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Introduction

This handout corresponds to the program for the module: Mathematics 1, which is

intended mainly for 1st year LMD students, in the Science of Matter specialty, and we

have taken care to follow the offi cial program.

The objective of this course is to allow the student to make a transition between the

knowledge of mathematics acquired in secondary school and the bases of fundamental

units such as Analysis (Continuity, Derivable function, etc.) and Algebra (Structure of

a field, Vector space, Linear application, etc.),which will constitute one of the pillars in

their training of the License. The chapters of this handout are designed as follows:

—The courses contain simple, precise and regular notions which allow the student to

acquire a solid mathematical training necessary to profitably explore the vast field of

Materials Science Field and they are also illustrated by examples.

— Each chapter of this course is equipped with solved exercises that allow you to go

further in understanding and assimilating the mathematical concepts introduced. They

help to provide a working method for learning mathematics and for obtaining a certain

number of reflexes in solving problems. The learner must practice resolving the problem

situation on their own without resorting to a proposed solution.

This document has five main chapters, where Sets, Relations, and Applications, Laws

of Internal Composition, Structure of Real Number Fields R, Real Functions of a Real

Variable, and Vector Spaces.
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Chapter 1

Sets, relations and applications

Notations :

:=: means "define"; ∈: means "belongs to" a ∈ S means that "a is an element in S";
∃ : means "there exists"; ∃! : means "there exists a unique";

∀ : means "for all"; /∈: means "does not belong to";

⊂: means "contained in"; ⊆: means "content or equal to";

*: means "is not contained in"; ∀ : means "for all";

⇒: means "implies"; ⇐⇒: means "if and only if".

Some famous sets :

· Set of Natural numbers is denoted by N (N ={0, 1, 2, 3, ...}).

· Set of Integers is denoted by Z (Z ={...,−2,−1, 0, 1, 2, ...}).

· Set of Rational numbers is denoted by Q (Q ={p
q
� p ∈ Z, p ∈ (N∗}).

· Set of Real numbers is denoted by R for example : 1,
√

3, π, ln 3,...

· Set of Complex numbers C for example : 1 + 3i,...

We will try to see the properties of sets, without focusing on a particular example.

You will quickly realize that what is at least as important as sets are the relations

between sets : this will be the notion of application (or function) between two sets.

2



1. Sets, relations and applications 3

1.1 Sets

1.1.1 Definition of sets

I A set is a collection of objects that verify certain properties. An object which satisfies
the needed rules is called element of the set. If the set is denoted by A and x is an

element of A, we say x belongs to A and we write x ∈ A

Example 1.1.1 (i) A = {0, 1}. This means that the set A consists of two elements, 0

and 1.

(ii) B = {x ∈ R : −3lx 6 2} = ]−3, 2] .

(iii) C = {0, {1}, {0, 1}}. The set C contains three elements: the number 0; the set

{1} containing one element, namely the number 1; and the set containing two elements,

the numbers 0 and 1.

I The order in which the elements are listed is not important. Like this {0, 1} =

{1, 0}. An element may occur more than once. So {1, 2, 1} = {1, 2}. But {1, 2, {1}} 6=
{1, 2}!

A set can be also specified by an elementhood test.

1.1.2 Cardinality of a finite set

If a set A contains a finite number of elements it is said to be finite, otherwise it is said to

be infinite. If A is finite and it contains n ∈ N elements, then n is called the cardinality
of A we write card A = n or |A| = n. If n = 0 the set A is called an empty set and is

denoted by ∅ and we have card A = 0 .

Definition 1.1.2 The empty set is the set which contains no elements, and is denoted
by ∅.

In the previous example B is infinite set, |A| = 2 and |C| = 3.

1.1.3 Operations on sets

Now we introduce operations on sets. The main operations are: Inclusion, union, inter-

section, difference and symmetric difference.

Definition 1.1.3 1. A set A is a subset of B, A ⊂ B, if every element of A is in B.

Given A ⊂ B, if a ∈ A =⇒ a ∈ B.
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2. Two sets A and B are equal, A = B, if A ⊂ B and B ⊂ A.
3. A set A is a proper subset of B, A  B if A ⊂ B andA 6= B

Thus, one way to show that two sets, A and B, coincide is to show that each element

in A is contained in B and vice-versa.

Example 1.1.4 We have N ⊂ Z ⊂ Q ⊂ R

Figure 1: N⊂Z⊂Q⊂R

Definition 1.1.5 The union of sets A and B is the set containing the elements of A

and the elements of B, and no other elements.

Notation 1 We denote the union of A and B by A ∪B.

Note: existence of the union for arbitrary A and B is accepted as an axiom.

For arbitrary x and arbitrary A and B the following proposition is true. x ∈ A ∩B)⇔
(x ∈ A) ∧ (x ∈ B).

A ∩B = {x : x ∈ A and x ∈ B} .

Figure 2: A∪B
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Definition 1.1.6 The intersection of sets A and B is the set containing the elements

which are elements of both A and B, and no other elements.

We denote the intersection of A and B by A∩B. Thus for arbitrary x and arbitrary
A and B the following proposition is true. x ∈ A ∩B)⇔ (x ∈ A) ∧ (x ∈ B).

A ∩B = {x : x ∈ A and x ∈ B} .

Figure 3: A∩B

Note: When A ∩B = ∅, then A and B are said to be disjoint.

Definition 1.1.7 The difference of sets A and B is the set containing the elements of

A which do not belong to B.

We use the notation A − B or A\B for the difference or the complement of B

with respect to A . The following is true for arbitrary x and arbitrary A and B :

x ∈ A−B)⇔ [(x ∈ A) ∧ ( /x ∈ B)].

A−B = {x : x ∈ A and x /∈ B}

Figure 4: A−B

Definition 1.1.8 The symmetric difference of the sets A and B is defined by: A4B =
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(A−B) ∪ (B −A).

Figure 5: A4B

Definition 1.1.9 Suppose that A ⊂ U . The complement of the set A in U denoted by

Ac, {U (A) or Ā, is the set of all elements of U that are not in A. That is Ac ={x ∈ U,
x /∈ A}.

Let us illustrate these operations with a simple example.

Figure 6: Ac

Example 1.1.10 Let U = N, A = {0, 1, 2, 3, 4, 5} and B = {1, 3, 5, 7, 9}. Then

A ∪B = {0, 1, 2, 3, 4, 5, 7, 9}.
A ∩B = {1, 3, 5}.
A−B = {0, 2, 4}.
B −A = {7, 9}.
A4B = {0, 2, 4, 7, 9}.
Ac = {k : k ∈ N and k ≥ 6} = {6, 7, ...}

Note that

A ∪B = (A ∩B) ∪ (A4B)
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1.1.4 Laws for operations on sets

Let A, B be subsets of an universal set U

Idempotent Laws (a) A ∪A = A (b) A ∩A = A

Associative Laws (a) (A ∪B) ∪ C = A ∪ (B ∪ C) (b) (A ∩B) ∩ C = A ∩ (B ∩ C)

Commutative Laws (a) A ∪B = B ∪A (b) A ∩B = B ∩A
Distributive Laws (a) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

Morgan’s Laws (a) (A ∪B)c = Ac ∩Bc (b) (A ∩B)c = Ac ∪Bc

Identity Laws
(a) A ∪ ∅ = A

(b) A ∪ U = U

(a) A ∩ ∅ = ∅
(b) A ∩ U = A

Complement Laws
(a) A ∪Ac = U

(b) A ∩Ac = ∅
(a) U c = ∅
(b) ∅c = U

Involution Law (a) (Ac)c = A

A few demonstrations * A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)?

x ∈ A ∩ (B ∪ C)⇔ (x ∈ A and x ∈ (B ∪ C))

⇔ (x ∈ A and (x ∈ B or x ∈ C))

⇔ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)

⇔ (x ∈ A ∩B) or (x ∈ A ∩ C)

⇔ x ∈ (A ∩B) ∪ (A ∩ C).

Then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

* A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)?

x ∈ A ∪ (B ∩ C)⇔ x ∈ A or x ∈ B ∩ C)

⇔ x ∈ A or(x ∈ B and x ∈ C)

⇔ (x ∈ A or x ∈ B) and (x ∈ A or x ∈ C)

⇔ x ∈ A ∪B and x ∈ A ∪ C
⇔ x ∈ (A ∪B) ∩ (A ∪ C).

Then A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

* {U (A ∩B) = {U (A) ∪ {U (B) and {U (A ∪B) = {U (A) ∩ {U (B)?

- x ∈ {U (A ∩B)⇔ x /∈ A ∩B
⇔ x /∈ A or x /∈ B
⇔ x ∈ {U (A) or x ∈ {U (B)

⇔ x ∈ {U (A) ∪{U (B).
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Therefore {U (A ∩B) = {U (A) ∪{U (B).

- x ∈ {U (A ∪B)⇔ x /∈ A ∪B
⇔ x /∈ A and x /∈ B
⇔ x ∈ {U (A) and x ∈ {U (B)

⇔ x ∈ {U (A) ∩{U (B)

Therefore {U (A ∪B) = {U (A) ∩{U (B).

* {U
(
{U (A)

)
= A?

x ∈ {U
(
{U (A)

)
⇔ x /∈ {U (A)

⇔ x ∈ A.

1.1.5 Set of parts.

Definition 1.1.11 Let E be a set, we form a set called the set of parts of E, denoted

P (E) which is characterized by the following relation P (E) = {A : A ⊂ E}.

Example 1.1.12 Let E = {0, 1, 2}. Then

P (E) = {∅, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}} .

Remark 1.1.13 If card (A) = n then card (P (A)) = 2n.

Example 1.1.14 - If E = {a, b},then

P (E) = {∅, {a}, {b}, {a, b}} ,

as card (E) = 2, then card (P (E)) = 22 = 4.

- If E = {a}, then P (A) = {∅, {a}} .

1.1.6 Cartesian product

Definition 1.1.15 . Let A and B be sets. The Cartesian product of A and B, denoted

by A×B, is the set of all ordered pairs (a, b) in which a ∈ A and b ∈ B, i.e.
A×B = {(a, b) : (a ∈ A) ∧ (b ∈ B)}.
Thus

p ∈ A×B ⇔ ∃a ∈ A, ∃b ∈ B / p = (a, b).

Example 1.1.16 (i) If A = {red, green} and B = {1, 2, 3} then

A×B = {(red, 1), (red, 2), (red, 3), (green, 1), (green, 2), (green, 3)}.

(ii) Z × Z = {(x, y)| x and y are integers}. This is the set of integer coordinates
points in the x, y−plane. The notation Z2 is usually used for this set.
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Example 1.1.17 If E = {1, 2} and F = {3, 5}, then

E × F = {(1, 3), (1, 5), (2, 3), (2, 5)}
F × E = {(3, 1), (3, 2), (5, 1), (5, 2)}

E × F 6= F × E

Example 1.1.18 1) R2 = R× R = {(x, y) : x, y ∈ R}
2) [0, 1]× R = {(x, y) : 0 ≤ x ≤ 1, y ∈ R}

Figure 7: [0,1]×R

Example 1.1.19 [0, 1]× [0, 1]× [0, 1] = {(x, y, z) : 0 ≤ x, y, z ≤ 1}

Figure 8: [0,1]×R

Notation 2 Let E2be the Cartesian square of E. More generally, we define the Cartesian
product of n sets E1, E2, ...,En by

E1 × E2 × ...× En = {(x1, x2, ..., xn) : xi ∈ Ei , for i = 1, ..., n}.

Example 1.1.20 If E = {1, 2}, then

E2 = E × E = {(1, 1), (1, 2), (2, 1), (2, 2)}.
E3 = E × E × E = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 2, 1), (2, 1, 2), (2, 2, 2)}.

Proposition 1.1.21 Let E and F be two finite sets.Then

card (E × F ) = card (E)× card (F ) .

The following theorem provides some basic properties of the Cartesian product.
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Theorem 1.1.22 Let A,B,C and D be sets. Then

a) A× (B ∩ C) = (A×B) ∩ (A× C),

b) A× (B ∪ C) = (A×B) ∪ (A× C),

c) (A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D),

d) (A×B) ∪ (C ×D) ⊆ (A ∪ C)× (B ∪D),

e) If A or B are empty sets ((A = ∅ and B 6= ∅) or (B = ∅ and A 6= ∅) or (A = ∅
and B = ∅)), then A×B = ∅.

Proof. (a) (⇒)

Let p ∈ A× (B ∩ C). Then

∃a ∈ A, ∃x ∈ B ∩ C / p = (a, x)

In particular,

(∃a ∈ A, ∃x ∈ B / p = (a, x)) and ( ∃a ∈ A, ∃x ∈ C / p = (a, x)) .

So p ∈ (A×B) ∩ (A× C).

(a) (⇐)

Let p ∈ (A×B) ∩ (A× C). Then

p ∈ (A×B)andp ∈ (A× C).

So

(∃a ∈ A, ∃b ∈ B / p = (a, b)) and (∃à ∈ A, ∃c ∈ C / p = (à, c)) .

But then (a, b) = p = (à, c) and hence a = à and b = c. Thus p = (a, x) for some

a ∈ A and x ∈ B ∩ C, i.e.p ∈ A× (B ∩ C). This proves (a) .
The proof of (b), (c), (d) and (e) are left as exercises.

1.2 Relations

Definition 1.2.1 We call a relation R from E to F any part of the Cartesian product

E × F . The domain of R is the set

D(R) = {x ∈ E : ∃y ∈ F [(x, y) ∈ R]}.

The range of R is the set

Ran(R) = {y ∈ F : ∃x ∈ E[(x, y) ∈ R]}.
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If E = F , we say that R is a binary relation on E.

The inverse of R is the relation R−1 from F to E defined as follows

R−1 = {(y, x) ∈ F × E : (x, y) ∈ R}.

The graph of this relation is:

GR = {(x, y) ∈ E × F : x R y }

Example 1.2.2 (i) Let A = {1, 2, 3}, B = {3, 4, 5}. The set R = {(1, 3), (1, 5), (3, 3)}
is a relation from A to B since R v A×B.

(ii) G = {(x, y) ∈ Z× Z : x > y} is a relation from Z to Z.

Example 1.2.3 Let A = {1, 2, 3, 4, 5, 6} be a set and the relation R is defined by

xRy ⇔ x divide y (in Z)

GR = {(x, y) ∈ A×A, x divide y }

= {(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , (1, 6) , (2, 2) , (2, 4) , (2, 6) , (3, 3) , (3, 6) , (4, 4) , (5, 5) , (6, 6)} .

Definition 1.2.4 Let R be a binary relation over a set E. For all x, y, z ∈ E, we say
that R is

(1) Reflexive, if each element is related to itself, i.e

xRx,∀x ∈ E.

(2) Symmetric, if for all x, y ∈ E, if x is related to y then y is related to x, i.e.
xRy ⇒ yRx,∀x, y ∈ E.

(3) Transitive, if for all x, y, z ∈ E, if x is in relation to y and y in relation to z
then x is in relation to z, i.e. (xRy and yRz)⇒ xRz, ∀x, y, z ∈ E.

(4) Anti-symmetric, if two elements are related to each other, then they are equal,
i.e.

(xRy and yRx)⇒ x = y,∀x, y ∈ E.

A particularly important class of relations are equivalence relations.
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1.2.1 Equivalence relation

Definition 1.2.5 A relation R on E is called equivalence relation if it is reflexive,

symmetric and transitive.

Example 1.2.6 (i) Let E be a set of students. A relation on E × E: “to be friends”.
It is reflexive (I presume that everyone is a friend to himself / herself). It is symmetric.

But it’s not transitive.

(ii) Let E = Z,a ∈ N. Define R ⊆ E × E as

R = {(x, y) : |x− y| ≤ a}.

R is reflexive, symmetric, but not transitive.

(iii) Let E = Z, m ∈ N . Define the congruence modm on E × E as follows:

x ≡ y if (∃k ∈ Z : x− y = km).

This is an equivalence relation on E.

Definition 1.2.7 Let R be an equivalence relation on E.

1. The equivalence class of an element x in E is the set of all elements y ∈ E that

are in relation with x we denote this set by ẋ, x̄ or C(x),and we write it as follow

ẋ = x̄ = C(x) = {y ∈ E : yRx}.

2. x̄ is a representative of the equivalence class C(x).

3. The set of equivalence classes for all elements in E is called the ”quotient set”of

E for the equivalence relation R. It is denoted as E/R, and written as follows:

E/R = {C(x) : x ∈ E}.

Example 1.2.8 In R we define the relation R by:

xRy ⇔ x− y ∈ Z.

This relation is indeed a relation of equivalence. Indeed,

• For x ∈ R : xRx⇔ 0 ∈ Z, as 0 ∈ Z, then xRx,∀x ∈ R, so R is a reflexive relation.
• For x, y ∈ R, we have (xRy) ⇔ (x − y ∈ Z) ⇔ (y − x ∈ Z) ⇒ yRx, then R is a

symmetric relation.
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• For x, y, z ∈ R, we have

(xRy and yRz) ⇒ (x− y ∈ Z and y − z ∈ Z)

⇒ (x− y + y − z ∈ Z)

⇒ (x− z ∈ Z)⇒ (xRz),

then R is a transitive relation.

Therefore, the set of equivalence classes C(x) is the set

C(x) = {y ∈ R : y − x ∈ Z}

= {y ∈ R : y ∈ x+ Z}

= {y ∈ R : y = k + x : k ∈ Z}

= {k + x : k ∈ Z},

if x ∈ Z, we have C(x) = Z.

Exercise 1.2.9 Let us consider the relation R defined on R by :

∀x, y ∈ R, xRy ⇔ xey = yex

Prove that R is an equivalence relation.

Solution 1.2.10 We show that R is reflexive, symmetric and transitive..

1.∀x ∈ R we have xex = xex. In other words, we have xRx and then R is reflexive.

2. R is symmetric . In fact, let x, y ∈ R, such that xRy, hence we have

xRy ⇒ xey = yex,

⇒ yex = xey,

⇒ yRx.

3. R is transitive because for all x, y, z ∈ R, such that (xRy) ∧ (yRz),
we have :

xRy ⇒ xey = yex (1)

yRz ⇒ yez = zey (2)

(2) gives y =
zey

ez
, moreover, using (1) and by substituting y we have xey =

zey

ez
ex hence

xeyez = zeyex. Since ey 6= 0 Thus xez = zex, which implies xRz.
4. R is reflexive, symmetric and transitive then it is an equivalence relation.
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1.2.2 Order relation

Definition 1.2.11 A binary relation R over E is said to be an order relation if it is

antisymmetric, transitive and reflexive.

Example 1.2.12 On R the relation ≤ is an order relation. In fact
- R is reflexive

∀x ∈ R, xRz ⇔ x = x.

- R is antisymmetric, if only if:

∀ (x, y) ∈ R× R; (xRy ⇔ x ≤ y) and (yRx⇔ y ≤ x)⇔ x = y.

-R transitive, if only if :

∀ (x, y, z) ∈ R× R× R; (xRy ⇔ x ≤ y) and (yRz ⇔ y ≤ z)⇔ x ≤ z ⇔ xRz.

- In R, the relation < is not a relation of order ( it is not reflexive.)

Total order and partial order

Definition 1.2.13 Let R be an order relation defined on a set E, we say the ordernis

total, if for all x, y ∈ E, we have

xRy or yRx.

Otherwise, we say that R is a partial order relation, i.e.

∃x, y ∈ E : neither xRy nor yRx

Example 1.2.14 A = {1, 2, 3, 4, 5, 6} with

aRb⇔ a divide b

is a partial order relation ( it is not total).

Indeed 2 and 3, for example, are not comparable : 2 does not divide 3 and 3 does not

divide 2.

Example 1.2.15 Let A be a non-empty set and R a relation on A defined by :

∀a, b ∈ A, aRb⇔ a = b.

R is a an order relation on A.

If A is a singleton, then the order is total, if not, the order is partial.
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1.3 Applications

1.3.1 Definition of an application

Definition 1.3.1 Let E and F be given sets, we call the application of E in F , any

correspondence f between the elements of E and those of F which associates to any

element of E one and only element of F , we write

f : E → F

x −→ f (x)

or (f is an application)⇔ (∀x ∈ E,∃!y ∈ F/y = f(x)).

The set E is said to be the starting set and F is said to be the end set.

The element x is said to be the antecedent and y is said to be the image of x by f .

The map f is said to be a function if, for each x ∈ E, there exists at most y ∈ F such

that f(x) = y.

Remark 1.3.2 (1) The application from E to F if every element x of E has a unique

image in F.

(2) If f is an application from E to F , then the element y of F can have more than

one antecedent in E.

(3)We must differentiate between f (x) and f : we have f (x) ∈ F , while f represents
the application as a whole, and it belongs to the space of applications defined from E to

F.

Example 1.3.3 We have A = {1, 2, 3} and B = {7, 9, 13}.
• We have f (3) = 9, f (2) = 9; f (1) = 7.

• f is an application from A to B. Every element x of A has a unique image in B.

