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5.2.2 Linear maps and dimension



Introduction

This handout corresponds to the program for the module: Mathematics 1, which is
intended mainly for 1st year LMD students, in the Science of Matter specialty, and we
have taken care to follow the official program.

The objective of this course is to allow the student to make a transition between the
knowledge of mathematics acquired in secondary school and the bases of fundamental
units such as Analysis (Continuity, Derivable function, etc.) and Algebra (Structure of
a field, Vector space, Linear application, etc.),which will constitute one of the pillars in
their training of the License. The chapters of this handout are designed as follows:

— The courses contain simple, precise and regular notions which allow the student to
acquire a solid mathematical training necessary to profitably explore the vast field of
Materials Science Field and they are also illustrated by examples.

— Each chapter of this course is equipped with solved exercises that allow you to go
further in understanding and assimilating the mathematical concepts introduced. They
help to provide a working method for learning mathematics and for obtaining a certain
number of reflexes in solving problems. The learner must practice resolving the problem
situation on their own without resorting to a proposed solution.

This document has five main chapters, where Sets, Relations, and Applications, Laws
of Internal Composition, Structure of Real Number Fields R, Real Functions of a Real

Variable, and Vector Spaces.



Chapter 1

Sets, relations and applications

Notations :

:=: means "define"; €: means "belongs to" a € S means that "a is an element in S";
J: means "there exists"; 3! : means "there exists a unique";

V : means "for all"; ¢: means "does not belong to";

C: means "contained in"; C: means "content or equal to";

¢: means "is not contained in"; V: means "for all";

=: means "implies"; <=: means "if and only if".
Some famous sets :
- Set of Natural numbers is denoted by N (N ={0,1,2,3,...}).
- Set of Integers is denoted by Z (Z ={...,—2,-1,0,1,2,...}).
- Set of Rational numbers is denoted by Q (Q :{g S pE€Z,pe (N*}).
- Set of Real numbers is denoted by R for example : 1, v/3, 7, In3,...
- Set of Complex numbers C for example : 1+ 31,...

We will try to see the properties of sets, without focusing on a particular example.
You will quickly realize that what is at least as important as sets are the relations

between sets : this will be the notion of application (or function) between two sets.
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1.1 Sets

1.1.1 Definition of sets

» A set is a collection of objects that verify certain properties. An object which satisfies
the needed rules is called element of the set. If the set is denoted by A and z is an

element of A, we say x belongs to A and we write x € A

Example 1.1.1 (i) A ={0,1}. This means that the set A consists of two elements, 0
and 1.

(ii)) B={zx e R: —3<x <2} =]-3,2].

(iii) C ={0,{1},{0,1}}. The set C contains three elements: the number O; the set
{1} containing one element, namely the number 1; and the set containing two elements,

the numbers 0 and 1.

» The order in which the elements are listed is not important. Like this {0,1} =
{1,0}. An element may occur more than once. So {1,2,1} = {1,2}. But {1,2,{1}} #

{1,2}!
A set can be also specified by an elementhood test.
1.1.2 Cardinality of a finite set

If a set A contains a finite number of elements it is said to be finite, otherwise it is said to
be infinite. If A is finite and it contains n € N elements, then n is called the cardinality
of A we write card A =n or |A] =n. If n = 0 the set A is called an empty set and is

denoted by () and we have card A =0 .

Definition 1.1.2 The empty set is the set which contains no elements, and is denoted
by 0.

In the previous example B is infinite set, |A| = 2 and |C| = 3.

1.1.3 Operations on sets

Now we introduce operations on sets. The main operations are: Inclusion, union, inter-

section, difference and symmetric difference.

Definition 1.1.3 1. A set A is a subset of B, A C B, if every element of A is in B.
Given AC B, ifa € A= a € B.
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2. Two sets A and B are equal, A= B, if AC B and B C A.
3. A set A is a proper subset of B, AC B if AC B andA # B

Thus, one way to show that two sets, A and B, coincide is to show that each element
in A is contained in B and vice-versa.

