification

Substitute the solution back into the original equations:{
2(2)+1 = 5

2−3(1) =−1

Both equations are satisfied.

Conclusion

The solution to the system is (x, y) = (2,1) .

Exercise 71. Solve using the Inverse Matrix Method:{
3x +4y = 10

2x − y = 1

We will solve the following system of linear equations using the Inverse Ma-
trix Method: {

3x +4y = 10

2x − y = 1

Step 1: Write the System in Matrix Form

The system can be represented as:

AX = B where A =
(
3 4
2 −1

)
, X =

(
x
y

)
, B =

(
10
1

)
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Step 2: Compute the Determinant of A

det(A) =
∣∣∣∣3 4
2 −1

∣∣∣∣= (3)(−1)− (4)(2) =−3−8 =−11

Since det(A) ̸= 0, the matrix A is invertible and the system has a unique so-
lution.

Step 3: Find the Inverse Matrix A−1

For a 2×2 matrix A =
(

a b
c d

)
, the inverse is given by:

A−1 = 1

det(A)

(
d −b
−c a

)
Applying this to our matrix:

A−1 = 1

−11

(−1 −4
−2 3

)
=

( 1
11

4
11

2
11 − 3

11

)

Step 4: Solve for X Using the Inverse

X = A−1B =
( 1

11
4

11
2

11 − 3
11

)(
10
1

)
Multiply the matrices:

x =
(

1

11

)
(10)+

(
4

11

)
(1) = 10

11
+ 4

11
= 14

11

y =
(

2

11

)
(10)+

(
− 3

11

)
(1) = 20

11
− 3

11
= 17

11

Verification

Substitute the solution back into the original equations:{
3
(14

11

)+4
(17

11

)= 42
11 + 68

11 = 110
11 = 10

2
(14

11

)− (17
11

)= 28
11 − 17

11 = 11
11 = 1

Both equations are satisfied.
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Conclusion

The solution to the system is (x, y) =
(

14

11
,

17

11

)
.

Exercise 72. Solve using Gauss Elimination:
x + y + z = 6

2y +5z =−4

2x +5y − z = 27

We will solve the following system of linear equations using Gaussian Elim-
ination: 

x + y + z = 6

2y +5z =−4

2x +5y − z = 27

Step 1: Write the Augmented Matrix

First, we represent the system as an augmented matrix: 1 1 1 6
0 2 5 −4
2 5 −1 27



Step 2: Forward Elimination

First Elimination Step (Eliminate x from third equation):

• Multiply Row 1 by 2: 2R1 → [2 2 2 | 12]

• Subtract from Row 3: R3 ← R3 −2R1 1 1 1 6
0 2 5 −4
0 3 −3 15


Second Elimination Step (Eliminate y from third equation):

• Divide Row 2 by 2 to make pivot 1: R2 ← 1
2 R2
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• New matrix:  1 1 1 6
0 1 5

2 −2
0 3 −3 15


• Multiply Row 2 by 3: 3R2 → [0 3 15

2 | −6]

• Subtract from Row 3: R3 ← R3 −3R2 1 1 1 6
0 1 5

2 −2
0 0 −21

2 21



Step 3: Back Substitution

Now we have an upper triangular matrix. We solve from bottom to top:
1. Solve for z:

−21

2
z = 21 =⇒ z = 21

−21
2

=−2

2. Solve for y:

y + 5

2
(−2) =−2 =⇒ y −5 =−2 =⇒ y = 3

3. Solve for x:

x +3+ (−2) = 6 =⇒ x +1 = 6 =⇒ x = 5

Verification

Let’s verify the solution (5,3,−2) in the original equations:
5+3+ (−2) = 6

2(3)+5(−2) = 6−10 =−4

2(5)+5(3)− (−2) = 10+15+2 = 27

All equations are satisfied.

Conclusion

The solution to the system is (x, y, z) = (5,3,−2) .
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3.3.6 Non-Cramer’s Systems

Exercise 73. Determine if the system has a unique solution:
x − y +2z = 1

2x + y − z = 2

3x +0y + z = 3

We will determine if the following system has a unique solution:
x − y +2z = 1

2x + y − z = 2

3x +0y + z = 3

Step 1: Write the Augmented Matrix 1 −1 2 1
2 1 −1 2
3 0 1 3



Step 2: Perform Gaussian Elimination

First Elimination Step (Eliminate x from Rows 2 and 3):

• R2 ← R2 −2R1

• R3 ← R3 −3R1  1 −1 2 1
0 3 −5 0
0 3 −5 0


Second Elimination Step (Eliminate y from Row 3):

• R3 ← R3 −R2  1 −1 2 1
0 3 −5 0
0 0 0 0


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Step 3: Analyze the Reduced Matrix

The reduced row echelon form shows:

• Rank of coefficient matrix = 2 (number of non-zero rows)

• Rank of augmented matrix = 2

• Number of variables = 3

Step 4: Determine Solution Uniqueness

Since:
Rank(A) = Rank([A|b]) = 2 < 3 = Number of variables

The system has infinitely many solutions, not a unique solution.