Figure 9 : f : A−→B

• This element 13 has no precedent according to the application.

• This element 9 has two precedent : 2 and 3.
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Definition 1.3.4 (Graph). Let E and F be given sets. The graph of a map f : E → F

is

Gf := {(x, f(x)) : x ∈ E} ⊂ E × F.

Definition 1.3.5 (Equality). Let f, g : E → F be two applications. We say that f and

g are equal if and only if for all x ∈ E : f(x) = g(x). We then write f = g.

Definition 1.3.6 (Composition). Let E, F and G be three sets and f and g two maps

such as

E
f−→ F

g−→ G

We can deduce from this a map of E in G denoted g ◦ f and called a map composed of f
and g, by

(g ◦ f)(x) = g(f(x)), for all x ∈ E.

Figure 10 : g◦f

Exercise 1.3.7 Let f : Z → Z, g : Z → Z,

f(x) = x2 + 2, g(x) = 2x− 1.

Find (f ◦ g)(x) and (g ◦ f)(x).

Solution 1.3.8 we have

(f ◦ g)(x) = f(g(x)) = g(x)2 + 2 = 4x2 − 4x+ 3,

(g ◦ f)(x) = g(f(x)) = 2f(x)− 1 = 2x2 + 3.

As you clearly see from the above,f ◦ g 6= g ◦ f in general.

Definition 1.3.9 Let E be a set, we call an identity map, denoted IdE : E → E, the

map that verifies IdE(x) = x, ∀x ∈ E.

Definition 1.3.10 Let f : E → F be a function. The domain of definition of f , denoted

Df , is the set of elements x ∈ E in which there exists a single element y ∈ F , such that
y = f(x).

Example 1.3.11 Let f : R→ R defined by f(x) =
√
x+ 1, then

Df = {x ∈ R : x+ 1 ≥ 0} = [−1,+∞[.
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1.3.2 Restricting and extending an application

Definition 1.3.12 Let A ⊂ E and f : E → F be an application. We call the restriction

from f to A, the map f/A : A→ F defined by

f/A(x) = f(x), for all x ∈ A.

Definition 1.3.13 Let E ⊂ G and f : E → F a map. We call an extension from f to

G, any map g from G to F whose restriction to E is f .

Example 1.3.14 Given the application :

f : R∗+ → R

x → lnx
,

then
g : R∗ → R

x → ln |x|
,
h : R∗ → R

x → ln (|3x| − 2x)
,

are two different extensions of f to R∗.

1.3.3 Direct image and inverse image

Definition 1.3.15 Let A and B be non-empty sets. Let E be a subset of A, and f :

A→ B be an application. The direct image of the set E is defined by :

f (E) = {f (x) : x ∈ E}

Figure 11 : f(E)

Example 1.3.16 Let f : Z→ Z defined by f(x) = x2. Let

A = {x ∈ Z : 0 ≤ x ≤ 2}.

Then f(A) = {0, 1, 4}.

Exercise 1.3.17 We consider the application f : [0,+∞[→ R defined by f (x) = x2+2.

Show that

f ([0,+∞[) = [2,+∞[ .
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Solution 1.3.18 It suffi ces to demonstrate the double inequality.
1) That is, first, showing that f ([0,+∞[) ⊂ [2,+∞[

Let
x ∈ [0,+∞[ ⇒ x2 + 2 ≥ 2

⇒ f (x) ≥ 2

⇒ f (x) ∈ [2,+∞[ .

Therfore, f ([0,+∞[) ⊂ [2,+∞[ .

2) Now let’s show the opposite (f ([0,+∞[) ⊃ [2,+∞[).

It means tha ∀y ∈ [2,+∞[, ∃?x ∈ [0,+∞[ such as f (x) = y.

We solve the equation

y = x2 + 2 ⇔ y − 2 = x2

⇒ x = ±
√
y − 2,

or x =
√
y − 2 ≥ 0 So

∀y ∈ [2,+∞[ , ∃x
(
x =

√
y − 2

)
∈ [0,+∞[ /f (x) = y

finally f ([0,+∞[) = [2,+∞[ .

Definition 1.3.19 Let A and B be non-empty sets, let F be a subset of B, and f : A→
B be an application. The inverse image of the set F is defined by :

f−1 (F ) = {x ∈ A : f (x) ∈ F}

Figure 12 : f−1(F )

Example 1.3.20 Let f : Z → Z defined by f(x) = x2, let B = {y ∈ Z : y ≤ 10}. Then
f−1(B) = {−3,−2,−1, 0, 1, 2, 3}.

Theorem 1.3.21 Let f : X → Y and A1 ⊂ X, A2 ⊂ X, B1 ⊂ Y , B2 ⊂ Y . Then
(i) ) A1 ⊂ A2 ⇒ f(A1) ⊂ f(A2) and B1 ⊂ B2 ⇒ f−1(B1) ⊂ f−1(B2).
(ii) f (A1 ∩A2) ⊂ f(A1) ∩ f(A2) and f−1 (B1 ∩B2) = f−1(B1) ∩ f−1(B2).
(iii) f (A1 ∪A2) = f(A1) ∪ f(A2) and f−1 (B1 ∪B2) = f−1(B1) ∪ f−1(B2).
(iv) A1 ⊂ f−1 (f(A1)) and f

(
f−1(B1)

)
⊂ B1.
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1.3.4 Injective, surjective and bijective application

Definition 1.3.22 Let f : E → F . f is said to be injective if and only if :

∀ (x1, x2) ∈ E2 : f(x1) = f(x2)⇒ x1 = x2

Example 1.3.23
f : R+/ {2} −→ R

x −→ 1

x2 − 4

is an injective application because we have :

∀ (x1, x2) ∈
(
R+/ {2}

)2
: f(x1) = f(x2)⇔

1

x21 − 4
=

1

x22 − 4
⇔ x21 = x22 ⇔ x1 = ±x2,

but as x1, x2 ∈ R+/ {2} then x1 = x2.

Definition 1.3.24 Let f : E → F . We say that f is surjective if and only if: for all

y ∈ F , there exists x ∈ E such that f(x) = y, i.e.

∀y ∈ F , ∃x ∈ E : y = f(x).

Example 1.3.25 Let f : Z→ N, be the map defined by f(x) = |x|, then f is surjective.
Indeed, let y ∈ N, for x = y or x = −y, we have x ∈ Z and f(x) = |x| = y, so there

exists x ∈ Z such that y = f(x).

Definition 1.3.26 Let f : E → F . f is said to be bijective if and only if: f is both

injective and surjective. This is equivalent to : for all y ∈ F there exists a unique x ∈ E
such that y = f(x). In other words:

∀y ∈ F , ∃!x ∈ E : y = f(x).

Example 1.3.27 Let f : R → R, defined by f(x) = x + 1, then f is bijective. Indeed,

let y ∈ R, such that f(x) = y, then x = y − 1, so there exists a unique x in R such that
y = f(x).

Remark 1.3.28 If the application f is bijective, then to every y ∈ F we match a single

element x ∈ E.

Definition 1.3.29 Let f : E → F be a bijective function. We define the function

f−1 : F → E, called the reciprocal function of f , given by f−1(x) = y if and only if

f(y) = x.
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Example 1.3.30 Let f be the map defined by f(x) = x2 + 1 of R+ → [1,+∞[, then f

is bijective, because for all y ∈ [1,∞[, the equation y = f(x) admits a single solution

x =
√
y − 1. The reciprocal bijection is f−1 : [1,+∞[→ R+ defined by:

f−1(x) =
√
x− 1 for all x ∈ [1,+∞[.

Proposition 1.3.31 Let E, F be sets and f : E → F an application.

• The map f is bijective if and only if there is a map g : F → E such that

f ◦ g = IdF and g ◦ f = IdE .

• Let f : E → F and g : F → G be bijective maps. The map g ◦ f is bijective and its
reciprocal bijection is

(g ◦ f)−1 = f−1 ◦ g−1.

1.4 Some methods of proof

1. First we discuss a couple of widely used methods of proof: contrapositive proof

and proof by contradiction.

The idea of contrapositive proof is the following equivalence

(A⇒ B)⇔ (B̄ ⇒ Ā).

So to prove thatA⇒ B is true is the same as to prove that B̄ ⇒ Ā is true.

Exercise 1.4.1 For integers m and n, if mn is odd then so are m and n.

Solution 1.4.2 We have to prove that

(∀m,n ∈ Z+)(mn is odd)⇒ [(m is odd) ∧ (n is odd)],

which is the same as to prove that

[(m is even) ∨ (n is even)]⇒ (mn is even)

The latter is evident.
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The idea of proof by contradiction is the following equivalence

(A⇒ B)⇔ (Ā ∨B)⇔ (A ∧ B̄)

So to prove that A⇒ B is true is the same as to prove that Ā∨B is true or elsethat

A ∧ B̄ is false.

2 The Principle of Mathematical Induction is often used when one needs to prove

statements of the form

(∀n ∈ N) P (n).

Thus one can show that 1 has property P and that whenever one adds 1 to a

number that has property P , the resulting number also has property P .

Principle of Mathematical Induction. If for a statement P (n)

(i) P (1)is true,

(ii) [P (n)⇒ P (n+ 1)] is true,

then (∀n ∈ N) P (n) is true.

Part (i) is called the basic case; (ii) is called the induction step.

Example 1.4.3 Prove that

∀n ∈ N : 12 + 22 + 32 + ···+ n2 =
n(n+ 1)(2n+ 1)

6
.

Solution: Basic case: n = 1. 12 =
1·2·3

6
is true.

Induction step: Suppose that the statement is true for n = k(k ≥ 1). We have to

prove that it is true for n = k + 1. So our assumption is

12 + 22 + 32 + ···+ k2 =
k(k + 1)(2k + 1)

6
.

Therefore we have

12 + 22 + 32 + ···+ k2 + (k + 1)2 =
(k + 1)(k + 2)(2k + 3)

6
,

which proves the statement for n = k + 1. By the principle of mathematical induction

the statement is true for all n ∈ N.



Chapter 2

Structure of real numbers field R

The aim of this chapter is to introduce axiomatically the set of Real numbers

2.1 Set of rational numbers Q.

2.1.1 Integers numbers

We take for granted the system N of natural numbers N = {1, 2, 3, 4...}. In general the
equation x+a = 0 is not solvable in N whose case or a is positive. In order to make this
equation solvable, we must enlarge the set N = Z+ by introducing negative integers as
unique solutions of the equations a + x = 0 (existence of the additive inverse) for each

a ∈ N. Our extended system, which is denoted by Z, now contains all integers and can
be arranged in order

Z = {...,−3,−2,−1, 0, 1, 2, 3, ...} = N ∪ {0} ∪ {−a : a ∈ N}.

Theorem 2.1.1 (Fundamental theorem of arithmetic) Every positive integer ex-
cept 1 can be expressed uniquely as a product of primes.

2.1.2 Rational numbers

Let a ∈ Z, b ∈ Z. The equation

ax = b (1)

22
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need not have a solution x ∈ Z. In order to solve (1) (for a 6= 0) we have to enlarge

our system of numbers again so that it includes fractions
b

a
(existence of multiplicative

inverse in Z− {0}.This motivates the following definition.

Definition 2.1.2 The set of rational numbers (or rationals) Q is the set

Q = {r =
p

q
: p ∈ Z, q ∈ N,hcf(p, q) = 1}.

Here hcf(p, q) stands for the highest common factor of p and q, so when writing
p

q
for a rational we often assume that the numbers p and q have no common factor greater

than 1.

Definition 2.1.3 Let b ∈ N, d ∈ N. Then(a
b
>
c

d

)
⇔ (ad > bc)

The following theorem provides a very important property of rationals.

Theorem 2.1.4 Between any two rational numbers there is another (and, hence, infin-
itely many others).

Proof. Let b ∈ N, d ∈ N, and a

b
>
c

d
.

Notice that

∀m ∈ N :
a

b
>
a+mc

b+md
>
c

d
.

Indeed, since b, d and m are positive we have

[a (b+md) > b (a+mc)]⇔ [mad > mbc]⇔ (ad > bc) ,

and

[d (a+mc) > c (b+md)]⇔ (ad > bc) .

2.2 Irrational numbers

Suppose that a ∈ Q+ and consider the equation

x2 = a. (2)

In general (2) does not have rational solutions. For example, the following theorem

holds.
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Theorem 2.2.1 No rational number has square 2.

Proof. Suppose for a contradiction that the rational number
p

q
(p ∈ Z, q ∈ N, in

lowest terms) is such that (
p

q
)2 = 2. Then p2 = 2q2.

Hence, appealing to the Fundamental Theorem of Arithmetic, p2 is even, and hence

p is even. Thus (∃k ∈ Z) [p = 2k]. This implies that

2k2 = q2,

and therefore q is also even. The last statement contradicts our assumption that p and

q have no common factor.

The last theorem provides an example of a number which is not rational. We call

such numbers irrational.

We leave the following as an exercise.

Exercise 2.2.2 No rational x satisfies the equation
• x3 = x+ 7.

• x5 = x+ 4.

2.3 Real numbers

Real numbers can be defined as the union of both rational and irrational numbers. They

can be both positive or negative and are denoted by the symbol “R”. All the natural
numbers, decimals and fractions come under this category.In this course we postulate

the existence of the set of real numbers R as well as basic properties summarized in a
collection of axioms.Will find that axioms A.1−A.11 characterize R as an algebraic field.

2.3.1 Axiomatic definition

A.1 ∀a, b ∈ R : (a+ b) ∈ R (closed under addition).

A.2 ∀a, b ∈ R : [a+ b = b+ a] (commutativity of addition).

A.3 ∀a, b, c ∈ R : [(a+ b) + c = a+ (b+ c)] (associativity of addition).

A.4 ∃0 ∈ R, ∀a ∈ R : [0 + a = a] (existence of additive identitie).

A.5 ∀a ∈ R, ∃!x ∈ R : [a+ x = 0] (existence of additive inverse). We write x = −a.

Axioms A.6−A.10 are analogues of A.1−A.5 for the operation of multiplication.



2. Structure of real numbers field R 25

A.6 ∀a, b ∈ R : [ab ∈ R] (closed under multiplication).

A.7 ∀a, b ∈ R : [ab = ba] (commutativity of multiplication).

A.8 ∀a, b, c ∈ R : [(ab)c = a(bc)] (associativity of multiplication).

A.9 ∃1 ∈ R, ∀a ∈ R : [1·a = a] (existence of multiplicative identitie).

A.10 ∀a ∈ R − {0}, ∃!y ∈ R : [ay = 1] (existence of multiplicative inverse). We write

y =
1

a
.

The last axiom links the operations of summation and multiplication.

A.11 ∀a, b, c ∈ R : [(a+ b)c = ac+ bc] (distributive law).

Example 2.3.1 ∀a ∈ R : 0a = 0.

Indeed, we have

a+ 0a = 1a+ 0a (byA.9)

= (1 + 0)a(byA.11)

= 1a (byA.2 and A.4)

= a (byA.9)

Now add −a to both sides.

−a+ (a+ 0a) = −a+ a

⇒ (−a+ a) + 0a = 0 (by A.3 and A.5)

⇒ 0 + 0a = 0 (by A.5)

⇒ 0a = 0 (byA.4).

Remark 2.3.2 The set of rationals Q also forms an algebraic field (that is, the rational
numbers satisfy axioms A.1 - A.11.

Now we add axioms of order.

O.1 ∀a, b ∈ R : [(a = b) ∨ (a < b) ∨ (a > b)]

≡ ∀a, b ∈ R : [(a ≥ b) ∧ (b ≥ a)⇒ (a = b)] (trichotomy law).

O.2 ∀a, b, c ∈ R : [(a > b) ∧ (b > c)⇒ (a > c)] (transitive law).

O.3 ∀a, b, c ∈ R : [(a > b)⇒ (a+ c > b+ c)] (compatibility with addition).
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O.4 ∀a, b, c ∈ R : [(a > b) ∧ (c > 0)⇒ (ac > bc)] (compatibility with multiplication).

Remark 2.3.3 Note that

∀a, b ∈ R : {(a > b)⇔ (a− b > 0)}.

This follows from (O.3) by adding −b.

Axioms A.1-A.11 and O.1 - O.4 define R to be an ordered field. Observe that the
rational numbers also satisfy axioms A.1 - A.11 and O.1 - O.4, so Q is also an ordered
field.

2.3.2 Absolute value

Definition 2.3.4 We define the maximum and the minimum of two real a and b by:

max(a, b) =

{
a if a ≥ b
b if b > a

, min(a, b)

{
a if a ≤ b
b if b < a

Definition 2.3.5 The absolute value |x| of x is defined by

|x| =
{
x if x ≥ 0,

−x if x < 0.

Theorem 2.3.6 We can prove a bunch of theorems about the absolute value function
that we usually take for granted:

1) |x| ≥ 0 and (|x| = 0⇔ x = 0).

2) ∀x ∈ R, | − x| = |x|.
3) ∀x, y ∈ R, |xy| = |x||y|.
4) |x2| = x2 = |x|2.
5) If x, y ∈ R, then |x| ≤ y ⇔ −y ≤ x ≤ y.
6) ∀x ∈ R, x ≤ |x|.

Proof. :
1) If x ≥ 0 then |x| = x ≥ 0. If x ≤ 0, then −x ≥ 0 ⇒ |x| = −x ≥ 0. Thus, |x| ≥ 0.

Now suppose x = 0.Then, |x| = x = 0. For the other direction, suppose |x| = 0.

Then, if x ≥ 0⇒ x = |x| = 0. If x ≤ 0, then −x = |x| = 0. Therefore,

x = 0⇔ |x| = 0.

2) If x ≥ 0 then −x ≤ 0. Thus, |x| = x = −(−x) = | − x|. If x ≤ 0 then −x ≥ 0 and

thus | − x| = | − (−x)| = |x|.
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3) a) If x ≥ 0 and y ≥ 0, then xy ≥ 0 and |xy| = xy = |x||y|.
b) If x ≤ 0 and y ≤ 0, then xy ≥ 0⇒ |xy| = xy = (−x) (−y) = |x||y|.
c) If x ≤ 0 and y ≥ 0, then xy ≤ 0⇒ |xy| = −xy = (−x) (y) = |x||y|.
d) If x ≥ 0 and y ≤ 0, then xy ≤ 0⇒ |xy| = −xy = (x) (−y) = |x||y|.
4) Take x = y in 3). Then, |x2| = |x|2. Since x2 ≥ 0, it follows that |x2| = x2.

5) Suppose |x| ≤ y. If x ≥ 0, then −y ≤ 0 ≤ x = |x| ≤ y. Therefore, −y ≤ x ≤ y.
If x ≤ 0, then −x ≥ 0 and |x| = −x ≤ y. Hence, −y ≤ −x ≤ y ⇒ −y ≤ x ≤ y.
6) If x ≥ 0 then x = |x|, if x ≤ 0 then x ≤ |x| and thus x ≤ |x|.

Theorem 2.3.7 (triangle inequality)

∀a, b ∈ R : |a+ b| ≤ |a|+ |b|.

Proof. We split the proof into two cases. We use the fact that a ≤ |a| for all a ∈ R.
Case a+ b ≥ 0. Then

|a+ b| = a+ b ≤ |a|+ |b|.

Case a+ b < 0. Then

|a+ b| = −(a+ b) = (−a) + (−b) ≤ |a|+ |b|.

Exercise 2.3.8 Prove that
1) (∀a ∈ R)(∀b ∈ R)[a2 + b2 ≥ 2ab].

2) (∀a ∈ R+)(∀b ∈ R+)[
a+ b

2
≥
√
ab].

3) (∀a ∈ R+)(∀b ∈ R+)(∀c ∈ R+)(∀d ∈ R+)

[
a+ b+ c+ d

4
≥ 4
√
abcd

]
.

4) Let n ≥ 2 be a natural number. Prove that

1

n+ 1
+

1

n+ 2
+ ···+ 1

2n
>

1

2
.

Recall that R+ = {x ∈ R | x ≥ 0}.

Proof. 1) The result is equivalent to a2 + b2 − 2ab ≥ 0. But,

a2 + b2 − 2ab = (a− b)2 ≥ 0.

Note that the equality holds if and only if a = b.

2) As above, let us prove that the difference between the left-hand side (LHS)
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and the right-hand side (RHS) is non-negative:

a+ b

2
−
√
ab =

(√
a−
√
b
)2

2
≥ 0.

The equality holds if and only if a = b.

3)By (2) and by (O.2) we have

a+ b+ c+ d

4
≥
√
ab+

√
cd

2
≥
√√

ab
√
cd =

4
√
abcd.

The equality holds if and only if a = b = c = d.

4)
1

n+ 1
+

1

n+ 2
+···+ 1

2n
>

1

2n
+

1

2n
+ ···+ 1

2n︸ ︷︷ ︸
n

= n
1

2
=

1

2
.

Theorem 2.3.9 ( Bernoulli’s inequality) (∀n ∈ N)(∀x > −1) [(1 + x)n ≥ 1 + xn].