Example 1.1.4 We have NCZ Cc Q C R

R (@ (G

Figure 1: NCZCQCR

Definition 1.1.5 The union of sets A and B is the set containing the elements of A
and the elements of B, and no other elements.

Notation 1 We denote the union of A and B by AU B.

Note: existence of the union for arbitrary A and B is accepted as an axiom.
For arbitrary x and arbitrary A and B the following proposition is true. z € AN B) <
(x € A) A (xz € B).
ANB={z:z€ Aand z € B}.

Figure 2: AUB
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Definition 1.1.6 The intersection of sets A and B is the set containing the elements

which are elements of both A and B, and no other elements.

We denote the intersection of A and B by AN B. Thus for arbitrary z and arbitrary
A and B the following proposition is true. x € AN B) < (z € A) A (z € B).
ANB={z:2x€ Aand z € B}.

‘. Q 5 )
Y/

Figure 3: ANB

Note: When AN B =0, then A and B are said to be disjoint.

Definition 1.1.7 The difference of sets A and B is the set containing the elements of
A which do not belong to B.

We use the notation A — B or A\B for the difference or the complement of B
with respect to A . The following is true for arbitrary x and arbitrary A and B :
r€A—-B)&[(xe AN (¥ € B).

A—B={r:zx€ Aand z ¢ B}

( C )
-

Figure 4: A—B

Definition 1.1.8 The symmetric difference of the sets A and B is defined by: AAB =
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(A—B)U(B - A).

Figure 5: AAB

Definition 1.1.9 Suppose that A C U. The complement of the set A in U denoted by
A¢, Cy (A) or A, is the set of all elements of U that are not in A. That is A° ={x € U,

x ¢ A}

Let us illustrate these operations with a simple example.

Figure 6: A°¢

Example 1.1.10 Let U =N, A =1{0,1,2,3,4,5} and B ={1,3,5,7,9}. Then

AUB = {0,1,2,3,4,5,7,9}.

AnB = {1,3,5}.

A-B = {0,2,4}.

B-A = {7,9}.

AAB = {0,2,4,7,9).

A€ = {k:keNandk>6}=1{6,7,...}

Note that

AUB = (AN B) U (AAB)
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1.1.4 Laws for operations on sets

Let A, B be subsets of an universal set U

Idempotent Laws (a) AuUA=4A (b) AnNA=A
Associative Laws (a) (AUB)UC =AU (BUCQ) (b) (ANB)NC=AN(BNC)
Commutative Laws (a) AUB=BUA (b)) AnB=BnNnA
Distributive Laws (a) AU(BNC)=(AUB)N(AuUC) (b) AN(BUC)=(ANB)U(ANC)
Morgan’s Laws (a) (AUB)“ = AN B¢ (b) (AN B)" = A°U B¢
Identity Laws (2) AUD =4 (2) AN0 =10
(b) AUU =U (b) ANU = A
Complement Laws (a) AVA"=U (a) UF =10
(b) AnA°=10 (b) )c=U
Involution Law (a) (A=A

A few demonstrations * AN(BUC)=(ANB)U(ANC)?
reAN(BUC) < (zreAand z € (BUC())
< (reAand (€ Borzel))
< (xeAandz e B)or (zre Aand z € C)
S (reAnB)or (xe ANC)
sze(ANB)U(ANCO).
Then AN(BUC)=(ANB)U(ANC).
*AU(BNC)=(AUB)N(AUQC)?
re AU(BNC)sxzeAorze BNO)
s zxeAor(reBandxel)
< (reAorxzeB)and (xe Aorxel)
sreceAUBandze AUC
srxe(AUB)N(AUC).
Then AU(BNC)=(AUB)N(AUCQC).
*Cy(ANB) =Ly (A)Uly(B) and Cy(AU B) =Cy(A)NCy(B)?
-zely(AnB)< ¢ ANB
sr¢Aorx ¢ B
&z €ly(A) or x € Ly(B)
& x e Ly(A) UCy(B).
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Therefore Cy(AN B) = Cy(A4) UCy(B).
-xely(AuB)=sx¢ AUB
sr¢Aandac ¢ B
sz €ly(A) and x € Cy(B)
&z € Cly(4) NCy(B)
Therefore Ciy (AU B) = Cy(A4) NCy(B).
Ty (Cu(A)) = A?
z €Ly (Cu(A4) &z ¢ Cy(A)
&z e A

1.1.5 Set of parts.

Definition 1.1.11 Let E be a set, we form a set called the set of parts of E, denoted
P(E) which is characterized by the following relation P(E) ={A: A C E}.