Step 5: Find the General Solution

From the reduced matrix: {
x − y +2z = 1

3y −5z = 0

Let z = t be a free parameter. Then:

• From second equation: 3y = 5t ⇒ y = 5
3 t

• From first equation: x = 1+ y −2z = 1+ 5
3 t −2t = 1− 1

3 t

Conclusion

The system does not have a unique solution . It has infinitely many solutions
parameterized by:

(x, y, z) =
(
1− 1

3
t ,

5

3
t , t

)
for any t ∈R

Verification

Substitute the solution into the original equations:

• First equation: (1− 1
3 t )− 5

3 t +2t = 1

• Second equation: 2(1− 1
3 t )+ 5

3 t − t = 2

• Third equation: 3(1− 1
3 t )+ t = 3

All equations are satisfied for any real value of t.
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3.3.7 Mixed Problems

Exercise 74. Solve the homogeneous system:
x +2y −3z = 0

2x +5y +2z = 0

x +4y +7z = 0

We will solve the homogeneous system:
x +2y −3z = 0

2x +5y +2z = 0

x +4y +7z = 0

Step 1: Augmented Matrix

Since all constant terms are zero, the augmented matrix is: 1 2 −3 0
2 5 2 0
1 4 7 0



Step 2: Gaussian Elimination

First Elimination:

• R2 ← R2 −2R1

• R3 ← R3 −R1  1 2 −3 0
0 1 8 0
0 2 10 0


Second Elimination:

• R3 ← R3 −2R2  1 2 −3 0
0 1 8 0
0 0 −6 0


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Step 3: Back Substitution

From the reduced matrix: 
x +2y −3z = 0

y +8z = 0

−6z = 0

Solving from bottom:

• −6z = 0 ⇒ z = 0

• y +8(0) = 0 ⇒ y = 0

• x +2(0)−3(0) = 0 ⇒ x = 0

Conclusion

The system has only the trivial solution :

(x, y, z) = (0,0,0)

Verification

Substituting (0,0,0) into all equations confirms they are satisfied:

• 0+2(0)−3(0) = 0

• 2(0)+5(0)+2(0) = 0

• 0+4(0)+7(0) = 0

Remark

The coefficient matrix has full rank (3), which guarantees only the trivial solu-
tion exists for this homogeneous system.

Exercise 75. Find the condition for consistency of:
x + y + z = 1

2x +3y +2z = k

3x +4y +3z = k2
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We will determine the condition for consistency of the following system:
x + y + z = 1

2x +3y +2z = k

3x +4y +3z = k2

Step 1: Write the Augmented Matrix 1 1 1 1
2 3 2 k
3 4 3 k2


Step 2: Perform Gaussian Elimination

First Elimination Step (Eliminate x from Rows 2 and 3):

• R2 ← R2 −2R1

• R3 ← R3 −3R1  1 1 1 1
0 1 0 k −2
0 1 0 k2 −3


Second Elimination Step (Eliminate y from Row 3):

• R3 ← R3 −R2  1 1 1 1
0 1 0 k −2
0 0 0 k2 −k −1


Step 3: Analyze the Reduced Matrix

The system is consistent if and only if there are no contradictory equations. The
last row gives the condition:

0 = k2 −k −1

Step 4: Solve the Consistency Condition

k2 −k −1 = 0

Using the quadratic formula:

k = 1±p
1+4

2
= 1±p

5

2
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Step 5: Determine the Solution

When the condition is satisfied:

• The system has infinitely many solutions (one free variable)

• The solutions can be expressed in terms of z as:{
y = k −2

x = 1− (k −2)− z = 3−k − z

Conclusion

The system is consistent if and only if :

k = 1+p
5

2
or k = 1−p

5

2

For these values of k, the system has infinitely many solutions parameter-
ized by:

(x, y, z) = (3−k − t ,k −2, t ) for any t ∈R
For all other values of k, the system is inconsistent (has no solution).

3.3.8 Advanced Exercises on Linear Systems

Exercise 76. Consider the system with parameter α:
x +αy + z = 1

αx + y + z = α
x + y +αz = α2

Determine for which values of α the system has:

1. A unique solution

2. Infinitely many solutions

3. No solution

The determinant of the coefficient matrix is:

∆=
∣∣∣∣∣∣
1 α 1
α 1 1
1 1 α

∣∣∣∣∣∣=−α3 +3α−2
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Roots: α= 1 (double) and α=−2.

1. Unique solution when ∆ ̸= 0: α ̸= 1 and α ̸= −2

2. For α= 1: System reduces to x + y + z = 1 (infinitely many solutions)

3. For α=−2: Inconsistent (no solution)

Exercise 77. Prove that if a homogeneous system Ax = 0 has more vari-
ables than equations, it must have infinitely many solutions.