Proof. Basic case. The inequality holds for n = 0, 1.

Induction step. Suppose that the inequality is true for n = k with k ≥ 1; that is,

(1 + x)k ≥ 1 + kx.

We have to prove that it is true for n = k + 1; in other words,

(1 + x)k+1 ≥ 1 + (k + 1)x.

Now,

(1 + x)k+1 = (1 + x)k(1 + x)

≥ (1 + kx)(1 + x)

= 1 + (k + 1)x+ kx2

≥ 1 + (k + 1)x.

This concludes the induction step. By the principle of mathematical induction, the result

is true for all n ∈ N.

2.3.3 Bounded sets of R

Definition 2.3.10 Let A be a subset of R and non-empty .
We say that A is bounded from above if and only if :

∃M ∈ R; ∀x ∈ A : x ≤M
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We say that A is bounded from below if and only if

∃m ∈ R; ∀x ∈ A : x ≥ m

A is bounded if and only if it is bounded from above and below.

Proposition 2.3.11 The three following conditions are equivalent
1) A is bounded set,

2) ∃m ∈ R,∃M ∈ R;∀x ∈ A : m ≤ x ≤M.

3) ∃M ∈ R∗+;∀x ∈ A : |x| ≤M.

Definition 2.3.12 Let A ⊆ R. We say that M ∈ R is the supremum of A, written

supA, if

(i) ∀x ∈ A : x ≤M for all x ∈ A; (M is an upper bound of A)

(ii) if x ≤ M̀ for all x ∈ A then M ≤ M̀ (M is the least upper bound of A).

Definition 2.3.13 Let A ⊆ R. We say that m ∈ R is the infimum of A, written inf A,

if

(i) ∀x ∈ A : x ≥ m for all x ∈ A; (m is a lower bound of A)

(ii) if x ≥ m̀ for all x ∈ A then m ≥ m̀ (m is the greatest lower bound of A).

Definition 2.3.14 If supA ∈ A, it is called maxA.

If inf A ∈ A, it is called minA.

Notation 3 If A is infinite from above (from below, respectively) in R we write supA =

+∞ (inf A = −∞,respectively).

Remark 2.3.15 If A has a supremum (an infimum, respectively), then supA (inf A) is

unique.

Example 2.3.16 • Let A = [1, 2). Then 2 is an upper bound, and is the least upper

bound: if M̀ < 2 then M̀ is not an upper bound because max(1, 1 +
M̀

2
) ∈ A and

max(1, 1 +
M̀

2
) > M̀ . Note that in this case supA /∈ A, so @maxA.

• Let A = (1, 2]. Then we again have supA = 2, and this time supA ∈ A. The

supremum is the least upper bound of a set. There’s an analogous definition for lower

bounds.

Axiom 2.3.17 ( supermum and infimum) Let A be a non-empty subset of R that

is bounded above ( below, respectively). Then A has a supremum ( an infimum, respect-

ively).



2. Structure of real numbers field R 30

Let’s explore some useful properties of sup and inf.

Proposition 2.3.18 (i) Let A, B be non-empty subsets of R, with A ⊆ B and with B

bounded above. Then A is bounded above, and supA ≤ supB.

(ii) Let B ⊆ R be non-empty and bounded below. Let A = {−x : x ∈ B}. Then A is
non-empty and bounded above. Furthermore, inf B exists, and inf B = − supA.

Proof. (i) Since B is bounded above, it has an upper bound, say M . Then x ≤M
for all x ∈ B, so certainly x ≤M for all x ∈ A, so M is an upper bound for A. Now A,

B are non-empty and bounded above, so by Axiom of supermum .

Note that supB is an upper bound for B and hence also for A, so supB ≥ supA

(since supA is the least upper bound for A).

(ii) Since B is non-empty, so is A.

Let m be a lower bound for B, so x ≥ m for all x ∈ B. Then −x ≤ −m for all x ∈ B,
so y ≤ −m for all y ∈ A, so −m is an upper bound for A.

Now A is non-empty and bounded above, so by Axiom of supremum. Then y ≤ supA

for all y ∈ A, so x ≥ − supA for all x ∈ B, so − supA is a lower bound for B. Also, we

saw before that if m is a lower bound for B then −m is an upper bound for A. Then

−m ≥ supA (since supA is the least upper bound), so m ≤ − supA.

So − supA is the greatest lower bound.

So inf B exists and inf B = − supA.

Proposition 2.3.19 (Approximation property) 1) Let A ⊆ R be non-empty and

bounded above, then

M = supA⇔


∀x ∈ A : x ≤M
and

∀ε;∃aε ∈ A : M − ε < aε

2)Let A be bounded from below, then

m = inf A⇔


∀x ∈ A : x ≥ m
and

∀ε;∃bε ∈ A : bε < m+ ε

Proof. 1) Take ε > 0. Note that by definition of the supremum we have x ≤ supA

for all x ∈ A. Suppose, for a contradiction, that supA − ε ≥ x for all x ∈ A. Then

supA− ε is an upper bound for A, but supA− ε < supA. Contradiction.

So there is aε ∈ A with supA− ε < aε.

2) In the same way we prove the second case.
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Axiom 2.3.20 ( of Archimedes) ∀x > 0; ∀y ∈ R; ∃n ∈ N∗ : y < nx.

Proof. We suppose that: ∃x > 0; ∃y ∈ R; ∀n ∈ N∗ : y ≥ nx or ∃x > 0; ∃y ∈ R;
∀n ∈ N∗ : n ≤ y

x
, that’s mean the set N∗ is limited from above it accepts an upper limit

in R called M . so
∀ε;∃nε ∈ N∗ : M − ε < nε.

Putting ε = 1, we get :

∃nε ∈ N∗ : M − 1 < nε or ∃nε ∈ N∗ : M < nε + 1

but nε + 1 ∈ N∗, this is a contradiction with supN∗ = M.

Example 2.3.21 A = [1, 2[; supA = 2 /∈ A, then @maxA; inf A = 1 = minA

B =

{
1

n
;n ∈ N∗

}
; ∀n ∈ N∗ : n ≥ 1⇒ 0 <

1

n
≤ 1, then supB = maxB = 1 ∈ B.

Let we proof that inf B = 0 i.e.

0 = inf B ⇔


∀x ∈ B : x ≥ 0

and

∀ε; ∃bε ∈ B : bε < 0 + ε.

On the other side we have

∀ε;∃bε ∈ B : bε < 0 + ε⇔ ∀ε; ∃n ∈ N∗ :
1

n
< ε.

and this proposition is true and its according to Archimedes’Axiom

∀ε;∃n ∈ N∗ : nε > 1

minB is unavailable, because 0 /∈ B.

Definition 2.3.22 Let x ∈ R, there exists a unique relative integer, the integer part
denoted E(x), such that E(x) ≤ x < E(x) + 1.We also note E(x) = [x].

Example 2.3.23 1) E (3, 5) = 3 since 3 ≤ 3, 5 < 3 + 1.

2) E (−3, 5) = −4 since −4 ≤ −3, 5 < −4 + 1.

3) ∀n ∈ N∗ : E
(

1
n+1

)
= 0 since ∀n ∈ N∗ : 0 ≤ 1

n+1 < 0 + 1.
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2.3.4 Dense groups in R

Theorem 2.3.24 Between every two different real numbers there is at least one rational
number.

Proof. Let y and x be two real numbers where x < y. According to Archimedean

axiom

∃n ∈ N∗ : 1 < n(y − x) or nx+ 1 < ny.

On the other hand we have

E (nx) ≤ nx < E (nx) + 1

or nx < E (nx) + 1 ≤ nx+ 1 < ny.

So

x <
E (nx) + 1

n
< y

Well the rational number
E (nx) + 1

n
is bounded between the two real numbers x and

y.

Theorem 2.3.25 between every two different real numbers there is at least one irra-
tional number.

To prove this theory we need the following proposition.

Proposition 2.3.26 if x ∈ I ( irrational number)and r ∈ Q∗ then rx ∈ I.

Proof. We assume x ∈ I and r ∈ Q∗and that rx ∈ Q, then(
1

r
∈ Q∗or rx ∈ Q

)
⇒ 1

r
.rx ∈ Q

⇒ x ∈ Q.

This is a contradiction because x ∈ I.
Proof (Theorem). Let x, y be two real numbers, where x < y, according to the

theorem , there sexist a rational number r (r 6= 0) such that:

x√
2
< r <

y√
2
or x < r

√
2 < y

and according to proposition we conclude that r
√

2 is a irrational number.

Corollary 2.3.27 The two sets Q and I is dense in R.
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2.3.5 Intervals in R

Definition 2.3.28 An interval is a subset of the real numbers that contains all real
numbers lying between any two numbers of the subset.

Let a, b be real numbers, where a < b, we define

- [a, b] = {x ∈ R : a ≤ x ≤ b} is called closed interval.

- ]a, b[ = {x ∈ R : a < x < b} is called open interval.

- [a, b[ = {x ∈ R : a ≤ x < b} is called half open interval.

- ]a, b] = {x ∈ R : a < x ≤ b}" " " " " " " " " " " " " " " " ".

- [a,+∞[ = {x ∈ R : x ≥ a} is unbounded closed interval.

- ]−∞, b] = {x ∈ R : x ≤ b}" " " " " " " " " " " " " " " " ".

- ]a,+∞[ = {x ∈ R : x > a} is unbounded open interval.

- ]−∞, b[ = {x ∈ R : x < b}" " " " " " " " " " " " " " " " ".

- ]−∞,+∞[" " " " " " " " " " " " " " ".

Exercise 2.3.29 Let
S =

{
1− (−1)n

n
: n ∈ N

}
.

Find inf S and supS and prove your answers.

Solution 2.3.30 We claim that inf S =
1

2
and supS = 2. Note that, if n is odd,

1− (−1)n

n
= 1 +

1

n
,while if n is even, 1− (−1)n

n
= 1− 1

n
.

It follows, if n is odd, that

1− (−1)n

n
> 1 >

1

2
.

If n ≥ 2 is even,

1− (−1)n

n
= 1− 1

n
≥ 1− 1

2
=

1

2
.

Arguing similarly, 1 − (−1)n

n
≤ 2 and so

1

2
and 2 are, respectively, lower and upper

bounds for S. Since
1

2
∈ S, there cannot be a lower bound m >

1

2
and so

1

2
is the greatest

lower bound for S, i.e. inf S =
1

2
. Since 2 ∈ S, there cannot be a upper bound M < 2

and so 2is the least upper bound for S, i.e. supS = 2.
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Exercise 2.3.31 Let A =

{
1

n
: n = 1, 2, 3, ...

}
=

{
1,

1

2
,
1

3
,
1

4
, ...

}
1) Show that A is a non-empty set, both bounded above and below.

2) Show that sup(A) = max(A) = 1.

3) Show that inf(A) = 0.

4) Show that min(A) does not exist..

Example 2.3.32 Solution 2.3.33 Let A =

{
1

n
: n = 1, 2, 3, ...

}
=

{
1,

1

2
,
1

3
,
1

4
, ...

}
1) 1 ∈ A⇒ A 6= ∅, ∀n : n ≥ 1 we have 0 <

1

n
≤ 1⇒ 1 is an upper bound of A and

0 is a lower bound of A.

2) supA and inf A exist, according to the axiom of the upper bound : Let’s show that

supA = 1. Let ε > 0, we show that ∃x0 ∈ A/ x0 > 1− ε. In fact, let’s take x0 = 1. First

of all x0 = 1 verifies the precedent relation, since : ∀ε > 0, 1 > 1 − ε, morever 1 ∈ A
then : supA = maxA = 1.

3) inf A = 0? Let ε > 0, we show that ∃x0 ∈ A/ 0 + ε > x0, the elements of A are

of the form
1

n
we must find n ∈ N∗/ 1

n
< ε or n >

1

ε
. For ε > 0 if we take x0 =

1

n
with

n >
1

ε
we obtain x0 ∈ A and 0 + ε > x0 then inf A = 0.

4) We have ∀n ≥ 1,
1

n
> 0⇒ 0 /∈ A⇒ @minA.



Chapter 3

Real functions of a real variable

3.1 Introduction

In this chapter the key notion of a continuous function is introduced, followed by several

important theorems about continuous functions. We deal exclusively with functions

taking values in the set of real numbers (that is, real-valued functions).

3.1.1 Bounded functions, monotonic functions

Definition 3.1.1 Let f : D ⊆ R→ R be a function. It is said that
a) f is said to be bounded above on D if

∃M ∈ R, ∀x ∈ D : f(x) ≤M.

b) f is said to be bounded below on D if

∃m ∈ R, ∀x ∈ D : f(x) ≥ m.

c) f is bounded on D if f is both bounded above and below on D, i.e. if

∃M > 0,∀x ∈ D : |f(x)| ≤M or ∃M ,∃m ∈ R,∀x ∈ D : m ≤ f(x) ≤M .

Example 3.1.2 1/ f(x) = cos (x) is bounded because ∀x ∈ R : −1 ≤ cos (x) ≤ 1.

2/ f(x) = ex is bounded below because ∀x ∈ R : ex > 0.

3/ f(x) = x2is not bounded.

Definition 3.1.3 Let f : D → R be a function. We say that:
a) f is increasing over D if

∀x, y ∈ D, x < y ⇒ f(x) ≤ f(y).

35
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b) f is strictly increasing over D if

∀x, y ∈ D, x < y ⇒ f(x) < f(y).

c)f is decreasing over D if

∀x, y ∈ D, x < y ⇒ f(x) ≥ f(y).

d) f is strictly decreasing over D if

∀x, y ∈ D, x < y ⇒ f(x) > f(y).

e) f is monotonic (or strictly monotonic) on D if f is increasing or decreasing (or

strictly increasing or decreasing) on D.

Example 3.1.4 i) The exponential function : exp : R→ R is strictly increasing.
ii) The function absolute value : x→ |x| defined on R is not monotonic.

3.1.2 Odd, even, periodic function

Definition 3.1.5 (Parity) Let I be be a symmetric interval with respect to 0 in R. Let
f : I → R be a function. We say that:

i) f is even if ∀x ∈ I : f(−x) = f(x).

ii) f is odd if ∀x ∈ I : f(−x) = −f(x).

Remark 3.1.6 f is even if and only if its graph is symmetric with respect to on the

y-axis and f is odd if and only if its graph is symmetric with respect to at the origin.

Figure 13: Even function Figure 14 : Odd function



3. Real functions of a real variable 37

Figure15 : Parity function

(a) For any even integer n, f (x) = axn is an even function,

(b) For any odd integer n, f (x) = axn, is an odd function.

Definition 3.1.7 (Periodicity) Let f : R→ R be a function and T be a real number,
T > 0. The function f is called periodic of period T if ∀x ∈ R, f(x+ T ) = f(x).

Figure 16: Periodic function

Example 3.1.8 The functions sin and cos are 2π-periodic. The tangent function is

π-periodic.

3.1.3 Algebraic operations on functions

The set of functions of D ⊂ R in R, is denoted F(D,R).

Definition 3.1.9 Let f and g ∈ F(D,R) and λ ∈ R. We define
• Sum of two functions f + g : x→ (f + g)(x) = f(x) + g(x).

• For λ ∈ R, λf : x→ (λf)(x) = λf(x).

• Product of two functions fg : x→ (fg)(x) = f(x)g(x).

Remark 3.1.10 The functions f + g, λf and fg are functions belonging to F(D,R).
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Figure 17: Sum of functions

Definition 3.1.11 Let f and g ∈ F(D,R) and λ ∈ R. We say that
• f ≤ g if ∀x ∈ D, f(x) ≤ g(x).

• f < g if ∀x ∈ D, f(x) < g(x).

Example 3.1.12 Let f and g be two functions defined on ]0, 1[ by f(x) = x, g(x) = x2

. We have g < f , because ∀x ∈]0, 1[ , x2 < x.

3.1.4 Limit of a function

General definitions

Let f : I → R, be a function defined on the interval I of R. Let x0 ∈ R be a point of I
or an end of I.

Definition 3.1.13 Let l ∈ R. We say that f has l for limit in x0 if,

∀ε > 0, ∃δ > 0, ∀x ∈ I, |x− x0| < δ ⇒ |f(x)− l| < ε.

In this case, we write lim
x→x0

f (x) = l.

Example 3.1.14 Consider the function f(x) = 2x − 1 which is defined on R. At the
point x = 1, we have lim

x→1
f (x) = 1. Indeed, for all ε > 0, we have |f(x)−1| = 2|x−1| < ε,

if we have |x− 1| < ε

2
. The right choice will then be to take δ =

ε

2
.

Uniqueness of the limit

Proposition 3.1.15 If f admits a limit at the point x0, this limit is unique.
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Proof. If f admits two limits l1 and l2 at the point x0, then we have, by definition,
∀ε > 0,

∃δ1 > 0,∀x ∈ I, if |x− x0| < δ1 ⇒ |f(x)− l1| <
ε

2
.

∃δ2 > 0,∀x ∈ I, if |x− x0| < δ2 ⇒ |f(x)− l2| <
ε

2
.

Let δ = min(δ1, δ2) > 0, then

|l1 − l2| ≤ |f(x)− l1|+ |f(x)− l2| ≤ ε

Since ε is any positive value, for ε =
|l1 − l2|

2
results in l1 = l2.

Limit to the right, limit to the left.

Definition 3.1.16 We say that the function f admits l as the limit to the right of x0,
or when x tends to x+0 , if for all ε > 0 there exists a δ > 0, such that: x0 < x < x0 + δ,

results in |f(x)− l| ≤ ε. In this case, we will write:

lim
x→x+0

f (x) = l or lim
x
>→x0

f (x) = l.

We say that the function f admits l as the limit to the left of x0, or when x tends

to x−0 , if for all ε > 0 there exists a δ > 0, such that: x0 − δ < x < x0, results in

|f(x)− l| ≤ ε. In this case, we will write:

lim
x→x−0

f (x) = l or lim
x
<→x0

f (x) = l.

Example 3.1.17 The function
√
x tends to 0 when x→ 0+.

Remark 3.1.18 If the function f admits a limit l to the left of the point x0 and a limit
l′to the right of x0, then for f to have a limit at the point x0, it is necessary and suffi cient

that l = l′.

Example 3.1.19 Consider the function defined by

f(x) =

{
1, if x ≥ 0,

−1, if x < 0.

It admits 1 as the limit to the right of 0 and −1 as the limit to the left of 0. But it does

not admit any limit to point 0.
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Cases where x becomes infinite

We will pose by definition

a) lim
x→+∞

f (x) = l, if

∀ε > 0, ∃A > 0, such that x > A⇒ |f(x)− l| < ε.

b) lim
x→−∞

f (x) = l, if

∀ε > 0, ∃A > 0, such that x < −A⇒ |f(x)− l| < ε.

Infinite limit

Let x0 ∈ R, we have

a) lim
x→x0

f (x) = +∞,

∀A > 0, ∃δ > 0, such that |x− x0| < δ ⇒ f(x) > A.

b) lim
x→x0

f (x) = −∞, if

∀A > 0, ∃δ > 0, such that |x− x0| < δ ⇒ f(x) < −A.

If x0 = +∞ or x0 = −∞, we put

a) lim
x→+∞

f (x) = +∞,

∀A > 0, ∃B > 0, such that x > B ⇒ f(x) > A.

b) lim
x→−∞

f (x) = +∞,

∀A > 0, ∃B > 0, such that x < −B ⇒ f(x) > A.

c) lim
x→+∞

f (x) = −∞,

∀A > 0, ∃B > 0, such that x > B ⇒ f(x) < −A.

d) lim
x→−∞

f (x) = −∞,

∀A > 0, ∃B > 0, such that x < −B ⇒ f(x) < −A.
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3.1.5 Limit theorems

Theorem 3.1.20 Let f : [a, b] → R and x0 ∈]a, b[. The following two properties are

equivalent:

(1) lim
x→x0

f (x) = l,

(2) For any sequence (xn)n∈N, xn ∈]a, b[ such that lim
n→+∞

xn = x0, then lim
n→+∞

f (xn) =

l.

Exercise 3.1.21 1) lim
x→0

sin
(
1
x

)
does not exist, and 2) lim

x→0
x sin

(
1
x

)
= 0.

Solution 3.1.22 1) xn = 1
(2n−1)π

2
. Then, xn 6= 0, and xn → 0. But,

sin

(
1

xn

)
= sin

(
(2n− 1)

π

2

)
= (−1)n+1 ,

for all n. However, this sequence does not converge (i.e. the limit does not exist).

2) Suppose xn 6= 0 and xn → 0. Then

0 ≤
∣∣∣∣xn sin

(
1

xn

)∣∣∣∣ = |xn|
∣∣∣∣sin( 1

xn

)∣∣∣∣ ≤ |xn| .
By the Gendarmes Theorem, lim

n→+∞

∣∣∣xn sin
(
1
xn

)∣∣∣ = 0.