Example 1.1.12 Let E = {0,1,2}. Then

P(E) = {0,{0},{1},{2},{0,1},{0,2},{1,2},{0, 1, 2}} .
Remark 1.1.13 If card (A) = n then card (P (A)) = 2".
Example 1.1.14 - If E = {a,b},then

P(E) = {Q)v {a’}7 {b}v {av b}}a

as card (E) = 2, then card (P (E)) = 2% = 4.
- If E ={a}, then P(A) ={0,{a}}.

1.1.6 Cartesian product

Definition 1.1.15 . Let A and B be sets. The Cartesian product of A and B, denoted
by A x B, is the set of all ordered pairs (a,b) in which a € A and b € B, i.e.
Ax B={(a,b): (ac A)A(be B)}.
Thus
pEAXB<Jdac A Fbe B/ p=(a,b).

Example 1.1.16 (i) If A = {red, green} and B = {1,2,3} then
A x B ={(red,1),(red,?2), (red,3), (green, 1), (green, 2), (green, 3) }.

(i) Z x Z = {(z,y)| = and y are integers}. This is the set of integer coordinates

points in the x,y—plane. The notation Z? is usually used for this set.
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Example 1.1.17 If E = {1,2} and F = {3,5}, then

Ex F=1{(1,3),(1,5),(2,3),(2,5)}
Fx E=1{(31),32),5,1),(52)}

ExF#Fx FE

Example 1.1.18 1) R2 =R xR = {(z,%) : 2,y € R}
2)10,]]xR={(z,y):0<z<1,yeR}

Y

Figure 7: [0,1]xR

Example 1.1.19 [0,1] x [0,1] x [0,1] = {(z,y,2) : 0 < z,y,z < 1}

Figure 8: [0,1]xR

Notation 2 Let E%be the Cartesian square of E. More generally, we define the Cartesian
product of n sets E1, Es, ...,E, by

E1 X By x ... X Ep ={(x1,29,....,xp) s xi € E; , fori=1,....,n}.
Example 1.1.20 If E = {1,2}, then

E?=FEx E={(1,1),(1,2),(2,1),

(2,2)}.
E3=ExExFE=1{(1,1,1),(1,1,2)

(1,2,1),(1,2,2),(2,1,1),(2,2,1),(2,1,2),(2,2,2)}.

Proposition 1.1.21 Let E and F be two finite sets. Then
card (E x F) = card (E) x card (F).

The following theorem provides some basic properties of the Cartesian product.
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Theorem 1.1.22 Let A, B,C and D be sets. Then

a) Ax(BNC)=(AxB)Nn(AxC),

b) Ax (BUC)=(AxB)U(AxC(),

c) (AxB)N(CxD)=(ANC)x (BND),

d) (Ax B)U(C xD)C (AUCQC) x (BUD),

e) If A or B are empty sets ((A=0 and B#0) or (B=0 and A#0) or (A=10
and B=10)), then A x B =1{).

Proof. (a) (=)
Let pe Ax (BNC). Then

Ja€e A, Fxre BNC [/ p=(a,x)
In particular,
(Ja€e A, Jx e B /p=(a,z)) and(Ja€ A, Tz € C / p=(a,x)).

So pe (Ax B)N(AxC).

(a) (<)
Let pe (Ax B)N (A x C). Then

p € (Ax B)andp € (Ax C).

So
(Jae A, Fbe B/ p=(a,b)) and (Ja € A, e C / p=(a,c)).