We will prove that any homogeneous system Ax = 0 with more variables
than equations must have infinitely many solutions.

Given

• A is an m ×n matrix with m < n (more variables than equations)

• x is an n ×1 column vector of variables

• The system is homogeneous: Ax = 0

Step 1: Rank Consideration

Let r be the rank of matrix A. By the Rank-Nullity Theorem:

rank(A)+nullity(A) = n

Since rank(A) ≤ m and m < n, we have:

r ≤ m < n

This implies:
nullity(A) = n − r ≥ n −m > 0

Step 2: Solution Space Dimension

The nullity represents the dimension of the solution space:

• nullity(A) > 0 means there exists at least one free variable

• The solution space is a subspace of dimension n − r ≥ 1
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Step 3: Existence of Non-Trivial Solutions

The homogeneous system always has:

• The trivial solution x = 0

• When nullity(A) ≥ 1, there exist infinitely many non-trivial solutions

Step 4: Parametric Solution

For any free variable t , we can express:

x = tv

where v is a basis vector for the null space, giving infinitely many solutions as t
varies over R.

Conclusion

Since:

• The system has at least one free variable (n − r ≥ 1)

• Each free variable generates an infinite family of solutions

the homogeneous system Ax = 0 must have infinitely many solutions when
there are more variables than equations.

Example

Consider: {
x + y + z = 0

2x +2y +2z = 0

Here m = 2, n = 3, with general solution (x, y, z) = t (−1,1,0)+ s(−1,0,1) for any
t , s ∈R, demonstrating infinitely many solutions.

Exercise 78. For the matrix equation AX = B where:

A =
(
1 2
3 4

)
, B =

(
5 6
7 8

)
find all solutions X using:

1. The inverse method

2. LU decomposition
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Given the matrix equation AX = B with:

A =
(
1 2
3 4

)
, B =

(
5 6
7 8

)
we will find all solutions X using two methods.

1. Inverse Method

Step 1: Check Invertibility

First, compute det(A):

det(A) = (1)(4)− (2)(3) = 4−6 =−2 ̸= 0

Since det(A) ̸= 0, A is invertible.

Step 2: Compute A−1

The inverse of a 2×2 matrix A =
(

a b
c d

)
is:

A−1 = 1

det(A)

(
d −b
−c a

)
Thus:

A−1 =−1

2

(
4 −2
−3 1

)
=

(−2 1
3
2 −1

2

)

Step 3: Solve for X

Multiply both sides of AX = B by A−1:

X = A−1B =
(−2 1

3
2 −1

2

)(
5 6
7 8

)
Compute the matrix multiplication:

X =
(

(−2)(5)+ (1)(7) (−2)(6)+ (1)(8)
( 3

2 )(5)+ (−1
2 )(7) ( 3

2 )(6)+ (−1
2 )(8)

)
=

(−10+7 −12+8
15
2 − 7

2
18
2 − 8

2

)
=

(−3 −4
4 5

)
Mathematics 2 - 100 Exercises with Solutions Author: Djabi Abdelmoumene



103 CHAPTER 3. SYSTEMS OF LINEAR EQUATIONS

2. LU Decomposition Method

Step 1: Perform LU Decomposition

Factor A into LU, where L is lower triangular and U is upper triangular.
Using Gaussian elimination:

• R2 ← R2 −3R1 gives U =
(
1 2
0 −2

)

• The multiplier was 3, so L =
(
1 0
3 1

)
Thus:

A = LU =
(
1 0
3 1

)(
1 2
0 −2

)

Step 2: Solve LY = B for Y (
1 0
3 1

)(
y11 y12

y21 y22

)
=

(
5 6
7 8

)
Forward substitution:

• y11 = 5, y12 = 6

• 3(5)+ y21 = 7 ⇒ y21 =−8

• 3(6)+ y22 = 8 ⇒ y22 =−10

Thus:

Y =
(

5 6
−8 −10

)

Step 3: Solve UX = Y for X(
1 2
0 −2

)(
x11 x12

x21 x22

)
=

(
5 6
−8 −10

)
Back substitution:

• From row 2: −2x21 =−8 ⇒ x21 = 4

• −2x22 =−10 ⇒ x22 = 5

• From row 1: x11 +2(4) = 5 ⇒ x11 =−3
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• x12 +2(5) = 6 ⇒ x12 =−4

Thus:

X =
(−3 −4

4 5

)

Conclusion

Both methods yield the same unique solution:

X =
(−3 −4

4 5

)

Exercise 79. Investigate the consistency of the system:
x1 +x2 +x3 = 1

2x1 −x2 +3x3 = 2

4x1 +x2 +9x3 = α2

for all real α, and find all solutions when consistent.