3.1.6 Operations of limits

Theorem 3.1.23 Let f, g : [a, b] → R and x0 ∈]a, b[, such that lim
x→x0

f (x) = l and

lim
x→x0

g (x) = l′, Then

a) lim
x→x0

[f (x) + g (x)] = l + l′.

b) lim
x→x0

(λf (x)) = λl for any λ ∈ R.
c) lim

x→x0
f (x) .g (x) = ll′.

d) lim
x→x0

|f (x)| = |l| .
e) lim

x→x0
|f (x)− l| = 0.

f) lim
x→x0

f (x)

g (x)
=
l

l′
, if l′ 6= 0.

Theorem 3.1.24 Let f : [a, b]→ [c, d] and g : [c, d]→ R and x0 ∈]a, b[, y0 ∈ [c, d], such

that lim
x→x0

f (x) = y0 and lim
y→y0

g (y) = l Then lim
x→x0

(g ◦ f) (x) = l.
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Proposition 3.1.25 Let f, g : [a, b]→ R and x0 ∈]a, b[, we have

a) If lim
x→x0

f (x) = +∞, then lim
x→x0

1

f (x)
= 0.

b) If lim
x→x0

f (x) = −∞, then lim
x→x0

1

f (x)
= 0.

c) If f ≤ g, and lim
x→x0

f (x) = l, then lim
x→x0

g (x) = l′ and l ≤ l′.
d) If f ≤ g, and lim

x→x0
f (x) = +∞, then lim

x→x0
g (x) = +∞.

Theorem 3.1.26 Let f, g, h : [a, b]→ R and x0 ∈]a, b[, we have

i) f(x) ≤ g(x) ≤ h(x), for all x ∈]a, b[ ,

ii) lim
x→x0

f (x) = lim
x→x0

h (x) = l ∈ R.
Then lim

x→x0
g (x) = l.

Indeterminate forms

+∞−∞, 0×∞, ∞∞ ,
0

0
, 1∞, ∞0.

Example 3.1.27 lim
x→0

sinx

x
=

0

0
, lim
x→∞

x
1
x =∞0.

Proposition 3.1.28 Let f and g be two functions if :
1) f is a bounded function in the neighbourhood of x0 (∃D a neighbourhood of x0)

s.t

∃m,M ∈ R, ∀x ∈ D : m ≤ f(x) ≤M

2) lim
x→x0

g (x) = 0.

Then lim
x→x0

f(x)× g (x) = 0

Example 3.1.29 Calculate the limit lim
x→+∞

sinx

x
.

Indeed sin(∞) is not defined but it is bounded because | sinx| ≤ 1 and lim
x→+∞

1

x
= 0,

so lim
x→+∞

sinx

x
= 0.

Equivalent functions

Definition 3.1.30 Let f and g be two functions defined in a neighborhood of a point x0
(x0 ∈ R or x0 = ±∞).

We assume, moreover, that g does not cancel in a neighborhood of x0, except perhaps

in x0 where we can have g(x0) = 0.

We say that f is equivalent to g in a neighborhood of x0 if, and only if: lim
x→x0

f (x)

g (x)
= 1
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We denote this by f ∼
x0
g. We also say that f and g are equivalent to the neighborhood

of x0 or in x0.

Example 3.1.31 1) the functions f(x) = ln(x + 1) and g(x) = x are equivalent since

lim
x→0

ln(x+ 1)

x
= 1. We note ln(x+ 1) ∼

0
x.

2) Always, in the vicinity of zero, sinx ∼ x because lim
x→0

sinx

x
= 1.

3.2 Continuity of a function

3.2.1 General definitions

Definition 3.2.1 Let us consider a function f : I → R, where I is an interval of R.
We say that f is continuous at the point x0 ∈ I if lim

x→x0
f (x) = f(x0), i.e. if

∀ε > 0, ∃δ > 0,∀x ∈ I, |x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

Figure 18: Continuity at the point x0

Example 3.2.2 Let the real function f be defined by

f (x) =

 x sin

(
1

x

)
, if x 6= 0,

0, if x = 0.

At the point x0 = 0, we have

|f(x)− f(x0)| = |x sin

(
1

x

)
| ≤ |x| .

For ε > 0, we will choose δ = ε. Thus

|x| < δ ⇒ |f(x)− f(x0)| < ε

So f is continuous at the point x0 = 0.
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Definition 3.2.3 A function defined on an interval I is continuous on I if it is con-

tinuous at any point of I. The set of continuous functions on I is denoted by C(I).

Continuity on the left, continuity on the right

Definition 3.2.4 Let us consider a function f : I → R, where I is an interval of R.
(1) The function f is said to be continuous on the left at x0 if lim

x→x−0
f (x) = f(x0),

i.e. if

∀ε > 0, ∃δ > 0, ∀x ∈ I, if 0 < x0 − x < δ ⇒ |f(x)− f(x0)| < ε.

(2) The function f is said to be continuous on the right at x0 if lim
x→x+0

f (x) = f(x0), i.e.

if

∀ε > 0, ∃δ > 0, ∀x ∈ I, if 0 < x− x0 < δ ⇒ |f(x)− f(x0)| < ε.

Figure 19 : Left (right) Continuous at x=a

Note. - The function f is continuous at x0 if and only if f is continuous at the left
and right of the point x0.

- f is continuous at x0 ⇔ lim
x→x−0

f (x) = lim
x→x+0

f (x) = f(x0).
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Summary of discontinuities

Figure 20:discontinuity at point a

Example 3.2.5 The function defined by

f (x) =

{
1, if x > 0,

−1, if x ≤ 0.

is continuous on R∗. At the point x0 = 0, the function f is continuous on the left, but

it is not continuous on the right because

lim
x→0−

f (x) = f(0) = −1 and lim
x→0+

f (x) = 1 6= f(0)

Figure 21: discontinuity at point 0

Definition 3.2.6 (Continuity on a closed iterval.) A function f is continuous on

the closed interval [a, b] if:

1. it is continuous on the open interval (a, b) ;

2. it is right continuous at point a :

lim
x→a+

f (x) = f(a);

and
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3. it is left continuous at point b:

lim
x→b−

f (x) = f(b).

Example 3.2.7 The function f (x) =
√
x is continuous on the (closed) interval [0,+∞) .

The function f (x) =
√

4− x is continuous on the (closed) interval (−∞, 4] .

Continuity extension

Definition 3.2.8 Let I be an interval, x0 a point of I. If the function f is not defined
at the point x0 ∈ I and admits at this point a finite limit denoted l, the function defined
by

f̃ (x) =

{
f (x) , if x 6= x0,

l, if x = x0.

is said to be a continuity extension of f at the point x0.

Example 3.2.9 The function

f(x) = x sin
1

x

is defined and continues on R∗. Now, for all x ∈ R∗ we have

|f(x)| =
∣∣∣∣x sin

1

x

∣∣∣∣ ≤ |x|
So lim

x→0
f (x) = 0. The continuity extension of f to the point 0 is therefore the function

f̃ defined by:

f̃ (x) =

 x sin
1

x
, if x 6= 0,

0, if x = 0.

3.2.2 Operations on continuous functions

Definition 3.2.10 Let I be an interval, and f and g functions defined on I and con-
tinuous at x0 ∈ I. Then

(1) λf is continuous at x0, (λ ∈ R).

(2) f + g is continuous at x0.

(3) f.g is continuous at x0.

(4)
f

g
(if g(x0) 6= 0) is continuous at x0.
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3.2.3 Continuity of composition functions

Theorem 3.2.11 If g is continuous at x0 and f is continuous at g (x0), then the com-

position function f ◦ g is continuous at x0.

Theorem 3.2.12 If f : [a, b]→ R is continuous then f is bounded.

Definition 3.2.13 (Absolute Minimum / Maximum) Let f : I → R. Then, f

achieves an absolute minimum at c ∈ I,if ∀x ∈ I, f (x) ≥ f (c). Similarly, f achieves

an absolute maximum at d ∈ I,if ∀x ∈ I, f (x) ≤ f (d).

Figure 22: Maximum and minimum

3.2.4 The Intermediate Value Theorem

Whether or not an equation has a solution is an important question in mathematics.

Theorem 3.2.14 (Intermediate Value Theorem) If f is continuous on the interval
[a, b] and N is between f (a) and f (b),where f (a) 6= f (b), then there is a number c in

(a, b) such that f (c) = N

The Intermediate Value Theorem guarantees that if f is continuous and f (a) < N <

f (b), the line y = N intersects the function at some point x = c. Such a number c is

between a and b and has the property that f (c) = N (see Figure 23)

Figure 23: IntermediateValueTheorem

(a) A continuous function where IVT holds for a single value c.
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(b) A discontinuous function where IVT fails to hold.

(c) A continuous function where IVT holds for multiple values in (a, b) .

The Intermediate Value Theorem is most frequently used for N = 0.

Exercise 3.2.15 Show that there is a solution of 3
√
x+ x = 1 in the interval (0, 8) .

Solution 3.2.16 Let f (x) = 3
√
x + x − 1, a = 0, and b = 8, Since 3

√
x, x and −1 are

continuous on R, and the sum of continuous functions is again continuous, we have that

f is continuous on R, thus in particular, f is continuous on [0, 8]. We have f(a) =

f(0) = 3
√

0 + 0 − 1 = −1 and f(b) = f(8) = 3
√

8 + 8 − 1 = 9. Thus N = 0 lies

between f(a) = −1 and f(b) = 9, so the conditions of the Intermediate Value Theorem

are satisfied. So, there exists a number c in (0, 8) such that f(c) = 0. This means that

c satisfies 3
√
c+ c− 1 = 0, in otherwords, is a solution for the equation given.

Alternatively we can let f (x) = 3
√
x + x, N = 1, a = 0 and b = 8. Then as

before f is the sum of two continuous functions, so is also continuous everywhere, in

particular, continuous on the interval [0, 8], f(a) = f(0) = 3
√

0 + 0 = 0 and f(b) =

f(8) = 3
√

8 + 8 = 10. Thus N = 1 lies between f(a) = 0 and f(b) = 10, so the conditions

of the Intermediate Value Theorem are satisfied. So, there exists a number c in (0, 8)

such that f(c) = 1. This means that c satisfies 3
√
c+ c = 1, in otherwords, is a solution

for the equation given.

Proposition 3.2.17 Let f be a continuous function on interval [a, b], such that

f(a).f(b) < 0, there exists c ∈]a, b[ such that f(c) = 0.

3.2.5 Uniform continuity

Recall the definition of continuity : f : I → R is continuous on I if ∀x0 ∈ I and ∀ε > 0,

∃δ (ε, x0) > 0, such that ∀x ∈ I, |x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

Here, δ (ε, x0) denote the fact that δ can depend on ε and x0.

Exercise 3.2.18 Let f(x) =
1

x
, defined on the interval (0, 1). Justify that f is continu-

ous on (0, 1)?

Solution 3.2.19 We want to show that if |x − x0| < δ, then |1
x
− 1

x0
| < ε.Specifically,

we can choose δ = min

{
x0
2
,
x20
2
ε

}
. suppose |x− x0| < δ. Then,

|x− x0| <
x0
2
⇒ |x| > x0 − |x− x0| >

x0
2
.
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Thus,
1

|x| <
2

x0
.Therefore,

|1
x
− 1

x0
| =

|x− x0|
|xx0|

<
δ

|x||x0|

<
2δ

x20

<
2
x20
2
ε

x20
= ε.

Definition 3.2.20 (Uniformly Continuous) Let f : I → R. Then f is uniformly

continuous on I if ∀ε > 0, ∃δ (ε) > 0, such that ∀x, y ∈ I, |x−y| < δ ⇒ |f(x)−f(y)| < ε.

Remark 3.2.21 Thus, in the definition of uniform continuity, δ only depends on ε!.

Example 3.2.22 The function f(x) = x2 is uniformly continuous on [0, 1].

Indeed : Let ε > 0.Choose δ =
ε

2
. Then, if x, y ∈ [0, 1] then |x− y| < δ implies that

|x2 − y2| = |x− y||x+ y| ≤ 2|x− y| < 2δ = ε.

However, there are of course continuous functions that are not uniformly continuous.

For example, we will show that

Exercise 3.2.23 Show that the function f (x) =
1

x
is not uniformly continuous on

(0, 1)?

Negation (Not uniformly continuous)

Let f : I → R. Then, f is not uniformly continuous on I if ∃ε0 > 0, ∀δ > 0, such that

∃x, y ∈ I with|x− y| < δ and |f(x)− f(y)| ≥ ε0.

Solution 3.2.24 Let δ > 0, choose ε0 = 2, y = min

{
δ,

1

2

}
and x =

y

2
. Then |x− y| =

y

2
≤ δ

2
< δ and

|1
x
− 1

y
| = |2

y
− 1

y
| = 1

y
≥ 2
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Theorem 3.2.25 Let f : [a, b]→ R. Then, f is continuous if and only if f is uniformly
continuous.

The following procedure is a practical method of showing that a function is uniformly

continuous.

Definition 3.2.26 A function f definite of I ⊂ R in R is said to be k-Lipschitzian over
I if:

∃k ≥ 0,∀x, y ∈ I : |f(x)− f(y)| ≤ k|x− y|

Remark 3.2.27 A k-Lipschitzian function on I is uniformly continuous on I.

Indeed; for ε > 0, we just need to take δ =
ε

k
, such that

∀x, y ∈ I : |x− y| < δ ⇒ |f(x)− f(y)| ≤ k|x− y| < ε.

Definition 3.2.28 A function f is said to be contracting on I if f is k-Lipschitzian

with 0 ≤ k < 1.

Conclusion 3.2.29 A contracting function on I is uniformly continuous on I.

Here is a theorem very used in practice to show that a function is bijective.

Theorem 3.2.30 Let f : I → R be a function defined on an interval I of R. If f is
continuous and strictly monotonic on I, so

1. f establishes a bijection of the interval I in the image interval J = f(I),

2. The inverse function f−1 : J → I is continuous and strictly monotonic on J and

it has the same direction of variation as f .

Figure 24: inverse function
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3.3 Derivable function

3.3.1 Definition and properties

Definition 3.3.1 Let f be defined in a δ-neighbourhood (x0−δ, x0+δ) of x0 ∈ R (δ > 0).

We say that f is differentiable at x0 if the limit

lim
x→x0

f(x)− f(x0)

x− x0
exists in R. This limit, denoted by f ′ (x0), is called the derivative of f at x0 .

Furthermore, if f is differentiable at every x0 ∈ I (an interval), we write f ′ or
df

dx
for the function f ′.

Example 3.3.2 1) f (x) = c⇒ f ′ (x0) = lim
x→x0

c− c
x− x0

= 0⇒ f ′ (x0) = 0, ∀x0 ∈ R.

2) f(x) = x2 ⇒ f ′ (x0) = lim
x→x0

x2 − x20
x− x0

= lim
x→x0

(x+ x0) = 2x0 ⇒ f ′ (x0) = 2x0.

3) f (x) =
√
x ⇒ f ′ (x0) = lim

x→x0

√
x−√x0
x− x0

= lim
x→x0

1√
x+
√
x0

=
1

2
√
x0
⇒ f ′ (x0) =

1

2
√
x0
.

Remark 3.3.3 By substituting x− x0 = h, we find:

lim
h→0

f(x0 + h)− f(x0)

h
exists and is finite⇔ ( f is derivative at x0)

Example 3.3.4 Let f : R→ R be defined by f(x) = x2 . The derivative of f at a point

x0 ∈ R is

f ′ (x0) = lim
h→0

f(x0 + h)− f(x0)

h
= lim

h→0

(x0 + h)2 − x20
h

= lim
h→0

h2 + 2hx0
h

= lim
h→0

(h+ 2x0) = 2x0

Theorem 3.3.5 If f : I → R is differentiable at x0 ∈ I, then f is continuous at x0.

Proof.
f ′ (x0) = lim

h→0

f(x0 + h)− f(x0)

h
.

Hence

lim
h→0

(f(x)− f(x0)) = lim
h→0

(f(x0 + h)− f(x0))

= lim
h→0

f(x0 + h)− f(x0)

h
h

= f ′ (x0) lim
h→0

h = 0.
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Therefore

lim
h→0

f(x) = f(x0)

Example 3.3.6 Let f : R→ R be defined by f(x) = |x|. Then f is differentiable at any
x ∈ R− {0}. But f is not differentiable at 0.

In fact, we have : if x > 0, then

lim
h→0

f(x+ h)− f(x)

h
= 1.

If x < 0, then

lim
h→0

f(x+ h)− f(x)

h
= −1.

Therefore, the derivative does not exist at 0, as

lim
h→0+

f(x+ h)− f(x)

h
6= lim

h→0−
f(x+ h)− f(x)

h
.

Note that the function f in the above example is continuous at 0 : thus, continuity

does not imply differentiability. However, the converse is true.

Figure25 : f and f ′ s.t f(x)=|x|.

3.3.2 One-sided derivatives

1) In a manner similar to the definition of the one-sided limit, we may also define the

left and right derivatives of f at x0 via

f ′− (x0) = lim
h→0−

f(x+ h)− f(x)

h
, f ′+ (x0) = lim

h→0+
f(x+ h)− f(x)

h

2)

(
f is derivative on the right and left at x0
and f ′− (x0) = f ′+ (x0)

)
⇔
(
f is derivative at x0
f ′ (x0) = f ′− (x0) = f ′+ (x0)

)
3) If f ′− (x0) 6= f ′+ (x0), then f is not differentiable at x0 and we say that x0 is an

angular point.
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Remark 3.3.7 If f is differentiable at x0 ∈ R then there exists a function ε(x) such

that lim
x→0

ε(x) = 0 and

f (x) = f (x0) + f ′ (x0) (x− x0) + ε(x) (x− x0)

Indeed, define

ε(x) :=
f(x)− f(x0)

x− x0
− f ′ (x0)

Then ε(x)→ 0 as x→ 0 and f (x) = f (x0) + f ′ (x0) (x− x0) + ε(x) (x− x0)

This enables one to re-interpret the formula in the above Remark as follows. If f is

differentiable at x0 ∈ R, then one can write for the value of f(x = x0+h), that is “near”

x0:

f (x0 + h) = f (x0) + f ′ (x0)h+ o (h) ,

where the notation o(h) reads as “little o of h”, and denotes any function which has the

following property: lim
h→0

o(h)

h
= 0.

3.3.3 Operations on derivative functions

Theorem 3.3.8 Let f : I → R, g : I → R be differentiable at x0 ∈ I. Then,

1.(Linearity) ∀α ∈ R,(αf + g)′(x0) = αf ′(x0) + g′(x0).
2. (Product rule) (fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

3. (Quotient rule) If g(x) 6= 0 for all x ∈ I, then
(
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g′(x0)
g2(x0)

.

Proof.
1.

lim
x→x0

(αf + g) (x)− (αf + g) (x0)

x− x0
= lim

x→x0

(
α
f(x)− f(x0)

x− x0
+
g(x)− g(x0)

x− x0

)
= αf ′ (x) + g′ (x) .

2. We first write

(fg) (x)− (fg) (x0)

x− x0
=
f(x)− f(x0)

x− x0
g (x) + f (x0)

g(x)− g(x0)

x− x0
then

lim
x→x0

(fg) (x)− (fg) (x0)

x− x0
= lim

x→x0

[
f(x)− f(x0)

x− x0
g (x) + f (x0)

g(x)− g(x0)

x− x0

]
= f ′(x0)g (x0) + f (x0) g

′(x0)
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3.The result follows from(
f

g

)
(x)−

(
f

g

)
(x0)

x− x0
=

f (x) g (x0)− g (x) f (x0)

g (x) g (x0) (x− x0)

=
f(x)− f(x0)

g (x) g (x0) (x− x0)
g (x0)−

g (x)− g(x0)

g (x) g (x0) (x− x0)
f(x0),

then

lim
x→x0

(
f

g

)
(x)−

(
f

g

)
(x0)

x− x0
= lim

x→x0

f (x) g (x0)− g (x) f (x0)

g (x) g (x0) (x− x0)

= lim
x→x0

(
f(x)− f(x0)

g (x) g (x0) (x− x0)
g (x0)−

g (x)− g(x0)

g (x) g (x0) (x− x0)
f(x0)

)
=

f ′(x0)g(x0)− f(x0)g′(x0)
g2(x0)

.

Theorem 3.3.9 If g is differentiable at x0 ∈ R and f is differentiable at g(x0), then

f ◦ g is differentiable at x0 and

(f ◦ g)′ (x0) = f ′ (g (x0)) g
′ (x0)

Proof. By definition of the derivative and Remark 3.3.7, we have

f (y)− f (y0) = f ′ (y0) (y − y0) + ε(y) (y − y0) ,

where ε(y)→ 0 as y → y0. Replace y and y0 in the above equality by y = g (x) and

y0 = g (x0), and divide both sides by x− x0, to obtain

f (g (x))− f (g (x0))

x− x0
= f ′ (g (x0))

g (x)− g (x0)

x− x0
+ ε(g (x))

g (x)− g (x0)

x− x0
.