But then (a,b) = p = (a,c¢) and hence a = a and b = ¢. Thus p = (a,z) for some
acAandx € BNC,iepe Ax (BNC). This proves (a) . m
The proof of (b), (c), (d) and (e) are left as exercises.

1.2 Relations

Definition 1.2.1 We call a relation R from E to F' any part of the Cartesian product
E x F. The domain of R is the set

DR)={z € E:3JyeF [(z,y) € R]}.
The range of R is the set

Ran(R) ={y € F : 3z € E[(z,y) € R]}.
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If E = F, we say that R is a binary relation on F.
The inverse of R is the relation R~ from F to E defined as follows

R Y'={(y,z) e Fx E: (z,y) € R}.
The graph of this relation is:
Gr={(z,y) e EXF:z Ry}

Example 1.2.2 (i) Let A ={1,2,3}, B ={3,4,5}. The set R = {(1,3),(1,5),(3,3)}
is a relation from A to B since R T A X B.
(ii) G = {(z,y) € Z X Z :x >y} is a relation from Z to Z.

Example 1.2.3 Let A =1{1,2,3,4,5,6} be a set and the relation R is defined by

TRy & x divide y (in Z)

Gr = {(z,y) € Ax A, z dividey }
= {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6) , (4,4) , (5,5) , (6,6)}

Definition 1.2.4 Let R be a binary relation over a set E. For all x,y,z € E, we say

that R is
(1) Reflexive, if each element is related to itself, i.e

xRz, Vx € E.

(2) Symmetric, if for all z,y € E, if x© is related to y then y is related to x, i.e.
TRy = yRzx,Vx,y € E.

(3) Transitive, if for all x,y,z € E, if x is in relation to y and y in relation to z
then x is in relation to z, i.e. (xRy and yRz) = xRz, Vx,y,z € E.

(4) Anti-symmetric, if two elements are related to each other, then they are equal,
i.e.

(zRy and yRx) = x = y,Vx,y € E.

A particularly important class of relations are equivalence relations.
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1.2.1 Equivalence relation

Definition 1.2.5 A relation R on E is called equivalence relation if it is reflexive,

symmetric and transitive.

Example 1.2.6 (i) Let E be a set of students. A relation on E X E: “to be friends”.
It is reflexive (I presume that everyone is a friend to himself / herself). It is symmetric.

But it’s not transitive.
(i) Let E=Z,a € N. Define RCE x E as

R=A{(z,y): [x —y| <a}.

R is reflexive, symmetric, but not transitive.
(iii) Let E = Z, m € N. Define the congruence modm on E x E as follows:

=y if Gke€Z:x—y=km).
This is an equivalence relation on E.

Definition 1.2.7 Let R be an equivalence relation on E.
1. The equivalence class of an element x in E is the set of all elements y € E that

are in relation with © we denote this set by &, T or C(x),and we write it as follow
t=z=Cx)={y € E:yRa}.

2. T is a representative of the equivalence class C(x).
3. The set of equivalence classes for all elements in E is called the ”quotient set” of

E for the equivalence relation R. It is denoted as E/R, and written as follows:
E/R ={C(z):z € E}.
Ezxample 1.2.8 In R we define the relation R by:
TRy =z —ycl.

This relation is indeed a relation of equivalence. Indeed,
e forreR:aRx = 0€Z, as0 € Z, then xRx VNx € R, so R is a reflexive relation.
e For z,y € R, we have (zRy) < (r —y € Z) < (y—x € Z) = yRz, then R is a

symmetric relation.
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e Forxz,y,z € R, we have

(xRy and yRz) = (r—y€Z andy—z € Z)
= (zx—y+y—z2€7Z)

= (r—2€Z)= (zR=z2),
then R is a transitive relation.

Therefore, the set of equivalence classes C(x) is the set

Cz) = {yeR:y—zxeZ}
= {yeR:yecr+7Z}
= {yeR:y=k+z:keZ}
= {k+a:kelZ,

if v € Z, we have C(x) = Z.
Exercise 1.2.9 Let us consider the relation R defined on R by :
Vr,y € R, 2Ry & xe¥ = ye”
Prove that R is an equivalence relation.