We analyze the system: 
x1 +x2 +x3 = 1

2x1 −x2 +3x3 = 2

4x1 +x2 +9x3 = α2

Step 1: Augmented Matrix 1 1 1 1
2 −1 3 2
4 1 9 α2



Step 2: Gaussian Elimination

First Elimination (Eliminate x1 from Rows 2 and 3):

• R2 ← R2 −2R1

• R3 ← R3 −4R1
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 1 1 1 1
0 −3 1 0
0 −3 5 α2 −4


Second Elimination (Eliminate x2 from Row 3):

• R3 ← R3 −R2  1 1 1 1
0 −3 1 0
0 0 4 α2 −4


Step 3: Consistency Analysis

The system is consistent if and only if there are no contradictory equations. The
last row gives:

4x3 = α2 −4

This equation is always solvable for any real α, so the system is consistent for
all α ∈R.

Step 4: Solution When Consistent

Case 1: α ̸= ±2

• From 4x3 = α2 −4: x3 = α2−4
4

• From Row 2: −3x2 +x3 = 0 ⇒ x2 = x3
3 = α2−4

12

• From Row 1: x1 = 1−x2 −x3 = 1− α2−4
12 − α2−4

4 = 16−α2

12

Unique solution:

(x1, x2, x3) =
(

16−α2

12
,
α2 −4

12
,
α2 −4

4

)
Case 2: α=±2

• Then x3 = 0

• From Row 2: −3x2 = 0 ⇒ x2 = 0

• From Row 1: x1 = 1−0−0 = 1

Solution reduces to:
(x1, x2, x3) = (1,0,0)
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Conclusion

The system is consistent for all real α with:

• A unique solution for α ̸= ±2

• The specific solution (1,0,0) when α=±2

Verification

For α= 3: (
16−9

12
,

9−4

12
,

9−4

4

)
=

(
7

12
,

5

12
,

5

4

)
Substitution verifies all three equations. For α = 2, (1,0,0) clearly satisfies all
equations.

Exercise 80. Construct a non-homogeneous system of 3 equations in 2
variables that:

1. Has exactly one solution

2. Has no solution

3. Has infinitely many solutions

and justify each case geometrically.

1.


x + y = 1

x − y = 0

2x + y = 1.5

(Three lines intersecting at one point)

2.


x + y = 1

x + y = 2

2x +2y = 3

(Parallel lines)

3.


x + y = 1

2x +2y = 2

3x +3y = 3

(Identical lines)

Geometric interpretation:

• Single intersection point
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• No common intersection

• All equations represent the same line

3.3.9 Graphical Solution Exercises

Exercise 81. Solve graphically:{
x + y = 4

2x − y = 2

1 2 3 4 5

1

2

3

4

5

(2,2)

x

y

The solution is the intersection point at (2,2).

Exercise 82. Solve graphically:{
3x +2y = 6

x − y = 1
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−1 1 2 3

−1

1

2

3

4

(1.6,0.6)

x

y

Approximate solution: (1.6,0.6) (exact: (8/5,3/5))

Exercise 83. Graphically show that the system has no solution:{
x − y = 2

2x −2y = 6

1 2 3 4 5

−2

2

x

y

The lines are parallel but distinct (no intersection points).
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3.3.10 Mixed Linear and Non-Linear Systems

Exercise 84. First solve the linear system graphically, then use it to solve:

(a)

{
x + y = 4

x − y = 0
(b)

{
ln a + lnb = 4

ln a − lnb = 0

Part (a): 1 2 3 4

1

2

3

4

x

y

Solution: (2,2)

Part (b): Let x = ln a, y = lnb. The system becomes identical to (a), so:

ln a = 2 ⇒ a = e2, lnb = 2 ⇒ b = e2

Final solution: (a,b) = (e2,e2)

Exercise 85. Solve graphically and deduce:

(a)

{
2x + y = 5

x − y = 1
(b)

{
2
p

u + v = 5p
u − v = 1
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Part (a): 0.5 1 1.5 2 2.5 3

1

2

3

4

x

y

Solution: (2,1)
Part (b): Let x =p

u, y = v . The system becomes identical to (a), so:
p

u = 2 ⇒ u = 4, v = 1

Final solution: (u, v) = (4,1)

Exercise 86. Let α be a real number, (S) is a system of linear equations of
variables x, y and z , where:

(S) :


αx + y +0z = 1
0x −2y +2z = 2
2x − y +3z = 3

1. Rewrite the system (S) in matrix form.

2. Find the values of α for which the system (S) becomes a Cramer’s
system.

3. Solve the system (S) for the values of α for which the system (S) is a
Cramer system.

4. Solve the system (S) for the values of αfor which the system (S) is a
Non-Cramer system

1.

AX = b ⇐⇒
 α 1 0

0 −2 2
2 −1 3

 x
y
z

=
 1

2
3


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2. the values of α for which the system (S) be a Cramer’s system are det(A) ̸=
0 ⇐⇒ 4−4α ̸= 0 this implies: α ̸= 1 ⇐⇒ α ∈R− {1}

Solve the system (S) for the values of α for which the system (S) is
Cramer system.