By Theorem 3.3.5, g is continuous at x0. Hence y = g (x)→ g (x0) = y0 as x→ x0,

and ε(g (x)) → 0 as x → x0.Passing to limit x → x0 in the above equality yields the

required result.

Theorem 3.3.10 Let f be continuous and strictly increasing on (a, b). Suppose that,

for some x0 ∈ (a, b), f is differentiable at x0 and f ′(x0) 6= 0. Then the inverse function

g = f−1is differentiable at y0 = f(x0) and

g′ (y0) =
1

f ′ (x0)
,

and we write f ′ (x0) as a function of y0.
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Example 3.3.11 Define f : R→ R by f (x) = x2. Then f ′ (0) = 0 and f is not

invertible on any neighborhood of the origin, because the function is non-monotonic. On

the other hand, if f : ]0,+∞[→ ]0,+∞[ is defined by f (x) = x2, thenf ′(x) = 2x 6= 0

and the inverse function f−1 : ]0,+∞[→ ]0,+∞[ is given by

f−1 (y) =
√
y.

The formula for the inverse of the derivative gives(
f−1

)′ (
x2
)

=
1

f ′ (x)
=

1

2x

or, writing x = f−1 (y), (
f−1

)′
(y) =

1

2
√
y
.

Example 3.3.12 Define f : R→ R by f (x) = x3. Then f is strictly increasing. The

inverse function f−1 : R→ R is given by

f−1 (y) = y
1
3 .

Then f ′ (0) = 0 and f−1 is not differentiable at f (0) = 0, On the other hand, f−1is

differentiable at non-zero points of R, with(
f−1

)′ (
x3
)

=
1

f ′ (x)
=

1

3x2
,

or, writing x = y
1
3 , (

f−1
)′

(y) =
1

3y
2
3

.

3.3.4 Derivative of usual functions

µ represents a function x→ µ(x).
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function derivative

xn nxn−1 (n ∈ Z)
1

x
− 1

x2√
x

1

2

1√
x

xα αxα−1 (α ∈ R)
ex ex

lnx
1

x
cosx − sinx

sinx cosx

tanx 1 + tan2 x =
1

cos2 x

function derivative

µn nµ′µn−1, (n ∈ Z)

1

µ
− µ

′

µ2

√
µ

1

2

µ′
√
µ

µα αµ′µα−1, (α ∈ R)

eµ µ′eµ

lnµ
µ′

µ

cosµ −µ′ sinµ
sinµ µ′ cosµ

tanµ
(
1 + tan2 µ

)
µ′ =

µ′

cos2 µ

3.3.5 The nth derivative

Definition 3.3.13 Let f : I → R be a differentiable function and let f ′ be its derivative.
If the function f ′ : I → R is also differentiable, we denote f ′′ = (f ′)′ the second derivative

of f . More generally we note:

f (0) = f , f (1) = f ′, f (2) = f ′′ and f (n+1) =
(
f (n)

)′
If the nth derivative f (n) exists, we say that f is n times differentiable.

- If f is n times differentiable on I and f (n) is continuous on I, we say that f belongs
to class Cn, and we write f ∈ Cn(I,R).

- If f is differentiable an infinite number of times, i.e., ∀n ∈ N, f (n) exists and is
continuous, we say that f belongs to class C∞, and we write f ∈ C∞ (I,R)

- If f is continuous but not differentiable, we say that f belongs to class C0, and we
write f ∈ C0(I,R).

Example 3.3.14 Polynomial functions, cosx, sinx, ex are functions belonging to class

C∞ on R.

Exercise 3.3.15 Computing the nth derivative of the function f (x) = lnx.

Solution 3.3.16 The first derivatives of lnx are

f ′ (x) =
1

x
, f ′′ (x) =

(−1) .1

x2
, f (3) (x) =

(−1)2 .1.2

x3
.
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The nth derivative of lnx, denoted f (n), is given by the following formula for : n ≥ 1

f (n) (x) =
(−1)n−1 . (n− 1)!

xn
.

We assume that the relation is true for some integer n. In other words, we assume

P (n)is true. We must then prove that P (n+ 1) is true.

f (n+1) (x) =
(
f (n)

)′
(x) =

(
(−1)n−1 . (n− 1)!

xn

)′

=
(−1)n−1 . (n− 1)! (−n)xn−1

x2n
=

(−1)n .n!

xn+1
.

Exercise 3.3.17 Using the same method, prove that.

sin(n) x = sin
(
x+ n

π

2

)
.

cos(n) x = cos
(
x+ n

π

2

)
.

Solution 3.3.18 For sin(n) x: we have

sinx(1) = cosx = sin
(
x+

π

2

)
sin(2) x = sin

(
x+

π

2

)′
= cos

(
x+

π

2

)
= sin

(
x+ 2

π

2

)
sin(3) x = sin

(
x+ 2

π

2

)′
= cos

(
x+ 2

π

2

)
= sin

(
x+ 3

π

2

)
...............................

sin(n) x = sin
(
x+ n

π

2

)
.

In the same way we demonstrate the second.

Leibniz’s rule:

Let f and g be two functions belonging to class Cn(I,R). Then f.g is also a function in

class Cn(I,R), and we have:

(f.g)(n) =

n∑
k=0

Cknf
(k)g(n−k),

where Ckn =
n!

(n− k)!k!
.
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Poof of Leibniz Rule. The Leibniz rule can be proved with the help of math-

ematical induction. Let f(x) and g(x) be n times differentiable functions. Applying the

initial case of mathematical induction for n = 1 we have the following expression.

(f(x).g(x))′ = f ′(x).g(x) + f(x).g′(x).

Which is the simple product rule and it holds true for n = 1. Let us assume that this

statement is true for all n > 1, and we have the below expression.

(f.g)(n) =

n∑
k=0

Cknf
(k)g(n−k) = f (0)g(n) + ...+ Cknf

(k)g(n−k) + ...+ f (n)g(0)

(f.g)(n+1) =
(

(f.g)(n)
)′

=
n∑
k=0

Ckn

(
f (k)g(n−k)

)′
=

n∑
k=0

Ckn

(
f (k+1)g(n−k) + f (k)g(n+1−k)

)
=

n∑
k=0

Cknf
(k+1)g(n−k) +

n∑
k=0

Cknf
(k)g(n+1−k).

We change the variable in the first sum: p = k + 1

n∑
k=0

Cknf
(k+1)g(n−k) =

n+1∑
p=1

Cp−1n f (p)g(n+1−p).

Therefore:

(f.g)(n+1) =
n+1∑
k=1

Ck−1n f (k)g(n+1−k) +
n∑
k=0

Cknf
(k)g(n+1−k),

consequently

(f.g)(n+1) =

(
n∑
k=1

(
Ck−1n + Ckn

)
f (k)g(n+1−k)

)
+ Cnnf

(n+1)g(0) + C0nf
(0)g(n+1).

Note that Cnn = C0n = 1 and Ck−1n + Ckn = Ckn+1 then

(f.g)(n+1) =

(
n∑
k=1

Ckn+1f
(k)g(n+1−k)

)
+ f (n+1)g(0) + f (0)g(n+1).

Note that we can include the last two terms in the sum

C0n+1f
(0)g(n+1) = f (0)g(n+1) and

Cn+1n+1f
(n+1)g(n+1−n+1) = f (n+1)g(0),
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then

(f.g)(n+1) =

n+1∑
k=0

Ckn+1f
(k)g(n+1−k).

So, according to the proof by induction

(∀n ∈ N) (∀x ∈ I) : (f.g)(n) (x) =

n∑
k=0

Cknf
(k) (x) g(n−k) (x)

Exercise 3.3.19 Calculate the nth derivative of the function: f (x) =
(
x2 + x

)
lnx and

g (x) = ex sinx.

Solution 3.3.20 1) f (x) =
(
x2 + x

)
lnx = f1 (x) .g1 (x) or f1 (x) = x2+x and g1 (x) =

lnx

f
(0)
1 (x) = x2+x⇒ f

(1)
1 (x) = 2x+ 1, f (2)1 (x) = 2, f (k)1 (x) = 0 for all k ≥ 3 (k ∈ N) ,

g
(n)
1 (x) =

(−1)n−1 . (n− 1)!

xn
,

f (n) (x) = (f1.g1)
(n) (x) =

n∑
k=0

Cknf
(k)
1 g

(n−k)
1 (x)

= C0nf
(0)
1 g

(n)
1 (x) + C1nf

(1)
1 g

(n−1)
1 (x) + C2nf

(2)
1 g

(n−2)
1 (x) + 0

=
(
x2 + x

) (−1)n−1 . (n− 1)!

xn
+ n (2x+ 1)

(−1)n−2 . (n− 2)!

xn−1
+
n (n− 1)

2
.2.

(−1)n−3 . (n− 3)!

xn−2
.

2) f (x) = ex sinx = f2 (x) .g2 (x) or f2 (x) = ex and g2 (x) = sinx.

f
(n)
2 (x) = ex and g(n)2 (x) = sin

(
x+ n

π

2

)
f (n) (x) = (f2.g2)

(n) (x) =
n∑
k=0

Cknf
(k)
2 g

(n−k)
2 (x)

=
n∑
k=0

Ckne
x sin

(
x+ (n− k)

π

2

)
.

Definition 3.3.21 ( Critical Points) Let c be an interior point in the domain of f .
We say that c is a critical point of f if f ′ (c) = 0, or f ′ (c) is undefined.

Theorem 3.3.22 (Fermat’s Theorem) If f has a local extremum at c and f is dif-

ferentiable at c, then f ′ (c) = 0.

Exercise 3.3.23 Find the local extremum (maximum and minimum) over the specified

interval

f (x) = −x2 + 3x− 2 over [1, 3].
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Solution 3.3.24 Step 1.Evaluate f at the endpoints x = 1 and x = 3.

f (1) = 0 and f(3) = −2.

Step 2 Since f ′ (x) = −2x+ 3 = 0 at x =
3

2
and

3

2
is in the interval [1, 3], f

(
3

2

)
=

1

4
is a candidate for a local extremum of f over [1, 3].

Step 3. We compare the values found in steps 1 and 2.We find that the local
extremum minimum of f is −2, and it occurs at x = 3. The local extremum maximum

of f is
1

4
, and it occurs at x =

3

2
as shown in Figure

Figure 26 : This function has both local extremum maximum and minimum

Method of finding points where the function f possesses extreme values:

Theorem 3.3.25 Let f ∈ F (D,R) be differentiable on D, assuming that f ′′ exists, let

x0 ∈ D then : {
f ′ (x0) = 0

f ′′ (x0) > 0
=⇒ x0 is a local minimum point of f{

f ′ (x0) = 0

f ′′ (x0) < 0
=⇒ x0 is a local maximum point of f

Example 3.3.26 Let the function f (x) = cosx and x0 = 0, x1 = π.

f ′ (x) = − sinx⇒
{

f ′ (0) = 0

f ′ (π) = 0
⇒ x0 and x1 are critical points.

f ′′ (x) = − cosx⇒
{
f ′′ (0) = −1 < 0→ x0 = 0 is a local maximum point of f.

f ′′ (π) = 1 > 0 → x1 = π is a local minimum point of f.
.

In general : Let f ∈ C(n) (D,R), where:

f ′(x0) = f ′′(x0) = ... = f (n−1)(x0) = 0, f (n)(x0) 6= 0
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Case1: If n is even

f (n)(x0) > 0 ⇒ x0 is a local minimum point of f.

f (n)(x0) < 0 ⇒ x0 is a local maximum point of f

Case2: If n is odd

f (n)(x0) 6= 0⇒ x0 is not extreme point but rather an inflection point.

Example 3.3.27 x0 = 0 and f (x) = x3

f ′ (x) = 3x2 ⇒ f ′ (0) = 0→ f has a critical point at x0 = 0

f ′′ (x) = 6x⇒ f ′′ (0) = 0

f ′′′ (x) = 6⇒ f ′′′ (0) 6= 0

With n = 3 being an odd number and f ′′′ (x) 6= 0, hence x0 = 0 is an inflection point,

and f does not possess an extreme value at x0 = 0.

Example 3.3.28 Let the function f : R→ R where f (x) = 6 lnx− 2x3 + 9x2 − 18x.

Does f have an extreme value at x0 = 0?

f ′ (x) =
6

x
− 6x2 + 18x− 18⇒ f ′ (1) = 0

f ′′ (x) = − 6

x2
− 12x+ 18⇒ f ′′ (1) = 0

f ′′′ (x) =
12

x3
− 12⇒ f ′′′ (1) = 0

f (4) (x) = −36

x4
⇒ f (4) (1) 6= 0.

Since n = 4 is even number and f (4) (1) < 0, then x0 = 1is a local maximum point

of f and f (1) = −11 is the local maximum value of f .

Theorem 3.3.29 (Rolle’s Theorem) Let f : [a, b]→ R be a continuous function over
the closed interval [a, b] and differentiable over the open interval ]a, b[ such that

f(a) = f(b).

There then exists at least one c ∈]a, b[ such that f ′c) = 0.

Proof. - If f is constant over [a, b] then it is obvious (f ′ = 0).
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-Otherwise; since f is continuous on [a, b] then it is bounded on [a, b], so sup f(x)
x∈]a,b[

= M

exists, we then have ∀x ∈]a, b[: f(x) ≤ M , we can assume that M is different from

f(a) = f(b) and therefore there exists c in ]a, b[ such that M = f(c), therefore

∀x ∈]a, b[: f(x) ≤ f(c),

then c is a local maximum of f so according to Fermat’s theorem f ′(c) = 0.

Figure 27 : Illustration of Rolle’s Theorem

- If a differentiable function f satisfies f (a) = f (b), then its derivative must be zero

at some point (c) between a and b

- This means that the curve at the point (c, f (c)) accepts a tangent parallel to the

x-axis.

Example 3.3.30 Can Rolle’s Theorem be applied to the function f (x) = x2 + 1 in the

interval [−1, 1]?

We have f is continuous in the interval [−1, 1], differentiable on ]−1, 1[, and f(1) =

f(−1). Therefore, Rolle’s Theorem can be applied.

Example 3.3.31 Can Rolle’s Theorem be applied to the function f (x) = (|x| − 1) on

[−1, 1] .

We have f is continuous over [−1, 1] and f(1) = f(−1) = 0, but f ′ (c) 6= 0 for any

c ∈ ]−1, 1[because f is not differentiable at x = 0, the conditions of Rolle’s theorem are

not satisfied. In fact, the conclusion does not hold here; there is no c ∈ ]−1, 1[ , such
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that f ′ (c) = 0.

Figure 28 : No c such that f ′(c)=0

Example 3.3.32 Consider f (x) = x3 + 1. The function is continuous on [−1, 1]and

differentiable on ]−1, 1[, with

f ′ (x) = 3x2.

Thus, there exists a poin c ∈ ]−1, 1[ such that f ′ (c) = 0.

However,

f (−1) = 0 6= 2 = f (1) ,

so the condition f(a) = f(b) is not satisfied. Therefore, the existence of a point where

f ′ (c) = 0 does not guarantee that Rolle’s Theorem applies.

Theorem 3.3.33 (Finite Increment Theorem or Mean Value Theorem) Let f be
continuous over the closed interval [a, b] and differentiable over the open interval ]a, b[.

Then, there exists at least one point c ∈ ]a, b[ such that

f ′ (c) =
f (b)− f (a)

b− a .

Proof. We put

g(x) := f(x)−
[
f(b)− f(a)

b− a

]
(x− a) .

Then g is continuous on [a, b] and differentiable on ]a, b[, and

g′(x) := f ′(x)−
[
f(b)− f(a)

b− a

]
.

Moreover, g(a) = f(a), and

g(b) = f(b)−
[
f(b)− f(a)

b− a

]
(b− a) = f(a).
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Therefore, by Rolle’s theorem,

(∃c ∈ ]a, b[)
[
g′ (c)

]
= 0.

Corollary 3.3.34 If f is differentiable on an interval I and f ′(x) = 0 for all x ∈ I,
then f is constant on I.

Proof. Let a and b be any two points in the interval with a 6= b. Then, by the Mean

Value Theorem, there is a point x in ]a, b[ such that

f ′(x) =
f(b)− f(a)

b− a .

But f ′(x) = 0 for all x in the interval, so

0 =
f(b)− f(a)

b− a ,

and consequently, f(b) = f(a). Thus the value of f at any two points is the same and f

is constant on the interval.

Corollary 3.3.35 If f and g are defined on the same interval and f ′(x) = g′(x) there,

then f = g + c for some number c ∈ R.

The proof is left as an exercise.

Corollary 3.3.36 If f ′(x) > 0 (resp. f ′(x) < 0) for all x in some interval, then f is

increasing (resp. decreasing) on this interval.

Proof. Consider the case f ′(x) > 0. Let a and b be any two points in the interval,

with a < b. By the Mean Value Theorem, there is a point x in ]a, b[ such that

f ′(x) =
f(b)− f(a)

b− a

But f ′(x) > 0 for all x in the interval, so that

f(b)− f(a)

b− a > 0.

Since b − a > 0, it follows that f(b) > f(a), which proves that f is increasing on the

interval.

The case f ′(x) < 0 is left as an exercise.
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Exercise 3.3.37 Using the Finite Increments Theorem on the function f (x) = sinx ,

we prove that

∀x > 0 : | sinx| ≤ |x|.

Solution 3.3.38 The function f is continuous on R and differentiable on R, so it is
continuous on [0, x] and differentiable on ]0, x[, according to the Finite Increments The-

orem:

∃c ∈ ]0, x[ : f(x)− f(0) = (x− 0)f ′ (c)

So:
sinx = x cos c⇒ |sinx| = |x| |cos c|

⇒ |sinx| ≤ |x| (∀x ∈ R : |cosx| ≤ 1)

Hence:

∀x > 0 : |sinx| ≤ |x| .

Exercise 3.3.39 Prove that ∀x > 0 :
x

x+ 1
< ln (1 + x) < x.

Solution 3.3.40 We set : f (t) = ln (1 + t)⇒ f ′ (t) =
1

t+ 1
is continuous and differen-

tiable on]−1,+∞[. Thus, f is continuous on [0, x] and differentiable on ]0, x[. According

to the Finite Increments Theorem:

∃c ∈ ]0, x[ : f(x)− f(0) = (x− 0)f ′ (c)

So,

ln(1 + x) = x.
1

c+ 1

And we have :

0 < c < x⇒ 1 < 1 + c < 1 + x

Which implies:

for x > 0,
x

1 + x
<

x

1 + c
< x,

and ln (1 + x) =
x

1 + c
.

Therefore,

for x > 0,
x

1 + x
< ln (1 + x) < x

The next theorem is a generalization of the Mean Value Theorem. It is of interest

because of its use in applications.
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Theorem 3.3.41 (Cauchy Mean Value Theorem) If f and g are continuous on

[a, b] and differentiable on ]a, b[, then

∃c ∈ ]a, b[ : [f(b)− f(a)] g′ (c) = [g (b)− g (a)] f ′(c).

(If g(b) 6= g(a), and g′(c) 6= 0, the above equality can be rewritten as

f(b)− f(a)

g (b)− g (a)
=
f ′(c)

g′ (c)
.

Note that if g(x) = x, we obtain the Mean Value Theorem.)

Proof. Let h : [a, b]→ R be defined by

h(x) = [f(b)− f(a)] g (x)− [g (b)− g (a)] f (x) .

Then

h (a) = f(b)g (a)− f(a)g (b) = h (b) ,

so that h satisfies Rolle’s theorem. Therefore,

∃c ∈ ]a, b[ : h′(c) = 0 = [f(b)− f(a)] g′ (c)− [g (b)− g (a)] f ′ (c) .

3.3.6 Hôpital’s rule:

Eliminate cases of indeterminacy in the form (∞−∞) (0×∞)

It is used to remove cases of indeterminacy in the form
0

0
or
∞
∞ .

Theorem 3.3.42 Let f and g be differentiable functions near x0 in domain D:
Where:

lim
x→x0

f (x)

g (x)
=

0

0
or lim

x→x0

f (x)

g (x)
=
∞
∞ .

Therefore: lim
x→x0

f ′ (x)

g′ (x)
= l (supposing l is a defined limit, it could be ∞),

⇒ lim
x→x0

f (x)

g (x)
= l.

Proof. By the Cauchy Mean Value Theorem,

f(a+ h)− f(a)

g (a+ h)− g (a)
=
f ′(a+ th)

g′ (a+ th)

for some 0 < t < 1. Now, move to the limit h→ 0 to obtain the result.
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Example 3.3.43 1- lim
x→0

ex − 1

sinx
=

(
0

0

)
H→ lim

x→0

ex

cosx
= 1⇒ lim

x→0

ex − 1

sinx
= 1.

2- lim
x→∞

lnx

ex
=
(∞
∞

)
H→ lim

x→∞

1

x
ex

= lim
x→∞

1

xex
= 0 ⇒ lim

x→∞
lnx

ex
= 0.

Remark 3.3.44 The converse of Hôpital’s Rule is not true. It is possible for lim
x→x0

f (x)

g (x)

to exist while lim
x→x0

f ′ (x)

g′ (x)
does not exist (where either f or g is not differentiable at x0).