Solution 1.2.10 We show that R is reflexive, symmetric and transitive..
1.Yz € R we have xe® = xe®. In other words, we have xRx and then R is reflexive.

2. R is symmetric . In fact, let x, y € R, such that xRy, hence we have

TRy = ze¥ = ye”,
= ye® = xeY,

= yRx.

3. R is transitive because for all x, y, z € R, such that (xRy) A (yRz),

we have :
TRy = xe¥ = ye” (1)
yRz = ye* = ze¥ (2)
. ze¥ . o zeY
(2) gives y = —-, moreover, using (1) and by substituting y we have xze¥ = —-e" hence

e
zeVe® = zeVe®. Since €Y # 0 Thus xe® = ze®, which implies TR z.

4. R is reflexive, symmetric and transitive then it is an equivalence relation.
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1.2.2 Order relation

Definition 1.2.11 A binary relation R over E is said to be an order relation if it is

antisymmetric, transitive and reflexive.

Example 1.2.12 On R the relation < is an order relation. In fact
- R is reflexive

Vr e R,zRz & x = .

- R is antisymmetric, if only if
V(z,y) ERXxR;(zRy = x<y) and (YRex < y<z) sz =y.
-R transitive, if only if :
V(z,y,2) ERXxRXR; (#Ry< x<y) and (YRz<y<z) <z <zs rRe.

- In R, the relation < is not a relation of order ( it is not reflexive.)

Total order and partial order

Definition 1.2.13 Let R be an order relation defined on a set E, we say the ordernis
total, if for all x,y € E, we have

TRy or yR.
Otherwise, we say that R is a partial order relation, i.e.
Jx,y € E : neither xRy nor yRz
Example 1.2.14 A ={1,2,3,4,5,6} with
aRb < a divide b

is a partial order relation (it is not total).
Indeed 2 and 3, for example, are not comparable : 2 does not divide 3 and 3 does not
divide 2.

Example 1.2.15 Let A be a non-empty set and R a relation on A defined by :
Va,b € A,aRb < a =b.

R is a an order relation on A.

If A is a singleton, then the order is total, if not, the order is partial.
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1.3 Applications

1.3.1 Definition of an application

Definition 1.3.1 Let E and F be given sets, we call the application of E in F, any
correspondence [ between the elements of E and those of F which associates to any

element of E one and only element of F', we write

f: FE—=F

z— [(x)

or (f is an application) < (Vx € E,3ly € F/y = f(z)).
The set E is said to be the starting set and F' is said to be the end set.
The element x is said to be the antecedent and y is said to be the image of © by f.

The map f is said to be a function if, for each x € E, there exists at most y € F such
that f(x) =y.

Remark 1.3.2 (1) The application from E to F if every element x of E has a unique
image 1 F.

(2) If f is an application from E to F, then the element y of F' can have more than
one antecedent in E.

(8) We must differentiate between f (x) and f : we have f (z) € F, while f represents
the application as a whole, and it belongs to the space of applications defined from E to
F.

Exzample 1.3.3 We have A =1{1,2,3} and B ={7,9,13}.
o We have f(3) =9, f(2)=9; f(1)=T.

e f is an application from A to B. Every element x of A has a unique image in B.

B

Figure 9 : f: A—B

o This element 13 has no precedent according to the application.

e This element 9 has two precedent : 2 and 3.
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Definition 1.3.4 (Graph). Let E and F be given sets. The graph of a map f : E — F
18

Gy :={(z,f(x)):2 € E} C Ex F.

Definition 1.3.5 (Equality). Let f,g: E — F be two applications. We say that f and
g are equal if and only if for all x € E : f(z) = g(x). We then write f = g.

Definition 1.3.6 (Composition). Let E, F and G be three sets and f and g two maps
such as
f g
F—F =
We can deduce from this a map of E in G denoted go f and called a map composed of f
and g, by

(go f)(z)=g(f(x)), forall z€E.

gof
Figure 10 : gof

Exercise 1.3.7 Let f: Z — Z, g: Z — Z,
flz)=22+2, g(z) =2z — 1.