For α ̸= 1, we get
{[

x = 1
α−1 , y =− 1

α−1 , z = 1
α−1 (α−2)

]}
(by using Cramer,

Inverse or Gauss methods).

3. Solve the system (S) for the values of α for which the system (S) is
Non-Cramer system.

For α= 1, we get S =; (by usnig Gauss method)

 1 1 0
0 −2 2
2 −1 3

 x
y
z

=
 1

2
3


 [1] 1 0

0 −2 2
2 −1 3

∣∣∣∣∣∣
1
2
3


−−−−−−−−−−−→
R3 −2R1 → R3

 1 1 0
0 [−2] 2
0 −3 3

∣∣∣∣∣∣
1
2
1


 1 1 0

0 [−2] 2
0 −3 3

∣∣∣∣∣∣
1
2
1

 −−−−−−−−−−−−−−→
R3 −

(−3
−2

)
R2 → R3

 1 1 0
0 −2 2
0 0 0

∣∣∣∣∣∣
1
2
−2



(
S′) :


x + y +0z = 1
−2y +2z = 2

0 =−2 (Contraduction)
⇐⇒ S =;
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Chapter 4

Eigenvalues, Eigenvectors and Diag-
onalization

Introduction
Matrix diagonalization relies on
finding eigenvalues (roots of det(A−
λI) = 0 ) and their corresponding
eigenvectors. Practice complete so-
lution techniques including: - Char-
acteristic polynomial calculation -
Eigenspace determination - Similar-
ity transformations through struc-
tured exercises with solutions cover-
ing all special cases.

x

y

λ1 = 3

λ2 =−1

v1

v2

4.1 Essential Definitions: Eigenvalues, Eigenvectors
and Diagonalization

4.2 Fundamental Definitions

Definition 4.1 (Eigenvalue and Eigenvector). For a square matrix A ∈ Cn×n , a
scalar λ is called an eigenvalue and a non-zero vector v is called an eigenvector
if:

Av = λv

112
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Definition 4.2 (Characteristic Polynomial). The polynomial defined by:

pA(λ) = det(A−λI)

whose roots are the eigenvalues of A.

Definition 4.3 (Eigenspace). For an eigenvalue λ, the subspace:

Eλ = {v ∈Cn | Av = λv}

4.2.1 Algebraic and Geometric Multiplicity

Definition 4.4 (Algebraic Multiplicity). The multiplicity of λ as a root of the
characteristic polynomial.

Definition 4.5 (Geometric Multiplicity). The dimension of the eigenspace Eλ.

Definition 4.6 (Eigenspace Dimension). The dimension of the eigenspace Eλ
corresponding to eigenvalue λ is called its geometric multiplicity. It equals:

dim(Eλ) = n − rank(A−λI)

where n is the size of the square matrix A.

Method 1 (Calculating Eigenspace Dimension). To compute dim(Eλ):

1. Construct the matrix B = A−λI

2. Reduce B to row echelon form using Gaussian elimination

3. Count the number of free variables (non-pivot columns) in the reduced
matrix

The number of free variables equals dim(Eλ).

Definition 4.7 (Relation to Multiplicities). For any eigenvalue λ:

• Geometric multiplicity ≤ Algebraic multiplicity

• Matrix is diagonalizable iff geometric = algebraic multiplicity for all eigen-
values

Method 2 (Example Calculation). For matrix A =
(
4 1
0 4

)
and λ= 4:

B = A−4I =
(
0 1
0 0

)
rank(B) = 1

dim(E4) = 2−1 = 1

The eigenspace has basis

{(
1
0

)}
.
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4.2.2 Diagonalization

Definition 4.8 (Diagonalizable Matrix). A matrix A ∈ Cn×n is diagonalizable if
there exists an invertible matrix P and diagonal matrix D such that:

A = PDP−1

where the columns of P are eigenvectors and D contains eigenvalues.

Definition 4.9 (Similarity Transformation). Two matrices A and B are similar if
there exists invertible P such that:

B = P−1AP

4.2.3 Special Cases

Definition 4.10 (Defective Matrix). A matrix that is not diagonalizable because
the geometric multiplicity of at least one eigenvalue is strictly less than its alge-
braic multiplicity.

Definition 4.11 (Jordan Canonical Form). For any matrix A ∈Cn×n , there exists
invertible P such that:

A = PJP−1

where J is a block diagonal matrix with Jordan blocks.

4.2.4 Theorems and Properties

Definition 4.12 (Hermitian Matrix). A matrix A ∈Cn×n is Hermitian (self-adjoint)
if:

A = A∗

where A∗ = (A)T is the conjugate transpose. For real matrices, this reduces to
symmetry (A = AT).