Example 3.3.45

lim
x→x0

f (x)

g (x)
= lim

x→0

x2 sin
1

x
sinx

= lim
x→0

x sin
1

x(
sinx

x

) =
0

1
= 0

lim
x→x0

f ′ (x)

g′ (x)
= lim

x→0

2x sin
1

x
−

cos
1

x
x2

(
x2
)

cosx

= lim
x→0

[
2x sin

1

x
− cos

1

x

]
cosx

( lim
x→0

cos
1

x
does not exist)

So lim
x→x0

f ′ (x)

g′ (x)
doesn’t exist

Eliminate cases of indeterminacy in the form (∞−∞) or (0×∞)

To remove cases of indeterminacy in the form (0×∞), we apply Hospital’s rule, we

write it in

the form
0

0
or
∞
∞ .

* (0×∞) = lim
x→x0

f (x) g (x) = lim
x→x0

f (x)
1

g (x)

=
0
1

∞

=
0

0
→ H.

* (∞× 0) = lim
x→x0

f (x) g (x) = lim
x→x0

f (x)
1

g (x)

=
∞
1

0

=
∞
∞ → H.

To remove cases of indeterminacy in the form ∞−∞ we use:

* (∞−∞) = lim
x→x0

(f (x)− g (x)) = lim
x→x0

f (x)

[
1− f (x)

g (x)

]
.
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Applying Hôpital’s rule to
f (x)

g (x)
, which is of the form

∞
∞ , we have two cases:

a) lim
x→x0

f (x)

g (x)
6= 1. Hence, lim

x→x0
f (x)

[
1− f (x)

g (x)

]
=∞.

b) lim
x→x0

f (x)

g (x)
= 1.It becomes the indeterminacy of the form ∞× 0.

lim
x→x0

(f (x)− g (x)) = lim
x→x0

1− g (x)

f (x)
1

f (x)

=
1− 1

1

∞

=
0

0

Or

lim
x→x0

f (x)

1
1

1− g (x)

f (x)

=
∞
1

1− 1

∞
∞ → H.

Example 3.3.46 a) lim
x→+∞

e−x lnx = (0×∞) .

lim
x→+∞

lnx

ex
H→ lim

x→+∞

lim
x→+∞

1

x
ex

= lim
x→+∞

1

xex
= 0.

b) lim
x→0+

lnx+
1

x
= (−∞+∞) .

lim
x→0+

lnx+
1

x
= lim

x→0+
lnx

1 +

1

x
lnx

 .

lim
x→0+

1

x
lnx

=
+∞
−∞

H→ lim
x→0+

− 1

x2
1

x

= lim
x→0+

− 1

x
= −∞.

Therefore lim
x→0+

lnx+
1

x
= lim

x→0+
lnx

1 +

1

x
lnx

 = (−∞) (−∞) = +∞.

3.4 Elementary functions

We now use power series to strictly define the Exponential, Logarithmic, and Trigono-

metric functions and describe their properties.
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3.4.1 Trigonometric functions

Arcsine function

f :
[
−π

2
,
π

2

]
→ [−1, 1]

x → f(x) = sinx

f is continuous, strictly increasing over
[
−π

2
,
π

2

]
, then f is bijective and therefore

f−1 exists, is continuous and strictly increasing, and we have f
([
−π

2
,
π

2

])
= [−1, 1]

and
f−1 : [−1, 1] →

[
−π

2
,
π

2

]
y → f−1(y) = arcsin y

from where we have (
arcsin y = x

−1 ≤ y ≤ 1

)
⇔
(

sinx = y

−π
2
≤ x ≤ −π

2

)
.

Forthermore, the arcsine function is:

- Differentiable on ]−1,+1[ and

∀y ∈ ]−1, 1[ , (arcsin y)′ =
1√

1− y2
,

in fact
y ∈ ]−1, 1[ : arcsin y = x⇔ y = sinx and

(arcsin y)′ =
1

(sinx)′
=

1

cosx
.

But we have

cos2 x+ sin2 x = 1 ⇔ cosx = ±
√

1− sin2 x

⇔ cosx =
√

1− sin2 (arcsin y)

⇔ cosx =
√

1− y2.
( cosx > 0, on

]
−π

2
,
π

2

[
)

So

(arcsin y)′ =
1√

1− y2
,∀y ∈ ]−1, 1[ .
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See Figure 29

Figure 29 : sin and arcsin

Note

sin (arcsin y) = y ∀y ∈ [−1, 1]

arcsin (sinx) = x ∀x ∈
[
−π

2
,
π

2

]
.

In other words

sinx = y ⇔ x = arcsin y if x ∈
[
−π

2
,
π

2

]
.

Arccosine function

f : [0, π] → [−1, 1]

x → f(x) = cosx

f is continuous, strictly decreasing over [0, π], then f is bijective and therefore f−1

exists, is continuous and strictly decreasing , and we have f ([0, π]) = [−1, 1] and

f−1 : [−1, 1] → [0, π]

y → f−1(y) = arccos y,

from where we have (
arccos y = x

−1 ≤ y ≤ 1

)
⇔
(

cosx = y

0 ≤ x ≤ π

)
.

Forthermore, the arccosine function is:

- Differentiable on ]−1,+1[ and

∀y ∈ ]−1, 1[ , (arccos y)′ =
−1√
1− y2

,

in fact

∀y ∈ ]−1, 1[ : arccos y = x⇔ y = cosx,
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and
(arccos y)′ =

1

(cosx)′

=
−1

sinx
( sinx > 0, on ]0, π[ )

=
−1√

1− cos2 x
=

−1√
1− y2

.

See Figure 30

Figure 30 : cos and arccos

Note

cos (arccos y) = y ∀y ∈ [−1, 1]

arccos (cosx) = x ∀x ∈ [0, π]

Arctangent function

f :
]
−π

2
,
π

2

[
→ ]−∞,+∞[

x → f(x) = tanx =
sinx

cosx

f is continuous, strictly increasing on
]
−π

2
,
π

2

[
, then f is bijective and therefore f−1

exists, is continuous and strictly increasing and we have f
(]
−π

2
,
π

2

[)
= ]−∞,+∞[ and

f−1 : ]−∞,+∞[ →
]
−π

2
,
π

2

[
y → f−1(y) = arctan y,

from which we have (
arctan y = x

y ∈ R

)
⇔
(

tanx = y

−π
2
< x <

π

2

)
.
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Forthermore, the arctangent function is:

- Differentiable on R and

∀y ∈ R, (arctan y)′ =
1

1 + y2
,

in fact

∀y ∈ R : arctan y = x⇔ y = tanx

and
(arctan y)′ =

1

(tanx)′

=
1

1 + tan2 x

=
1

1 + y2
.

See Figure 31

Figure 31 : tan and arctan

Example 3.4.1 1)

arctan 0 = α : α ∈
]
−π

2
,
π

2

[
⇒ tan (arctan 0) = tanα

⇒ 0 = tanα : α ∈
]
−π

2
,
π

2

[
⇒ α = 0.

2)

lim
y→−∞

arctan y = −π
2
and lim

y→∞
arctan y =

π

2
.
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Arccotangent function

f : ]0, π[ → ]−∞,+∞[

x → f (x) = cotx =
cosx

sinx

f is continuous, strictly decreasing on ]0, π[, then f is bijective and therefore f−1 exists,

is continuous and strictly decreasing and we have f (]0, π[) = ]−∞,+∞[ and

f−1 : ]−∞,+∞[ → ]0, π[

y → f−1(y) = arccot y,

from which we have (
arccot y = x

y ∈ R

)
⇔
(

cotx = y

0 < x < π

)
.

Forthermore, the arccotangent function is:

- Differentiable on R and

∀y ∈ R, (arccot y)′ =
1

1 + y2
,

in fact

∀y ∈ R : arccot y = x⇔ y = cotx

and
(arccot y)′ =

1

(cotx)′

=
1

−1− cot2 x

=
−1

1 + y2
.

- Class C∞ on R.
See Figure 32

Figure 32 : cot and arccot
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Example 3.4.2 1. Show that:2 arctanx = arccos
1− x2
1 + x2

2. Deduce a simplified expression of cos (4 arctanx) .

3. Solve the equation

arctanx+ arctan 4x =
π

4
− arctan

1

5

Solution 3.4.3 1. Let’s assume

α = arctanx⇔ x = tanα with α ∈
]
−π

2
,
π

2

[
,

and determine:

cos (2 arctanx) = cos 2α = 2 cos2 α− 1,

hence

cos2 α =
1

1 + tan2 x
=

1

1 + x2
,

where from

cos 2α =
2

1 + x2
− 1 =

1− x2
1 + x2

and

2α = arccos
1− x2
1 + x2

= 2 arctanx.

2.Relationship

cos 4α = 2 cos2 (2α)− 1

= 2 cos2
(

arccos
1− x2
1 + x2

)
− 1

= 2

(
1− x2
1 + x2

)2
− 1

=
2
(
1− x2

)2 − (1 + x2
)2

(1 + x2)2

=
x4 − 6x2 + 1

(1 + x2)2
.

cos (4 arctanx) =
x4 − 6x2 + 1

(1 + x2)2
.

3.We consider the equation

arctanx+ arctan 4x =
π

4
− arctan

1

5
.

Since (
π

4
− arctan

1

5

)
∈
[
0;
π

4

]
,
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the values of x we are looking for must satisfy

0 ≤ arctanx+ arctan 4x ≤ π

4
.

Thus, we may safely take the tangent of both sides. Using the identity

tan (A+B)
tanA+ tanB

1− tanA tanB
,

we obtain

tan (arctanx+ arctan 4x) =
x+ 4x

1− 4x2
=

5x

1− 4x2
.

On the right-hand side,

tan

(
π

4
− arctan

1

5

)
==

1− 1

5

1 +
1

5

=
2

3
.

We are therefore led to the equation.

5x

1− 4x2
=

2

3
⇔ 2− 8x2 = 15x⇔ 8x2 + 15x− 2 = 0.

This quadratic equation has discriminant

∆ = (15)2 − 4× (−2)× 8 = (17)2 .

Hence,

x =
−15± 17

16
=


x1 =

1

8
and

x2 = −2, rejected

However, only x1 =
1

8
satisfies the inequality

0 ≤ arctanx+ arctan 4x ≤ π

4
.

3.4.2 Exponential function

Definition 3.4.4 The exponential function denoted exp is the only differentiable func-

tion on R, equal to its derivative and verifying: exp(0) = 1.

Properties

1. ∀x ∈ R : exp (x) > 0.
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2. ∀x, y ∈ R : exp (x+ y) = exp (x) exp (y) .

3. Euler’s notation: We set exp (x) = ex; where e1 = e ' 2.718, whence ∀x, y ∈
R : ex+y = exey, e−x =

1

ex
, ex−y =

ex

e−y
, (ex)n = enx.

4. The exp function is strictly increasing on R.

5. ∀x, y ∈ R :

{
ex = ey ⇔ x = y.

ex < ey ⇔ x < y.

6. The function x→ ex is a bijection of R in R∗+.

Some reference limits:

1. lim
x→−∞

ex = 0, lim
x→∞

ex = +∞, lim
x→0

ex − 1

x
= 1,

2. lim
x→0

ex

xn
= +∞, lim

x→−∞
xnex = 0, for all n ∈ N.

3.4.3 Logarithm function

We call the natural logarithm function denoted ln, the reciprocal function of the expo-

nential function, defined from ]0,+∞[ on R such as

∀x > 0 : x = ey ⇔ y = lnx.

Note: The graphs of the natural logarithm function and the exponential function are

symmetric with respect to the first bisector, i.e. the line of equation y = x, see Figure

33

Figure 33 : ex and lnx

Properties
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1. ln 1 = 0, ln e = 1.

2. ∀x ∈ R : ln ex = x and ∀x ∈ ]0,+∞[ : elnx = x.

3. The function ln is strictly increasing on ]0,+∞[.

4. ∀x, y ∈ ]0,+∞[ : lnx = ln y ⇔ x = y.

5. ∀x, y ∈ ]0,+∞[ : ln (xy) = lnx+ ln y.

6. ∀x, y ∈ ]0,+∞[ : ln
1

x
= − lnx; ln

y

x
= ln y − lnx.

7. ∀x ∈ ]0,+∞[ ,∀n ∈ N : lnxn = n lnx.

Some reference limits:

1. lim
x→0+

lnx = −∞, lim
x→+∞

lnx = +∞, lim
x→0

ln (x+ 1)

x
= 1,

2. lim
x→+∞

lnx

xn
= 0, lim

x→−∞
xn lnx = 0, for all n ∈ N.

3.4.4 Logarithm function of any base

Definition 3.4.5 Let a be a strictly positive real number different from 1. The logarithm
function with base a is the real function denoted loga, defined on ]0,+∞[ by

f (x) = loga (x) =
ln (x)

ln a
,

where ln denotes the natural logarithm.

• For a = e, we obtain the natural logarithm function ln, since ln e = 1.

• For a = 10, the logarithm is called the decimal logarithm, denoted log. Since

ln 10 ' 2, 302, it is commonly used in chemistry.

• Another frequently used logarithm is the base-2 logarithm, denoted log2, defined by

log2 x =
lnx

ln 2
, and widely used in computer science.

Properties Let a and b be strictly positive real numbers different from 1. For all x,

y ∈ (0,+∞), we have:

1. loga 1 = 0, loga a = 1, log 1
a

(x) = − loga (x).

2. loga x =
ln b

ln a
logb x.

In particular, for a = e and b = 10, we have lnx = ln 10 log x.
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3. loga x = loga y ⇔ x = y.

4. loga (xy) = loga x+ loga y.

5. loga

(
1

y

)
= − loga y, loga

(
x

y

)
= loga x− loga y.

6. For all x ∈ (0,+∞) and n ∈ N, loga (xn) = n loga x.

7. The function loga is strictly increasing on ]0, +∞[ if a > 1 and strictly decreasing

on ]0, +∞[ if 0 < a < 1.

3.4.5 Power (Exponential) function

Definition 3.4.6 Let a be a strictly positive real number different from 1, and let x ∈ R.
The exponential function with base a is defined by

ax = ex ln a

This function is the inverse function of the logarithm function loga

Properties Let a and b be two strictly positive real numbers, x, y ∈ R.

1. ax > 0, ln ax = x ln a.

2. 1x = 1, ax+y = axay, a−x =
1

ax
, ay−x =

ay

ax
.

3. (ab)x = axbx, (ax)y = axy.

4. The exponential function ax is :

- strictly increasing on R if a > 1,

- strictly decreasing on R if 0 < a < 1.

5. There also exists the power function xa, defined for a ∈ R∗+.

3.4.6 Hyperbolic functions and their inverses

Hyperbolic sine and cosine

Definition 3.4.7 The functions hyperbolic sine denoted sinh or sh and hyperbolic cosine

denoted cosh or ch are defined on R by

cosh : R → [1,+∞[

x → ex + e−x

2

,
sinh : R → R

x → ex − e−x
2
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Remark 3.4.8 Any function f : I ⊂ R− → R decomposes uniquely into the sum of an

even function and of an odd function

∀x ∈ I, f (x) =
f (x) + f (−x)

2
+
f (x)− f (−x)

2
.

Indeed,
f (x) + f (−x)

2
is even and

f (x)− f (−x)

2
is odd. The hyperbolic cosine and

hyperbolic sine functions are respectively the even part and the odd part of the exponential

function in this decomposition.

Proposition 3.4.9 The functions cosh and sinh are differentiable on R, for all x ∈ R

(coshx)′ = sinhx, (sinhx)′ = coshx.

Figure 34 : sinh and cosh

Hyperbolic tangent

Definition 3.4.10 The hyperbolic tangent function, denoted tanh (or sometimes th ),

is defined on R by

tanh : R → R

x → tanhx =
sinhx

coshx
=
ex − e−x
ex + e−x

,
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Figure 35 : tanh

Proposition 3.4.11 The hyperbolic tangent function tanh is odd function and is dif-

ferentiable on R. For all x ∈ R, its derivative is

(tanhx)′ = 1− tanh2 x =
1

cosh2 x
.

Consequently, since (tanhx)′ > 0, for all x ∈ R, the function tanh is strictly increasing

on R .

Hyperbolic cotangent

Definition 3.4.12 The hyperbolic cotangent function, denoted coth, is defined on R∗

by
coth : R∗ → ]−∞,−1[ ∪ ]1,+∞[

x → cothx =
coshx

sinhx
=

1

tanhx
=
ex + e−x

ex − e−x ,

Proposition 3.4.13 The hyperbolic cotangent function is odd function and is differen-
tiable on R∗, for all x ∈ R∗, its derivative is

(cothx)′ = 1− coth2 x =
−1

sinh2 x
.

Consequently, since (cothx)′ < 0, for all x ∈ R∗, the function coth is strictly decreasing
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on each interval ]−∞, 0[ and ]0,+∞[.

Figure 36 : coth

Proposition 3.4.14 For all x ∈ R
1. chx+ shx = ex 5. ch(x− y) = chxchy − shxshy
2. chx− shx = e−x 6. sh(x+ y) = shxchy + chxshy

3. ch2x− sh2x = 1 7. sh(x− y) = shxchy − chxshy

4. ch(x+ y) = chxchy + shxshy 8. th(x+ y) =
th(x) + th(y)

1 + th(x)th(y)

9. th(x− y) =
th(x)− th(y)

1− th(x)th(y)

Hyperbolic sine argument function

Proposition 3.4.15 The hyperbolic sine function sinh : R → R is continuous and

strictly increasing. Therefore, it admits an inverse function, denoted arg sin or arg sh,

defined from R to R.
Hence, for all x, y ∈ R,(

arg sinh y = x

y ∈ R

)
⇔
(

sinhx = y

x ∈ R

)
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See Figure 37

Figure 37 : sh and arg sh

Forthermore, the arg sinh function is:

- Differentiable on R and

(arg sinh y)′ =
1√
y2 + 1

- For all y ∈ R, arg sinh y = ln
(
y +

√
y2 + 1

)
.

Proof. in fact
arg sinh y = x⇔ y = sinhx

and
(arg sinh y)′ =

1

(sinhx)′

=
1

coshx

=
1√

sinh2 x+ 1

=
1√
y2 + 1

.

For all y ∈ R,
arg sinh y = ln

(
y +

√
y2 + 1

)
.

Let

x = arg sinh y ⇔ y = sinhx.

Using the hyperbolic identity

cosh2 x− sinh2 x = 1,
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we obtain

coshx =
√

sinh2 x+ 1 =
√
y2 + 1,

where we take the positive square root since coshx > 0 for all x ∈ R. Now recall the
exponential representation:

ex = sinhx+ coshx = y +
√
y2 + 1

x = ln
(
y +

√
y2 + 1

)
.

Hyperbolic cosine argument function

Proposition 3.4.16 The hyperbolic cosine function cosh : [0,+∞[ → [1,+∞[ is con-

tinuous and strictly increasing. Therefore, it admits an inverse function, denoted arg cosh

or arg ch, defined from [1,+∞[ to [0,+∞[.

Hence, for x ≥ 0 and y ≥ 1, we have the equivalence :

arg cosh y = x⇔ y = coshx

See Figure 38

Figure 38 : ch and arg ch

Forthermore, the arg cosh function is:

- Differentiable on ]1,+∞[ and

(arg cosh y)′ =
1√
y2 − 1

.

- For all y ∈ [1,+∞[, arg cosh y = ln
(
y +

√
y2 − 1

)
.
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Proof. in fact
arg cosh y = x⇔ y = coshx

and
(arg cosh y)′ =

1

(coshx)′

=
1

sinhx

=
1√

cosh2 x− 1

=
1√
y2 − 1

.

For all y ≥ 1,

arg cosh y = ln
(
y +

√
y2 − 1

)
.

Let

x = arg cosh y ⇔ y = coshx.

Since

ex = sinhx+ coshx = y +
√
y2 + 1

we obtain

ex = y +
√
y2 + 1,

Taking the natural logarithm gives

x = ln
(
y +

√
y2 + 1

)
.

Hyperbolic tangent argument function

Proposition 3.4.17 The hyperbolic tangent function tanh : R → ]−1, 1[, is continu-

ous and strictly increasing. Therefore, it admits an inverse function, called the inverse

hyperbolic tangent, denoted arg tanh or arg th, defined by

arg tanh : ]−1, 1[→ R.

Hence, for x ∈ R and y ∈ ]−1, 1[, we have the equivalence :

arg tanh y = x⇔ tanhx = y
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See Figure 39

Figure 39 : th and arg th

Forthermore, the arg tanh function is:

- Differentiable on ]1, 1[, and its derivative is

(arg tanh y)′ =
1

1− y2 .

- For all y ∈ ]1, 1[,

arg tanh y =
1

2
ln

1 + y

1− y .

Proof. in fact, for all y ∈ ]−1, 1[ and x ∈ R :

arg tanh y = x⇔ y = tanhx

and
(arg tanh y)′ =

1

(tanh)′

=
1

1− tanh2 x

=
1

1− y2 .