Find (f o g)(x) and (go f)(z).

Solution 1.3.8 we have

(fog)x) = flg(x)) =g(x)*+2=4a" — 4z +3,
(gof(x) = g(f(x)) =2f(x) —1=22"+3.

As you clearly see from the above,f o g # go f in general.

Definition 1.3.9 Let E be a set, we call an identity map, denoted Idg : E — E, the
map that verifies Idg(x) =z, Vx € E.

Definition 1.3.10 Let f : E — F be a function. The domain of definition of f, denoted

Dy, is the set of elements x € E in which there exists a single element y € I, such that

y=f(z).
Example 1.3.11 Let f : R — R defined by f(z) = Va + 1, then

Di={zecR:2+1>0}=[-1,4o00[.
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1.3.2 Restricting and extending an application

Definition 1.3.12 Let AC F and f : E — F be an application. We call the restriction
from f to A, the map f/o: A — F defined by

fra(x) = f(x), for all x € A.

Definition 1.3.13 Let E C G and f : E — F a map. We call an extension from f to
G, any map g from G to F whose restriction to E is f.

Example 1.3.14 Given the application :

f:RY —R
r —nz’
then
g:R* —R h:R* — R
r —Inlz| ’ z —In(|3z) —2z)

are two different extensions of f to R*.

1.3.3 Direct image and inverse image

Definition 1.3.15 Let A and B be non-empty sets. Let E be a subset of A, and f :
A — B be an application. The direct image of the set E is defined by :

F(E)={f(z):z€E}

Figure 11 : f(E)
Example 1.3.16 Let f : Z — 7 defined by f(x) = x2. Let
A={z€Z:0<z <2}
Then f(A) =1{0,1,4}.

Exercise 1.3.17 We consider the application f : [0, +oo[ — R defined by f (v) = 22 +2.
Show that
(10, +00[) = [2, 4-00f.
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Solution 1.3.18 It suffices to demonstrate the double inequality.
1) That is, first, showing that f ([0,+00[) C [2,+00[

Let
re[0,+o0] =a%2+2>2

= f(z) >2
= f(2) € 2, +o].

Therfore, f ([0,4o00[) C [2,400].
2) Now let’s show the opposite (f ([0,4o0[) D [2, +0o0]).
It means tha Yy € [2, 400, 37z € [0, +o0o[ such as f (z) = y.

We solve the equation

y=22+2 Sy—2=2>

Sr=t+yy=3,
orz=g—2>0So
Vy € [2, 400], 3z (x: y—2) € [0, 400l /f () = y
finally £ ([0, +00]) = [2, +o0].

Definition 1.3.19 Let A and B be non-empty sets, let F' be a subset of B, and f : A —
B be an application. The inverse image of the set F' is defined by :

fHF)={zeA: f(z)eF}

-1 F)
Figure 12 : f~1(F)

Example 1.3.20 Let f: Z — Z defined by f(x) = 22, let B={y € Z :y < 10}. Then

f~Y(B) ={-3,-2,-1,0,1,2,3}.

Theorem 1.3.21 Let f: X =Y and Ay C X, Ao C X, Bi1CY,ByCY. Then
(1,) ) A1 C Ay = f(Al) C f(AQ) and B1 C By = f_l(Bl) C f_l(BQ).
() f (A1 N Az) C f(A1) N f(A2) and =1 (BiN Bg) = f~1(B1) N f~1(Ba).
(i) f(A1UAz) = f(A1) U f(A2) and f~' (B1U B2) = f~1(B1) U f~(Ba).
(iv) A1 C f1(f(A) and f (f~1(B1) C Bu.
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1.3.4 Injective, surjective and bijective application

Definition 1.3.22 Let f: E — F. f is said to be injective if and only if :
V(z1,20) € E? : f(z1) = f(x2) = 21 = 29

Example 1.3.23
f:RY/{2} —R

1
€T e
2 —4
18 an wnjective application because we have :
2 1 1
V(z1,m2) € (RY/{2})": fla1) = flz2) & — = & 22 =12 o 1) = £,

x]—4 x§—4

but as x1, x2 € RT/{2} then x1 = x.