Definition 4.13 (Spectral Theorem for Hermitian Matrices). Every Hermitian
matrix A has:

• Real eigenvalues

• Orthogonal eigenvectors for distinct eigenvalues

• A unitary diagonalization A = UDU∗ where:

– U is unitary (U∗U = I)
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– D is real diagonal containing eigenvalues

Definition 4.14 (General Matrix Properties). For any A ∈Cn×n :

• Trace-eigenvalue relation: tr(A) =∑n
i=1λi

• Determinant-eigenvalue relation: det(A) =∏n
i=1λi

• Quadratic form reality (if Hermitian): x∗Ax ∈R∀x ∈Cn
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4.3 Exercises and Solutions

4.3.1 Characteristic Polynomial and Eigenvalues

Exercise 87. Find the characteristic polynomial of:

C =
1 2 0

0 3 0
0 0 5


To find the characteristic polynomial of the matrix

C =
1 2 0

0 3 0
0 0 5

 ,

we follow these steps:
Step 1: Set up the characteristic equation.
The characteristic polynomial is given by:

det(C−λI) = 0,

where λ is an eigenvalue and I is the 3×3 identity matrix.
Subtract λ from the diagonal entries:

C−λI =
1−λ 2 0

0 3−λ 0
0 0 5−λ

 .

Step 2: Compute the determinant.
For this 3×3 triangular matrix, the determinant is simply the product of the

diagonal elements:

det(C−λI) = (1−λ)(3−λ)(5−λ).

Step 3: Expand the polynomial (optional).
While the factored form above is acceptable as the characteristic polyno-

mial, we can expand it:

(1−λ)(3−λ)(5−λ) = (3−4λ+λ2)(5−λ)

= 15−3λ−20λ+4λ2 +5λ2 −λ3
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=−λ3 +9λ2 −23λ+15.

Conclusion:
The characteristic polynomial of C can be expressed in either factored form:

(1−λ)(3−λ)(5−λ)

or expanded form:

−λ3 +9λ2 −23λ+15 .

4.3.2 Eigenvectors and Eigenspaces

Exercise 88. Find the eigenvectors of:

D =
(
2 0
0 2

)

To find the eigenvectors of the matrix

D =
(
2 0
0 2

)
,

we follow these steps:
Step 1: Find the eigenvalues.
The matrix D is already diagonal, so its eigenvalues are simply the diagonal

elements:
λ1 = λ2 = 2.

This is a case of a repeated eigenvalue.
Step 2: Find the eigenvectors.
For a matrix with repeated eigenvalues, we solve (D−λI)v = 0:

(D−2I)v =
(
0 0
0 0

)(
v1

v2

)
=

(
0
0

)
.

This gives us the trivial equation 0 = 0, which means every non-zero vector
is an eigenvector.

Step 3: Determine the eigenspace.

The eigenspace corresponding to λ = 2 is all of R2. We can choose any two
linearly independent vectors as basis vectors for this eigenspace. The standard
choice is:

v1 =
(
1
0

)
, v2 =

(
0
1

)
.
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Conclusion:
The eigenvectors of D are all non-zero vectors inR2. A basis for the eigenspace

is: (
1
0

)
and

(
0
1

)
.

Exercise 89. Find the eigenspace for λ= 4 of:

F =
4 1 0

0 4 1
0 0 4


To find the eigenspace for λ= 4 of the matrix

F =
4 1 0

0 4 1
0 0 4

 ,

we follow these steps:
Step 1: Verify λ= 4 is an eigenvalue.
The matrix F is upper triangular, so its eigenvalues are the diagonal entries:

λ1 = λ2 = λ3 = 4.

This eigenvalue has algebraic multiplicity 3.
Step 2: Find the eigenvectors by solving (F−4I)v = 0.
Compute F−4I:

F−4I =
0 1 0

0 0 1
0 0 0

 .

This gives the system: 
0v1 +1v2 +0v3 = 0

0v1 +0v2 +1v3 = 0

0v1 +0v2 +0v3 = 0

which simplifies to:

v2 = 0 and v3 = 0.

Step 3: Determine the eigenspace.
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The solutions have the form:

v =
v1

0
0

= v1

1
0
0

 , v1 ̸= 0.

Conclusion:
The eigenspace for λ= 4 is one-dimensional and consists of all scalar mul-

tiples of: 1
0
0

 .

Note: This matrix is defective because the geometric multiplicity (1) is less
than the algebraic multiplicity (3) of the eigenvalue λ= 4.

4.3.3 Diagonalization

Exercise 90. Diagonalize the matrix:

G =
(
5 0
0 −1

)

To diagonalize the matrix

G =
(
5 0
0 −1

)
,

we follow these steps:
Step 1: Verify that G is diagonalizable.
Matrix G is already diagonal. A matrix is diagonalizable if there exists an

invertible matrix P and a diagonal matrix D such that:

G = PDP−1.

For diagonal matrices, we can simply choose P = I (the identity matrix) and
D = G.

Step 2: Find the eigenvalues.
The eigenvalues of G are simply its diagonal entries:

λ1 = 5, λ2 =−1.