- For all y ∈ ]−1, 1[

arg tanh y =
1

2
ln

1 + y

1− y .

Indeed, ∀ (y, x) ∈ ]−1, 1[× R,

x = arg tanh y ⇔ y = tanhx

⇔ y =
ex + e−x

ex − e−x =
e2x − 1

e2x + 1
⇔ y

(
e2x + 1

)
= e2x − 1

⇔ e2x =
1 + y

1− y
⇔ x =

1

2
ln

1 + y

1− y .
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Hyperbolic cotangent argument function

Proposition 3.4.18 The hyperbolic cotangent function coth : R∗ → ]−∞,− 1[∪]1,+∞[,

is continuous and strictly decreasing on each interval ]−∞, 0[ and ]0, +∞[. Therefore,

it admits an inverse function, called the inverse hyperbolic cotangent, denoted

arg coth or arg cth,

defined by

arg coth : ]−∞,− 1[ ∪ ]1,+∞[→ R∗.

Hence, for x ∈ R∗ and y ∈ ]−∞,− 1[ ∪ ]1,+∞[

arg coth y = x⇔ y = cothx

See Figure 40

Figure 40 : coth and arg coth

Forthermore, the arg coth function is:

- Differentiable on ]−∞,−1[ ∪ ]1,+∞[, and its derivative is

(arg coth y)′ =
1

1− y2 .

- For all y ∈ ]−∞,−1[ ∪ ]1,+∞[,

arg tanh y =
1

2
ln
y + 1

y − 1
.

Proof. in fact, ∀y ∈ ]−∞,−1[ ∪ ]1,+∞[ and x ∈ R∗:

arg coth y = x⇔ y = cothx
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and
(arg coth y)′ =

1

(cothx)′

=
1

1− coth2 x

=
1

1− y2 .

- For all y ∈ ]−∞,−1[ ∪ ]1,+∞[

arg coth y =
1

2
ln
y + 1

y − 1
.

Indeed,

x = arg coth y ⇔ y = cothx =
ex + e−x

ex − e−x

⇔ y =
e2x + 1

e2x − 1

⇔ e2x =
y + 1

y − 1

⇔ x =
1

2
ln
y + 1

y − 1
.



Chapter 4

Internal composition laws

Definition 4.0.19 Let E be a set. An internal composition law (ICL) on E is a map

∗ : E × E → E

(a, b) → a ∗ b,

and we say that a ∗ b is the composite of a and b for the law ∗. A set E provided with

an internal composition law constitutes an algebraic structure and denoted (E, ∗).

Example 4.0.20 1. The addition defined by (a, b) → a + b is an internal composition

law in N, Z, Q, R and C.
2. The multiplication defined by (a, b)→ a× b is an internal composition law in N,

Z, Q, R and C.
3. The composition defined by (f, g)→f ◦ g is an internal composition law on the

sets of applications from E to E.

4. (a, b)→ a− b isnt an internal composition law in N.

Definition 4.0.21 (Usual properties of internal laws). Let ∗ be an internal law on a
set E. We say that

• The law ∗ is commutative if

∀a, b ∈ E : a ∗ b = b ∗ a.

• The law ∗ is said to be associative if

∀a, b, c ∈ E : a ∗ (b ∗ c) = (a ∗ b) ∗ c.
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• The law ∗ admits a neutral element e ∈ E if

∀a ∈ E : a ∗ e = e ∗ a = a.

• An element à ∈ E is the symmetric of a in E if

a ∗ à = e = à ∗ a.

à is the inverse of a and is denoted a−1for the law ×, (à is the opposite of a and is
denoted −a for the law +).

Example 4.0.22 In R−
{

1

2

}
we define the internal law ∗ by :

x ∗ y = x+ y − 2xy.

1. Closure (internal law): In fact, let x, y ∈ R−
{

1

2

}
, let’s show that x ∗ y ∈

R−
{

1

2

}
,

x ∗ y =
1

2
⇔ x+ y − 2xy =

1

2

⇔ x (1− 2y)− 1

2
(1− 2y) = 0

⇔ (1− 2y)

(
x− 1

2

)
= 0

⇔
(
y − 1

2

)(
x− 1

2

)
= 0

⇔ y =
1

2
or x =

1

2
.

Hence x, y ∈ R−
{

1

2

}
and then ∗ is an internal law.

2. Commutativity : Let x, y ∈ R−
{

1

2

}
, we have

x ∗ y = x+ y − 2xy = y + x− 2yx = y ∗ x,

so the law ∗ is commutative.
3. Associativity :

(x ∗ y) ∗ z = (x+ y − 2xy) ∗ z = (x+ y − 2xy) + z − 2(x+ y − 2xy)z

= x+ y + z − 2xy − 2xz − 2yz + 4xyz

= x+ (y + z − 2yz)− 2x(y + z − 2yz)

= x+ (y + z − 2yz)− 2x(y + z − 2yz)

= x+ (y ∗ z)− 2x(y ∗ z) = x ∗ (y ∗ z),



4. Internal composition laws 90

so the law ∗ is associative.
4. Neutral element : Let e ∈ R−

{
1

2

}
, such that x ∗ e = e ∗ x = x, then

x+ e− 2xe = e+ x− 2ex = x⇔ e(1− 2x) = 0⇔ e = 0 ∈ R−
{

1

2

}
.

Thus, the law ∗ admits as neutral element the element e = 0.

5. Symmetric element (Inverse) : Let x ∈ R−
{

1

2

}
, such that x∗ x̀ = x̀∗x = e,

then

x+ x̀− 2xx̀ = 0⇔ x̀(1− 2x) = −x⇔ x̀ =
x

2x− 1
,

Therefore, the symmetric element of x is

x̀ =
x

2x− 1
, for all x ∈ R−

{
1

2

}
.

Let’s show that

x̀ ∈ R−
{

1

2

}
.

Indeed, we must check:

x̀ =
x

2x− 1
6= 1

2

Assume
x

2x− 1
=

1

2
⇔ 2x = 2x− 1⇔ −1 = 0.

Impossible, hence. x̀ ∈ R−
{

1

2

}
.

Definition 4.0.23 Let G be a set with two internal laws of composition, denoted ∆ and

∗ law is said to be distributive with respect to ∆ if ∀x, y, z ∈ G :

x ∗ (y∆z) = (x ∗ y)∆(x ∗ z)

and

(y∆z) ∗ x = (y ∗ x)∆(z ∗ x).

4.1 Group, Subgroups

Definition 4.1.1 Let G be a nonempty set with an internal composition law

∗ : G×G→ G

The pair (G, ∗) is called a group if the following conditions are satisfied :
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(1) ∗ is associative.
(2) ∗ admits a neutral element(identity elements) e.
(3) Each element of G admits a symmetric (inverse) element with respect to ∗.

If, moreover, the law ∗ is commutative, then the group is said to be commutative or
abelian, (named after the mathematician Abel).

Proposition 4.1.2 • The neutral element of any commutative group is unique.
• Let (G, ∗) be a commutative group. For each g ∈ G, the symmetric of g (denoted

g′ is unique.

Proof. • Suppose e and θ are any neutral elements of a commutative group (G, ∗)
Then

e = e ∗ θ (θ is an neutral element )

= θ ∗ e ( ∗ is commutative)

= θ (e is an neutral element )

Since e and θ are arbitrary neutral elements of (G, ∗), this implies that all neutral
elements are equal to each other, so the neutral element is unique (there is only one of

them).

• Suppose g′ and h are any symmetric of g. Then

g′ = g′ ∗ e (e is an neutral element )

= g′ ∗ (g ∗ h) (h is a symmetric of g)

=
(
g′ ∗ g

)
∗ h ( ∗ is associative )

=
(
g ∗ g′

)
∗ h ( ∗ is commutative )

= e ∗ h (g′ is a symmetric of g)

= h (e is an neutral element )

Therefore, all symmetric of g are equal, so the symmetric is unique.

Example 4.1.3 (1) (Z,+) is a commutative group.

(2) (R,×) is not a group because 0 does not admit a symmetric element.

(3) (R∗,×) is a commutative group.

Definition 4.1.4 Let (G, ∗) be a group. A part H ⊂ G (non-empty) is a subgroup of G

if, the restriction of the operation ∗ to H gives it the group structure.
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Proposition 4.1.5 Let H be a non-empty part of the group G. Then, H is a subgroup

of G if, and only if

(i) for all a, b ∈ H, we have a ∗ b ∈ H;
(ii) for all a ∈ H, we have a′ ∈ H, where a′ is the symmetry of a.

Example 4.1.6 (R∗+,×) is a subgroup of (R∗,×). Indeed

• If x, y ∈ R∗+ then x× y ∈ R∗+;
• If x ∈ R∗+ then x′ = x−1 =

1

x
∈ R∗+.

Example 4.1.7 We set 2Z = {2z : z ∈ Z}, (2Z,+) is a subgroup of Z. In fact:

• If x, y ∈ 2Z, there exists x1, y1 ∈ Z such that x = 2x1 and y = 2y1, then

x+ y = 2x1 + 2y1 = 2(x1 + y1) ∈ 2Z,

• If x ∈ 2Z, there exists x1 ∈ Z such that x = 2x1 then

x′ = −x = −2x1 = 2(−x1) ∈ 2Z.

Proposition 4.1.8 If H is a subgroup of (G, ∗) then the neutral element e ∈ H.

Exercise 4.1.9 We define the internal composition law ∗ by:

∀x, y ∈ R, x ∗ y = xy +
(
x2 − 1

) (
y2 − 1

)
1. Show that ∗ is commutative, non-associative, and that 1 is neutral element.

2. We define the internal composition law ∗ on R+∗ by:

∀x, y ∈ R+∗, x ∗ y =
√
x2 + y2

Show that ∗ is commutative, associative, and that 0 is neutral element. Show that no

element of R+∗ has a symmetric with respect to ∗.

Solution 4.1.10 1.

x ∗ y = xy +
(
x2 − 1

) (
y2 − 1

)
= yx+

(
y2 − 1

) (
x2 − 1

)
= y ∗ x.

The law is commutative.

To show that the law is not associative, it is suffi cient to find x, y and z such that:

x ∗ (y ∗ z) 6= (x ∗ y) ∗ z.
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Take, for example : x = 0, y = 2 and z = 3,

x ∗ (y ∗ z) = 0 ∗ (2 ∗ 3) = 0 ∗
(
2× 3 +

(
22 − 1

) (
32 − 1

))
= 0 ∗ (6 + 3× 8) = 0 ∗ 30

= 0 + (−1) (900− 1) = −899.

(x ∗ y) ∗ z = (0 ∗ 2) ∗ 3 = (0 + (−1) (3)) ∗ 3

= −3 ∗ 3 = −3× 3 +
(

(−3)2 − 1
) (

32 − 1
)

= −9 + 8× 8 = 55.

The law ∗ is not associative.

1 ∗ x = x+ (1− 1)
(
x2 − 1

)
= x.

Moreover, since the law is commutative 1 ∗ x = x ∗ 1.

We have 1 ∗ x = x ∗ 1 = x, 1 is the neutral element.

2.∀x, y ∈ R+∗

x ∗ y =
√
x2 + y2 =

√
y2 + x2 = y ∗ x.

The law ∗ is commutative.

(x ∗ y) ∗ z =
√
x2 + y2 ∗ z =

√(√
x2 + y2

)2
+ z2 =

√
x2 + y2 + z2.

x ∗ (y ∗ z) = x ∗
√
y2 + z2 =

√
x2 +

(√
y2 + z2

)2
=
√
x2 + y2 + z2.

The law ∗ is associative.

0 ∗ x =
√

02 + x2 =
√
x2 = |x| = x because x ≥ 0

As ∗ is commutative
0 ∗ x = x ∗ 0 = x

0 is the neutral element.

Suppose that x admits a symmetric y

x ∗ y = 0⇔
√
x2 + y2 = 0⇔ x2 + y2 = 0⇔ x = y = 0

However, if x > 0 and y > 0 then x ∗ y = 0 is impossible.

Therefore, for any x > 0, x does not have a symmetric element with respect to ∗.
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4.2 Ring Structure

Definition 4.2.1 Let A be a set with two internal composition laws that we will denote
∗ and ∆. (A, ∗,∆) is said to be a ring if the following conditions are met:

1) (A, ∗) is a commutative group.
2) The ∆ law is associative.

3) The ∆ law is distributive in relation to the ∗ law, i.e :

∀a ∈ A,∀b ∈ A,∀c ∈ A : (a ∗ b) ∆c = a∆c ∗ b∆c.

and

c∆ (a ∗ b) = c∆a ∗ c∆b.

If the ∆ law is commutative, the ring (A, ∗,∆) is said to be commutative. If the ∆

law admits a neutral element, we say that the ring (A, ∗,∆) is unitary.

Example 4.2.2 (Z,+,×) is a commutative and unitary ring.

Definition 4.2.3 If (A, ∗,∆) is a ring and B is a part of A, we say that B is a subring

of A if, provided with the laws induced by A, is itself a ring, i.e. (B, ∗,∆) is a ring.

In the following, A will denote the ring (A,+,×) with 0 the neutral element of +

and if it is unitary, 1 would be its unit.

Proposition 4.2.4 (characterization of the subrings). A part B of ring A is a subring

of A if and only if:

(i) for all a, b ∈ B, a− b ∈ B
(ii) for all a, b ∈ B, a× b ∈ B.

Example 4.2.5 The set 2Z = {2z : z ∈ Z}is a subring of the ring , (Z,+,×). In fact,

let x, y ∈ 2Z, there exists n,m ∈ Z, such that x = 2n and y = 2m, and we have

x− y = 2(n−m) ∈ 2Z and x× y = 2(2nm) ∈ 2Z

4.3 Structure of a field (body)

Definition 4.3.1 Let K be a set with two internal composition laws always denoted ∗
and ∆. (K, ∗,∆) is said to be a field if the following conditions are met:

1) (K, ∗,∆) is a ring.

2) (K − {e},∆) is a group, where e is the neutral element of ∗.
If ∆ is commutative, we say that (K, ∗,∆) is a commutative field.
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Example 4.3.2 (R,+,×) is a commutative field (body).

Definition 4.3.3 If K is a field and H a non-empty part of K then, H is said to be

a subfield of K if the restrictions of the two operations of K give H the structure of a

field.

The following result characterizes any subfield H of a given field :

Proposition 4.3.4 If H is a non-empty part of a field K then, H is a subfield of K if,

and only if,

(1) a ∈ H and b ∈ H ⇒ a− b ∈ H,
(2) a ∈ H and b ∈ H − {0} ⇒ a.b−1 ∈ H.

Example 4.3.5 • The set (R,+,×) of real numbers is a subfield of the field (C,+,×).

• The set (Q,+,×) of rationals is a subfield of the field (R,+,×) and therefore of

(C,+,×).



Chapter 5

Vector spaces

In this chapter K represents a field.

5.1 Vector space

Definition 5.1.1 Let K be a commutative field (usually it is R or C ) and let E be a

non-empty set with an internal composition law called addition and denoted ”+”

+ : E × E → E

(x, y) 7→ x+ y

and an external composition law called multiplication by a scalar and denoted by ”·”

· : K× E → E

(λ, x) 7→ λ · y

Definition 5.1.2 A vector space on the field K or a K- vector space is a triplet (E,+, .)

such that:

1. (E, +) is a commutative group, where the neutral element is denoted by 0E and

the symmetric of an element x of E will be denoted −x.
2.∀α, β ∈ K, ∀x ∈ E,

α · (β · x) = (αβ) · x

3. ∀α, β ∈ K, ∀x ∈ E,
(α+ β) · x = α · x+ β · x

4. ∀α ∈ K, ∀x, y ∈ E,
α · (x+ y) = (α · x) + (α · y)

5. 1K · x = x.

96
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Remark 5.1.3 1. The elements of E are called vectors and those of K scalars.

2. “vector space over K”, means K-vector space.

Example 5.1.4 - (R,+, ·) is an R- vector space,
- (C,+, ·) is an C- vector space,
- If we consider Rn with the following two operations

(+) : Rn × Rn → Rn

((x1, x2, ..., xn) , (y1, y2, ..., yn)) → (x1 + y1, x2 + y2, ..., xn + yn)

and
(·) : R× Rn → Rn

(λ, (x1, x2, ..., xn)) → (λx1, λx2, ..., λxn)

we can easily show that (Rn,+, .) is an R- vector space.

Example 5.1.5 The set E = F (R,R) of functions from R to R endowed with the usual
laws, addition of fuctions and multiplication of the functions by a real number:

(f + g)(x) = f(x) + g(x)

and

(α.f)(x) = α.f(x),

is a R - vector space.

Proposition 5.1.6 If E is K- vector space, then we have the following properties:
(1) ∀x ∈ E, 0K.x = 0E ,

(2) ∀x ∈ E, (−1K).x = −x
(3) ∀λ ∈ K, λ0E = 0E

(4) ∀λ ∈ K, ∀x, y ∈ E, λ.(x− y) = λ.x− λ.y
(5) ∀λ ∈ K, ∀x ∈ E, λ.x = 0E ⇔ λ = 0K or x = 0E.

5.1.1 Vector subspace

In this part, E will denote a K-vector space.

Definition 5.1.7 A subset F of E is called a vector subspace of E if

(i) ∅ 6= F ⊂ E,
(ii) F is a K-vector space with respect to the same laws.
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Remark 5.1.8 1) When (F,+, .) is a vector subspace of E then 0E ∈ F .
2) If 0E /∈ F . then (F,+, .) cannot be a vector subspace of E.

Theorem 5.1.9 Let F be a nonempty subset of E, the following assertions are equival-

ent :

(1) F is a vector subspace of over K,
(2) F is stable for addition and for multiplication by a scalar .i.e

∀λ ∈ K, ∀x, y ∈ F , λx ∈ F and x+ y ∈ F.

(3) ∀λ, µ ∈ K, ∀x, y ∈ F , λx+ µy ∈ F .

Theorem 5.1.10 A subset F of E is called a vector subspace of E if the following

condition hold :

(i) 0E ∈ F ,
(ii) ∀x, y ∈ F , x+ y ∈ F ,
(ii) ∀α ∈ K, ∀x ∈ F , αx ∈ F .

Example 5.1.11 (1) E and 0E are vector subspaces of E.

(2) F =
{

(x, y) ∈ R2/x+ y = 0
}
is a vector subspace of R2 over R because ,

- 0E = 0R2 = (0, 0) ∈ F ⇒ F 6= ∅
- ∀ (x, y), (x′, y′) ∈ F , ∀α, β ∈ R : α (x, y) +β (x′, y′) ∈ F , i.e (αx+ βx′, αy + βy′) ∈

F , we have

(x, y) ∈ F ⇒ x+ y = 0 and (x′, y′) ∈ F ⇒ x′ + y′ = 0

αx+ βx′ + αy + βy′ = α (x+ y) + β (x′ + y′) = α (0) + β (0) = 0

Then α (x, y) + β (x′, y′) ∈ F , so F is vector subspace of R2.
(3).The set F =

{
(x, y) ∈ R2/x− y + 1 = 0

}
is not a vector subspace of R2 because

the zero vector 0R2 does not belong to F .

5.1.2 Intersection and union of vector subspaces

Proposition 5.1.12 The intersection of two vector sub-spaces is a vector subspace.

Proof. Consider F1 and F2 two vector subspaces of E. First 0E ∈ F1, because F1 is
a vector subspace of E. Similarly, 0E ∈ F2. Thus, 0E ∈ F1 ∩F2 and F1 ∩F2 is therefore
not empty. Given x, y ∈ F1 ∩ F2 and α, β ∈ R, then we have αx+ βy ∈ F1 since F1 is a
vector subspace of E. Similarly, αx+ βy ∈ F2. Thus, αx+ βy ∈ F1 ∩F2. It follows that
F1 ∩ F2 is a vector subspace of E.
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Lemma 5.1.13 The intersection ∩ni=1Fi of n vector subspaces of a vector space E (n ≥
2, n ∈ N) is a vector subspace of E.

Remark 5.1.14 The union of two vector subspaces is not necessarily a vector subspace.

Example 5.1.15 Let F1 =
{

(x, y) ∈ R2, x = 0
}
and F2 =

{
(x, y) ∈ R2, y = 0

}
two

vector subspaces in R2 , F1 ∪ F2 is not a vector subspace, because u1 = (0, 1) ∈ F1,

u2 = (1, 0) ∈ F2 and u1 + u2 = (1, 1) /∈ F1 ∪ F2.

5.1.3 Sum of two vector subspaces

Definition 5.1.16 Let E1, E2 be two vector subspaces of a K-vector space E, we call
the sum of the two vector subspaces E1 and E2 that we denote E1+E2 the following set:

E1 + E2 = {x ∈ E : ∃x1 ∈ E1,∃x2 ∈ E2 such that x = x1 + x2} .