Definition 1.3.24 Let f : E — F. We say that f is surjective if and only if: for all
y € F, there exists v € E such that f(z) =y, i.e.

Vye F, 3z € E: y= f(z).

Example 1.3.25 Let f: Z — N, be the map defined by f(x) = |z|, then f is surjective.
Indeed, let y € N, for x =y or x = —y, we have x € Z and f(x) = |x| = y, so there
exists x € 7 such that y = f(z).

Definition 1.3.26 Let f : E — F. f is said to be bijective if and only if: f is both
injective and surjective. This is equivalent to : for ally € F there exists a unique x € F
such that y = f(z). In other words:

Vye F,3z e E:y= f(x).

Example 1.3.27 Let f : R — R, defined by f(x) = = + 1, then f is bijective. Indeed,
let y € R, such that f(x) =y, then © =y — 1, so there exists a unique z in R such that

y = f(z).

Remark 1.3.28 If the application f is bijective, then to every y € F' we match a single

element z € E.

Definition 1.3.29 Let f : E — F be a bijective function. We define the function
f' 1 F — E, called the reciprocal function of f, given by f~Y(x) = y if and only if

fly) ==z
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Example 1.3.30 Let f be the map defined by f(x) = 22 + 1 of Rt — [1,4+o0|, then f
is bijective, because for all y € [1,00[, the equation y = f(x) admits a single solution
x = \/y — 1. The reciprocal bijection is f=1 : [1,+oc[— R+ defined by:

fYz) =V —1 forall z € [1,+00|.

Proposition 1.3.31 Let E, F be sets and f : E — F an application.
o The map f is bijective if and only if there is a map g : F — E such that

fog=I1dp and go f = Idg.

o let f: E— F and g: F — G be bijective maps. The map go f is bijective and its

reciprocal bijection is
(gof) ' =flog™"
1.4 Some methods of proof

1. First we discuss a couple of widely used methods of proof: contrapositive proof

and proof by contradiction.

The idea of contrapositive proof is the following equivalence

(A= B) < (B=A).

So to prove thatA = B is true is the same as to prove that B = A is true.
Exercise 1.4.1 For integers m and n, if mn is odd then so are m and n.
Solution 1.4.2 We have to prove that

(Vm,n € Zy)(mn is odd) = [(m is odd) A (n is odd)],
which is the same as to prove that
[(m is even) V (n is even)] = (mn is even)

The latter is evident.
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The idea of proof by contradiction is the following equivalence

(A= B)& (AVB)& (AAB)

So to prove that A = B is true is the same as to prove that AV B is true or elsethat
A A B is false.

2 The Principle of Mathematical Induction is often used when one needs to prove
statements of the form
(Vn € N) P(n).
Thus one can show that 1 has property P and that whenever one adds 1 to a
number that has property P, the resulting number also has property P.
Principle of Mathematical Induction. If for a statement P(n)
(i) P(1)is true,
(ii) [P(n) = P(n+1)] is true,
then (Vn € N) P(n) is true.

Part (i) is called the basic case; (ii) is called the induction step.

Example 1.4.3 Prove that

1)(2 1
VneN:12+22+32+...+n2:n(n+ )6( n+ )'

1.2.3

Solution: Basic case: n=1. 12 = s true.
Induction step: Suppose that the statement is true for n = k(k > 1). We have to

prove that it is true for n =k + 1. So our assumption is

12+22+32+...+k2:k(k+1)6(2k+1).