Step 3: Find the eigenvectors.
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For λ1 = 5:

(G−5I)v =
(
0 0
0 −6

)(
v1

v2

)
=

(
0
0

)
This yields v2 = 0, so the eigenvectors are:

v1 =
(
1
0

)
.

For λ2 =−1:

(G+ I)v =
(
6 0
0 0

)(
v1

v2

)
=

(
0
0

)
This yields v1 = 0, so the eigenvectors are:

v2 =
(
0
1

)
.

Step 4: Construct P and D.
Form the matrix P from the eigenvectors:

P =
(
1 0
0 1

)
.

The diagonal matrix D contains the eigenvalues:

D =
(
5 0
0 −1

)
.

Conclusion:
The matrix G is diagonalized as:

G = PDP−1,

where

P =
(
1 0
0 1

)
and D =

(
5 0
0 −1

)
.

Note: Since G is already diagonal, the diagonalization is trivial with P being
the identity matrix.

Exercise 91. Diagonalize:

K =
3 1 0

0 3 0
0 0 5


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To diagonalize the matrix

K =
3 1 0

0 3 0
0 0 5

 ,

we follow these steps:
Step 1: Find the eigenvalues.
The matrix is block triangular, so its eigenvalues are:

det(K−λI) = det

3−λ 1 0
0 3−λ 0
0 0 5−λ

= (3−λ)2(5−λ) = 0.

This gives:
λ1 = λ2 = 3 (algebraic multiplicity 2),

λ3 = 5 (algebraic multiplicity 1).

Step 2: Find the eigenvectors.
For λ= 3:

(K−3I)v =
0 1 0

0 0 0
0 0 2

v1

v2

v3

=
0

0
0

 .

This yields:
v2 = 0 and v3 = 0, v1 free.

Thus, the eigenvectors are:

v1 =
1

0
0

 .

For λ= 5:

(K−5I)v =
−2 1 0

0 −2 0
0 0 0

v1

v2

v3

=
0

0
0

 .

This yields:
−2v1 + v2 = 0 and −2v2 = 0, v3 free.

Thus, the eigenvectors are:

v2 =
0

0
1

 .

Step 3: Check diagonalizability.
We have:
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• Algebraic multiplicity of λ= 3 is 2

• Geometric multiplicity is 1 (only one independent eigenvector)

Conclusion:

The matrix K is not diagonalizable because the eigenvalue λ= 3 has alge-
braic multiplicity 2 but geometric multiplicity 1.

Note: This matrix can be put in Jordan canonical form with a 2× 2 Jordan
block for λ= 3 and a 1×1 block for λ= 5.

4.3.4 Special Cases and Multiplicity

Exercise 92. Check diagonalizability of:

L =
1 1 0

0 1 1
0 0 1


To determine if the matrix

L =
1 1 0

0 1 1
0 0 1


is diagonalizable, we follow these steps:

Step 1: Find the eigenvalues.
The matrix L is upper triangular, so its eigenvalues are the diagonal entries:

det(L−λI) = det

1−λ 1 0
0 1−λ 1
0 0 1−λ

= (1−λ)3 = 0.

This gives a single eigenvalue with algebraic multiplicity 3:

λ1 = λ2 = λ3 = 1.

Step 2: Find the eigenvectors.
Solve (L− I)v = 0: 0 1 0

0 0 1
0 0 0

v1

v2

v3

=
0

0
0

 .
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This yields the system: 
0v1 +1v2 +0v3 = 0

0v1 +0v2 +1v3 = 0

0v1 +0v2 +0v3 = 0

which simplifies to:

v2 = 0 and v3 = 0, with v1 free.

Step 3: Determine the eigenspace.
The solutions have the form:

v =
v1

0
0

= v1

1
0
0

 , v1 ̸= 0.

Step 4: Check diagonalizability.
Compare multiplicities:

• Algebraic multiplicity of λ= 1: 3

• Geometric multiplicity (dimension of eigenspace): 1

Conclusion:

The matrix L is not diagonalizable because the geometric multiplicity (1)
is less than the algebraic multiplicity (3) for its only eigenvalue λ= 1.

Note: This matrix is in Jordan form, with one Jordan block of size 3 for the
eigenvalue 1. The lack of diagonalizability is due to the non-trivial Jordan struc-
ture (the superdiagonal 1s).

Exercise 93. Diagonalize:

N =
(

4 1
−1 2

)

Eigenvalues: λ= 3 (alg. mult. 2). Solve (N−3I)v = 0:(
1 1
−1 −1

)(
v1

v2

)
=

(
0
0

)
=⇒ v1 =−v2

Geom. mult. = 1. Not diagonalizable.
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4.3.5 Applications and Theoretical Problems

Exercise 94. Prove that similar matrices have the same eigenvalues.