Example 5.1.17 Let E1 =
{

(x, y) ∈ R2, x = 0
}
and E2 =

{
(x, y) ∈ R2, y = 0

}
vector

subspaces in R2, if (x, y) ∈ R2, then

(x, y) = (x, 0)
∈E1

+ (0, y)
E2

,

so (x, y) ∈ E1 +E2, hence E1 +E2 = R2 .

Proposition 5.1.18 The sum of two vector subspaces E1 and E2 (of the same K -vector
space) is a vector subspace of E containing E1 ∪ E2, i.e., E1 ∪ E2 ⊂ E1 +E2.

5.1.4 Direct sum of two vector subspaces

Definition 5.1.19 Let E1 and E2 be two vector subspaces of the same K-vector space
E. We will say that the sum: E1+E2 of two vector subspaces is direct if E1∩E2 = {0E}.
We write E1 ⊕ E2.

Proposition 5.1.20 Let E1 and E2 be two vector subspaces of the same K-vector space
E. The sum E1 + E2 is direct if ∀x ∈ E1 + E2, there exists a single vector x1 ∈ E1, a
single vector x2 ∈ E2, such that x = x1 + x2.

Example 5.1.21 Let F1 =
{

(x, y, z) ∈ R3 : x = 0
}
and F2 =

{
(x, y, z) ∈ R3 : y = z = 0

}
be two vector subspaces in R3 .

- Let (x, y, z) ∈ R3, then (x, y, z) = (0, y, z)
∈F1

+ (x, 0, 0)
∈F2

, so (x, y, z) ∈ F1 + F2, hence

F1 + F2 = R3.
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- Let (x, y, z) ∈ F1 ∩ F2, then (x, y, z) ∈ F1 and (x, y, z) ∈ F2, this means that x = 0

and y = z = 0, then (x, y, z) = 0R3, i.e. F1 ∩ F2 = {0R3}.
Finally, we conclude that R3 = F1 ⊕ F2.

5.1.5 Generating, free, and basis families

Linear combination

Definition 5.1.22 For n ∈ N∗, A linear combination of vectors u1, u2, ..., un of a K-
vector space E, is a vector which can be written V =

n∑
i=1

λiui. The elements λ1, λ2, ..., λn ∈

K are called coeffi cients of the linear combination.

Example 5.1.23 In R2, the vector U = (9, 8) is a linear combination of vectors (1, 2)

and (3, 1) because

U = (9, 8) = 3(1, 2) + 2(3, 1)

Remark 5.1.24 • If F is a vector subspace of E, and u1, u2, ..., un ∈ F , then any linear
combination of u1, u2, ..., un is in F .

• Let u1, u2, ..., un, n vectors of a K-vector space E. One can always write 0E as a

linear combination of these vectors, because it suffi ces to take all zero coeffi cients of the

linear combination.

• If n = 1, then V = λ1u1 we say that V is collinear with u1..

Generating (Spanning) family

Definition 5.1.25 We consider a nonempty family A = (u1, u2, ..., un) of vectors of a

K-vector space E with n ∈ N∗. We say that A generates (spans) E, or that it is generator
of E if and only if

Span {u1, u2, ..., un} = E.

In other words, any vector of E is a linear combination of the elements of A.

Notation 4 Given the vectors u1, u2, ..., un of K-vector space E, we denote Span(u1, u2, ..., un)

or 〈u1, u2, ..., un〉 the set of linear combination of u1, u2, ..., un . So we write :

〈u1, u2, ..., un〉 = Span {u1, u2, ..., un} =

{
u ∈ E/∃λ1, λ2, ..., λn ∈ K;u =

n∑
i=1

λiui

}
.

Example 5.1.26 A = {u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1)} generates R3, because
for all U = (x, y, z) ∈ R3 we have:

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).
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Example 5.1.27 In R2, we consider the vectors u1 = (1, 1), u2 = (1, 0) and u3 =

(0,−1). Let us check that the family (u1, u2, u3) generates R2. Let X = (x, y) ∈ R2, we
seek if there exists (λ1, λ2, λ3) ∈ R2 such that X = λ1u1 + λ2u2 + λ3u3.

X = (x, y) = λ1u1 + λ2u2 + λ3u3 ⇔
{
x = λ1 + λ2

y = λ1 − λ3

⇔
{

λ2 = x− λ1
λ3 = λ1 − y.

We therefore obtain X = λ1u1 + (x− λ1)u2 + (λ1 − y)u3, with λ1 ∈ R. So (u1, u2, u3)

is a generating family of R2.

Free families

Definition 5.1.28 We consider a nonempty family A = (u1, u2, ..., un) of E with n ∈
N∗.We say that A is free if and only if the null vector 0E is a linear combination of

elements of A unique way. In other words:

∀λ1, λ2, ..., λn ∈ K,
n∑
i=1

λiui = 0E ⇒ λ1 = λ2 = ... = λi = 0K.

Example 5.1.29 The set A = {u1 = (1, 0, 1), u2 = (0, 2, 2), u3 = (3, 7, 1)} is free.
Indeed, let λ1, λ2, λ3 ∈ R, we have

λ1(1, 0, 1) + λ2(0, 2, 2) + λ3(3, 7, 1) = 0R3 ⇒ λ1 = λ2 = λ3 = 0R.

Remark 5.1.30 We can use the following expressions:
• If A is free then we also say that the vectors u1, u2, ..., un are linearly independent.
• If A is not free, we say that A is linked.

• A family of a single vector is free if and only if this vector is non-zero.

Example 5.1.31 In R2, the vector u = (2, 1) is not collinear with v = (1, 1), that is to

say is free.

Indeed: let (λ1, λ2) ∈ R2, such that

λ1u+ λ2v = 0R2 ⇔
{

2λ1 + λ2 = 0

λ1 + λ2 = 0
⇒ λ1 = λ2 = 0R.

The unique solution found is the trivial solution (0, 0), the family (u, v) is therefore

free.
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Example 5.1.32 In R2, the vectors u = (1, 2), v = (3, 4) and w = (5, 6) are linearly

dependent.

Indeed: let (λ1, λ2, λ3) ∈ R3, such that

λ1u+ λ2v + λ3w = 0R2 ⇔
{

λ1 + 3λ2 + 5λ3 = 0

2λ1 + 4λ2 + 6λ3 = 0

⇐⇒
{
λ1 + 3λ2 + 5λ3 = 0

λ1 + 2λ2 + 3λ3 = 0

⇐⇒
{
λ2 + 2λ3 = 0

λ1 + 2λ2 + 3λ3 = 0

⇐⇒
{
λ2 = −2λ3

λ1 = λ3.

So, this system admits at least one non-trivial solution, for example:

λ1 = 1, λ2 = −2 and λ3 = 1.

Since u− 2v + w = 0R2, the family {u, v, w}is linearly dependent

Basis

Definition 5.1.33 Let E be a vector space over a field K. A family

A = (u1, u2, ..., un)

is called a basis of E if it is linearly independent and generating.

Equivalently, A is a basis of E if and only if every vector u ∈ E can be written in a

unique way as a linear combination of the vectors in A :

∀u ∈ E, ∃! (λ1, λ2, ..., λn) ∈ Kn, such that u =
n∑
i=1

λiui.

The scalars λ1, λ2, ..., λn are called the coordinates of u in the basis A.

Example 5.1.34 • B1 = {(1, 0), (0.1)} is the canonical basis of R2.
• B2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is the canonical basis of R3.
• B3 = {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1)} is the canonical basis of Rn.

Example 5.1.35 Consider the vector space of real polynomials of degree less than or
equal to 2.

R2[x] =
{
P (x) = a+ bx+ cx2 / a, b, c ∈ R

}
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We claim that the family

B =
{
P1 (x) = 1, P2 (x) = x, P3 (x) = x2

}
is a basis of R2[x].

In fact,

i) Linear independence
Let α, β, γ ∈ R, suppose that

∀x ∈ R, αP1 (x) + βP2 (x) + γP3 (x) = 0.

This is equivalent to

∀x ∈ R, α+ βx+ γx2 = 0.

(Since a polynomial that is identically zero must have all coeffi cients equal to zero, we

obtain.

α = β = γ = 0

Hence,
{

1, x, x2
}
is a linearly independent (free) family.

ii) Generating property

Let P ∈ R2[x], by definition, there exist a, b, c ∈ R, such that

∀x ∈ R, P (x) = a+ bx+ cx2 = aP1 (x) + bP2 (x) + cP3 (x) ,

or equivalently,

P = aP1 + bP2 + cP3.

Therefore,
{

1, x, x2
}
generates R2[x].

Example 5.1.36 Let

u1 = (1, 1), u2 = (1, 0), u3 = (0,−1)

be vectors in R2. As seen in the previous example, the family (u1, u2, u3) is a generating

family of R2 However, this family is linearly dependent (linked), since

u1 + u3 = u2,

which yields a non-trivial linear relation between the vectors. Therefore, (u1, u2, u3) is

not a basis of R2. On the other hand, the family (u1, u2) is both linearly independent

and generating in R2. Consequently, (u1, u2) is a basis of R2.
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Example 5.1.37 Let F be the subset of R3 defined by:

F =
{

(x, y, z) ∈ R3 / x = −2y + z
}

F is therefore a vector subspace of R3 generated by the vectors

u = (−2, 1, 0) and v = (1, 0, 1) .

Indeed

F =
{

(x, y, z) ∈ R3 / x = −2y + z
}

=
{

(−2y + z, y, z) / (y, z) ∈ R2
}

=
{
y (−2, 1, 0) + z (1, 0, 1) / (y, z) ∈ R2

}
= Span {(−2, 1, 0) , (1, 0, 1)} = 〈(−2, 1, 0) , (1, 0, 1)〉

Furthermore, these vectors form a free family so (u, v) is a basis of F .

Proposition 5.1.38 Let E be a vector space. If

{e1, e2, ..., en} and {u1, u2, ..., um}

are two bases of E, then n = m.

Remark 5.1.39 If a vector space E admits a basis, then all the bases of E have the

same number of elements, this number does not depend on the basis but it only depends

on the space E. This common number is called the dimension of E.

5.1.6 Dimension of vector spaces

Definition 5.1.40 Let E be a vector space over a field K , and let B = {e1, e2, ..., en}
be a basis of E, The dimension of E, denoted dim (E) , is defined as

dim(E) = Card(B),

that is, the number of elements of the basis B.

Example 5.1.41 Let

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

The family {e1, e2, e3} is a basis of R3, called the canonical (standard) basis.
Therefore,

dim(R3) = Card ({e1, e2, e3}) = 3.
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Example 5.1.42 In the vector space R2[x], the family
{

1, x, x2
}
is a basis. Therefore,

dim (R2[x]) = Card
{

1, x, x2
}

= 3.

Theorem 5.1.43 Let E be a vector space of dimension n, then :

1) Characterization of a basis: A family {e1, e2, ...,en} of n vectors in E is the basis

of E if and only if it is either: generating, or linearly independent (free). That is,

{e1, e2, ...,en} is abasis⇔ it is generating ⇔ it is free.

2) Families with more than n vectors: Let {e1, e2, ..., ep} be p vectors in E, with

p > n, then :

• The family cannot be free (it is linearly dependent).
• If the family is generating, then there exists a subset of n vectors among them that

forms a basis of E.

3) Families with fewer than n vectors: Let {e1, e2, ..., ep} be p vector in E, with p < n

, then :

• The family cannot be generating (it does not span E).
• If the family is free, it is possible to find (n−p) additional vectors {ep+1, ep+2, ...,en}

in E such that {e1, e2, ..., ep+1, ...,en} forms a basis for E.
4) If F is a vector subspace of E : then dimF ≤ n, and moreover dimF = n ⇔

F = E.

Proposition 5.1.44 Let E be a finite-dimensional vector space, and let F1, F2 be sub-

spaces of E, then:

dim(F1 + F2) = dimF1 + dimF2 − dim(F1 ∩ F2),

where F1 + F2 = {u+ v / u ∈ F1, v ∈ F2} is the sum of subspaces and F1 ∩ F2 is their
intersection.

Exercise 5.1.45 Consider the subsets of R3:

E =
{

(x, y, 0) ∈ R3 / x, y ∈ R
}
and F = {(x, 0, x) / x ∈ R} .

1. Show that E and F are vector subspaces of R3 over R.
2. Calculate dim(E) and dim(F ).

3. Determine E ∩ F .
4. Is R3 = E ⊕ F?
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Solution 5.1.46 1. Show that E and F are vector subspaces of R3 over R.
• To show that E is a vector subspace, we verify the following conditions:

(a) Non-empty: The zero vector (0, 0, 0) ∈ E (taking x = 0, y = 0).

(b) Closed under addition: Let u = (x1, y1, 0) and v = (x2, y2, 0) be in E. Then:

u+ v = (x1 + x2, y1 + y2, 0) ∈ E.

(c) Closed under scalar multiplication: Let u = (x, y, 0) ∈ E and λ ∈ R. Then:

λu = (λx, λy, 0) ∈ E.

Thus, E is a vector subspace.

• For F :

(a) Non-empty: The zero vector (0, 0, 0) ∈ F (taking x = 0).

(b) Closed under addition: Let u = (x1, 0, x1) and v = (x2, 0, x2) be in F . Then:

u+ v = (x1 + x2, 0, x1 + x2) ∈ F.

(c) Closed under scalar multiplication: Let u = (x, 0, x) ∈ F and λ ∈ R. Then:

λu = (λx, 0, λx) ∈ F.

Thus, F is also a vector subspace.

2. Calculate dim(E), dim(F )

(a) To find the dimension of E, we have:

E = {(x, y, 0) : x, y ∈ R}
= {x(1, 0, 0) + y(0, 1, 0) : x, y ∈ R}
= span{(1, 0, 0), (0, 1, 0)}.

The vectors (1, 0, 0) and (0, 1, 0) are linearly independent and therefore form a basis

for E. Thus, we conclude that the dimension of E is: dim(E) = 2.

(b) To find the dimension of F :The vector(1, 0, 1) spans F since any vector in F can

be expressed as x(1, 0, 1) for some x. Thus, we have:

dim(F ) = 1.

3. To find E ∩ F , we note that:

(x, y, z) ∈ E ∩ F ⇒ (x, y, z) ∈ E and (x, y, z) ∈ F.
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This implies:

(x, y, z) ∈ E ⇒ z = 0, (x, y, z) ∈ F ⇒ y = 0 and z = x.

Thus, the intersection is:

E ∩ F = {(0, 0, 0)}.

4. The dimension of E + F can be calculated using the formula:

dim(E + F ) = dim(E) + dim(F )− dim(E ∩ F ).

Substituting the dimensions, we find:

dim(E + F ) = 2 + 1− 0 = 3.

Since dim
(
R3
)

= 3 and dim(E + F ) = 3, we conclude that E + F = R3. Furthermore,
since E + F = R3 and from Question 3 we have E ∩ F = {(0, 0, 0)}, we conclude that
R3 = E ⊕ F .
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5.2 Linear applications

5.2.1 Definitions and examples

Definition 5.2.1 (linear map) Let E and F be two vector spaces over a field K.
A map f : E → F is called linear if it satisfies both of the following conditions:

∀x, y ∈ E, f(x+ y) = f(x) + f(y),

∀x ∈ E, ∀λ ∈ K, f(λx) = λf(x),

Equivalently,

∀x, y ∈ E, λ ∈ K, f(λx+ y) = λf(x) + f(y).

Remark 5.2.2 The set of linear maps of E to F is denoted by L (E, F ) .

Example 5.2.3 The map f defined by

f : R3 → R2,
(x, y, z)→ f(x, y, z) = (2x+ y, y − z)

,

is a linear map.

Indeed, let (x, y, z), (x́, ý, ź) ∈ R3 and λ ∈ R. Then

f [(x, y, z) + (x́, ý, ź)] = f (x+ x́, y + ý, z + ź)

= (2 (x+ x́) + (y + ý) , (y + ý)− (z + ź))

= (2x+ 2x́+ y + ý, y + ý − z − ź)

= ((2x+ y) + (2x́+ ý) , (y − z) + (ý − ź))

= (2x+ y, y − z) + (2x́+ ý, ý − ź)

= f (x, y, z) + f (x́, ý, ź) ,

and

f (λ (x, y, z)) = f (λx, λy, λz)

= (2λx+ λy, λy − λz)

= (λ (2x+ y) , λ (y − z))

= λ (2x+ y, y − z)

= λf (x, y, z) .
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Example 5.2.4 The map f : R2 → R3defined by

f(x, y) =
(
x2, x+ y, 1

)
is not linear.

Indeed,

f ((1, 0) + (0, 0)) = f (1, 0) = (1, 1, 1) ,

whereas

f(1, 0) + f(0, 0) = (1, 1, 1) + (0, 0, 1) = (1, 1, 2) .

hence,

f ((1, 0) + (0, 0)) 6= f(1, 0) + f(0, 0).

Proposition 5.2.5 If f is a linear map from E to F , then :

1.f(0E) = 0F .

2. f(−x) = −f(x).

3. If V1 is a subspace of E , then f(V1) is a subspace of F .

4. If W1 is a subspace of F , then f−1(W1) is a subspace of E.

5. The composition of two linear maps is a linear map.

Proposition 5.2.6 Let E and F be vector spaces over K, and let f , g ∈ L (E, F ). If

E is finite-dimensional of dimension n and {e1, e2, ..., en} is basis of E, then

∀k ∈ {1, 2, ..., n} , f(ek) = g(ek)⇔ ∀x ∈ E, f(x) = g(x).

Proof. The implication (⇐) is obvious.

For (⇒), since {e1, e2, ..., en} generates E, for any x ∈ E there exist scalars λ1, λ2, ..., λn ∈
K such that

x =
n∑
i=1

λie.

Since f and g are linear maps,

f (x) =
n∑
i=1

λif (ei) , g (x) =
n∑
i=1

λig (ei) .

If f (ei) = g (ei) for all i, then f (x) = g (x)for all x ∈ E.

5.2.2 Linear maps and dimension

Let f : E → F be a linear map.
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The kernel of a linear map

Definition 5.2.7 The kernel (or null space) of f , denoted by ker f , is the set of all

vectors x ∈ E such that f(x) = 0F (the zero vector of F ):

ker f = {x ∈ E / f(x) = 0F } = f−1 ({0F })

The image of a linear map

Definition 5.2.8 The image of f , denoted by Im f , is the set of all vectors in F of the

form f (x) for some x ∈ E:

Im f = {f(x) / x ∈ E} = f (E)

Proposition 5.2.9 Let f : E → F be a linear map. Then:

1. ker f is a subspace of E.

2. Im f is a subspace of F .

3. f is injective if and only if ker f = {0E} .
4. f is surjective if and only if Im f = F .

Example 5.2.10 Consider the map f : R3 → R2 defined by

f(x, y, z) = (x+ y, z).

This map is not injective but is surjective.

• Injectivity

ker f = {(x, y, z) ∈ R3 / (x+ y, z) = (0, 0)}

= {(x, y, z) ∈ R3 / x+ y = 0, z = 0}

= {(x, y, z) ∈ R3 / y = −x, z = 0}

= {(x,−x, 0) / x ∈ R}

Since

(1,−1, 0) ∈ ker f ⇒ ker f 6= {0R3} .

Hence, f is not injective.

• Surjectivity.

Im f =
{

(x+ y, z) / (x, y, z) ∈ R3
}

= {x(1, 0) + y(1, 0) + z(0, 1) / x, y, z ∈ R} .



5. Vector spaces 111

Thus,

Im f = span {(1, 0), (0, 1)} = R2,

and f is surjective.

Proposition 5.2.11 Let f : E → F be a linear map, with E of finite dimension. Then:

dimE = dim ker f + dim Im f

The rank of a linear map

Definition 5.2.12 The rank of a linear map f is the dimension of its image :

rankf = dim Im f

Example 5.2.13 Find ker f , Im f and rankf for the map f : R4 → R3 defined by

f (x, y, z, t) = (x− y, z + t, x− y + z)

Kernel

ker f =
{

(x, y, z, t) ∈ R4 / (x− y, z + t, x− y + z) = (0, 0, 0)
}

From x− y = 0, we get x = y.

From x− y + z = 0, we get z = 0, hence t = 0.

Thus,

ker f = {(x, x, 0, 0) / x ∈ R} = span{(1, 1, 0, 0)}.

Image

Im f = {(x− y, z + t, x− y + z) / x, y, z, t ∈ R}

= {(x− y).(1, 0, 1) + t.(0, 1, 0) + z(0, 1, 1) / x, y, z, t ∈ R}

= span {(1, 0, 1), (0, 1, 0), z(0, 1, 1)} .

To check linear independence, let λ1, λ2, λ3 ∈ R:

λ1(1, 0, 1) + λ2(0, 1, 0) + λ3(0, 1, 1) = (0, 0, 0)

⇒ (λ1, λ2 + λ3, λ1 + λ3) = (0, 0, 0)

⇒ λ1 = λ1 = λ1 = 0.

Hence, the vectors are linearly independent and form a basis of Im f .

rankf = dim Im f = 3.
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