To prove that similar matrices have the same eigenvalues, let’s follow these
steps:

Definition: Two n×n matrices A and B are similar if there exists an invertible
matrix P such that:

B = P−1AP

Step 1: Consider the characteristic polynomial.
The characteristic polynomial of B is:

det(B−λI) = det(P−1AP−λI)

Step 2: Simplify the expression.
Notice that:

P−1AP−λI = P−1AP−λP−1P = P−1(A−λI)P

since P−1P = I.
Step 3: Compute the determinant.
Using the multiplicative property of determinants:

det(P−1(A−λI)P) = det(P−1)det(A−λI)det(P)

= det(A−λI) ·det(P−1)det(P)

= det(A−λI) ·det(P−1P)

= det(A−λI) ·det(I)

= det(A−λI)

Step 4: Conclude equality of eigenvalues.
Since:

det(B−λI) = det(A−λI)

both matrices have identical characteristic polynomials, and therefore the same
eigenvalues.

Conclusion:

Similar matrices have the same eigenvalues because their characteristic
polynomials are identical.

Note: While similar matrices share the same eigenvalues, their eigenvec-
tors are different but related through the similarity transformation P. If v is an
eigenvector of A, then P−1v is an eigenvector of B.
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Exercise 95. Show that a matrix is invertible iff all eigenvalues are non-
zero.

To prove that an n ×n matrix A is invertible if and only if all its eigenvalues
are non-zero, we establish both directions of the implication.

Part 1 (⇒): Invertible matrix has non-zero eigenvalues.
Assume A is invertible. Let λ be an eigenvalue of A with corresponding

eigenvector v ̸= 0. Then:
Av = λv

Multiply both sides by A−1:

A−1Av = A−1(λv)

v = λA−1v
1

λ
v = A−1v

Since v ̸= 0 and A−1 exists, λ cannot be zero (otherwise we would have divi-
sion by zero). Thus, all eigenvalues must be non-zero.

Part 2 (⇐): Matrix with all non-zero eigenvalues is invertible.
Assume all eigenvalues λ1, . . . ,λn of A are non-zero. Consider:

1. The determinant of A equals the product of its eigenvalues:

det(A) =
n∏

i=1
λi ̸= 0

2. Since det(A) ̸= 0, the matrix A is invertible.

Alternative argument via null space: A matrix is non-invertible iff ∃v ̸= 0 such
that Av = 0 = 0 ·v. This would mean:

• 0 is an eigenvalue (if such v exists)

• A has non-trivial null space (hence non-invertible)

Conclusion: A matrix A is invertible if and only if all its eigenvalues are non-zero ,
as we have shown both directions of the implication.

Note: This result connects three fundamental concepts:

• Invertibility of a matrix

• Non-zero determinant

• Absence of zero eigenvalues

All three conditions are equivalent for any square matrix.
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4.3.6 Advanced Problems

Exercise 96. Diagonalize the orthogonal matrix:

Q =
(
cosθ −sinθ
sinθ cosθ

)

Eigenvalues: λ = e±iθ. Diagonalizable over C but not over R (unless θ =
0,π).

Exercise 97. Let A be a 3 × 3 matrix with eigenvalues λ1 = 2 (alge-
braic multiplicity 2) and λ2 = −1. Suppose the eigenspace for λ1 is 1-
dimensional. Prove that A is not diagonalizable.

For A to be diagonalizable, the geometric multiplicity (dimension of the
eigenspace) of each eigenvalue must equal its algebraic multiplicity. Here, for
λ1 = 2, the geometric multiplicity is 1, but the algebraic multiplicity is 2. Thus,
A is defective and not diagonalizable.

Exercise 98. Let C be a 2×2 matrix with trace 4 and determinant 3. Find
the eigenvalues of C and determine whether it is diagonalizable over R.

The characteristic equation is:

λ2 − tr(C)λ+det(C) = λ2 −4λ+3 = 0 =⇒ λ= 1,3.

Since C has two distinct real eigenvalues, it is diagonalizable over R.

Exercise 99. Consider the matrix:

D =
0 1 0

0 0 1
1 −3 3

 .

Show that D is diagonalizable and find a matrix P such that D = PDP−1,
where D is diagonal.

First, find the eigenvalues:

det(D−λI) =−λ3 +3λ2 −3λ+1 =−(λ−1)3 = 0 =⇒ λ= 1 (triple root).
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Check geometric multiplicity:

rank(D− I) = 2 =⇒ geom. mult. = 3−2 = 1.

Since the geometric multiplicity (1) is less than the algebraic multiplicity (3), D
is not diagonalizable. (Note: This contradicts the exercise statement; adjust D
to ensure diagonalizability if desired.)

Exercise 100. Let A and B be n×n diagonalizable matrices with the same
eigenvectors. Prove that AB = BA.

Since A and B share eigenvectors, they can be diagonalized simultaneously:

A = PDP−1, B = PEP−1,

where D and E are diagonal. Diagonal matrices commute (DE = ED), so:

AB = PDP−1 ·PEP−1 = PDEP−1 = PEDP−1 = BA.
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