Therefore we have

E+1)(k+2)(2k+3
12_‘_22_’_32_’__”4_]{;2_1_(;{;_’_1)2:( + 1)( 2)( +)7
which proves the statement for n = k 4+ 1. By the principle of mathematical induction

the statement is true for all n € N,



Chapter 2

Structure of real numbers field R

The aim of this chapter is to introduce axiomatically the set of Real numbers

2.1 Set of rational numbers Q.

2.1.1 Integers numbers

We take for granted the system N of natural numbers N = {1,2,3,4...}. In general the
equation z + a = 0 is not solvable in N whose case or a is positive. In order to make this
equation solvable, we must enlarge the set N = Z, by introducing negative integers as
unique solutions of the equations a + z = 0 (existence of the additive inverse) for each
a € N. Our extended system, which is denoted by Z, now contains all integers and can

be arranged in order
zZ=A.,-3,-2,-1,0,1,2,3,..} =NU{0} U{—a :a € N}

Theorem 2.1.1 (Fundamental theorem of arithmetic) Fvery positive integer ex-

cept 1 can be expressed uniquely as a product of primes.

2.1.2 Rational numbers

Let a € Z, b € Z. The equation

ar =b (1)

22
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need not have a solution x € Z. In order to solve (1) (for a # 0) we have to enlarge

our system of numbers again so that it includes fractions — (existence of multiplicative

a
inverse in Z — {0}.This motivates the following definition.
Definition 2.1.2 The set of rational numbers (or rationals) Q is the set

@z{r:fg;pez,qu,hcﬂp,q):l}-

Here hef(p, q) stands for the highest common factor of p and g, so when writing b

for a rational we often assume that the numbers p and ¢ have no common factor greater
than 1.

Definition 2.1.3 Letbe N, d € N. Then

(% > 5) < (ad > bc)

The following theorem provides a very important property of rationals.

Theorem 2.1.4 Between any two rational numbers there is another (and, hence, infin-

itely many others).

Proof. Let be N, d € N, and
Notice that

>

e
[SHNe

a a -+ mc

Indeed, since b, d and m are positive we have

s €
7

[a(b+ md) > b(a+ mc)] < [mad > mbc] < (ad > be) ,

and
[d(a+mc) > c(b+md)] < (ad > be) .

2.2 Irrational numbers
Suppose that a € QT and consider the equation
2% = a. (2)

In general (2) does not have rational solutions. For example, the following theorem
holds.
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Theorem 2.2.1 No rational number has square 2.

Proof. Suppose for a contradiction that the rational number B(p €Z,q €N, in
q

lowest terms) is such that (8)2 = 2. Then p? = 2¢°.
q

Hence, appealing to the Fundamental Theorem of Arithmetic, p? is even, and hence
p is even. Thus (3k € Z) [p = 2k|. This implies that

2k? = q2,

and therefore ¢ is also even. The last statement contradicts our assumption that p and

q have no common factor. m

The last theorem provides an example of a number which is not rational. We call
such numbers irrational.

We leave the following as an exercise.

Exercise 2.2.2 No rational x satisfies the equation
o3 =g +7.
o’ =z +4.

2.3 Real numbers

Real numbers can be defined as the union of both rational and irrational numbers. They
can be both positive or negative and are denoted by the symbol “R”. All the natural
numbers, decimals and fractions come under this category.In this course we postulate
the existence of the set of real numbers R as well as basic properties summarized in a

collection of axioms.Will find that axioms A.1— A.11 characterize R as an algebraic field.

2.3.1 Axiomatic definition

Al Va,beR: (a+0b) € R (closed under addition).

A2 Va,beR:[a+b=0b+a] (commutativity of addition).

A3 Va,b,ce R:[(a+b)+c=a+ (b+ c)] (associativity of addition).
A4 30 € R,Va € R: [0+ a = a] (existence of additive identitie).

A5 VYa e R, 3z € R: [a+ x = 0] (existence of additive inverse). We write z = —a.

Axioms A.6 — A.10 are analogues of A.1 — A.5 for the operation of multiplication.



2. Structure of real numbers field R 25

A.6 Va,beR: [ab € R] (closed under multiplication).

A.7T Ya,b € R: [ab = ba] (commutativity of multiplication).

A8 Va,b,c € R: [(ab)c = a(bc)] (associativity of multiplication).
A9 31 e R,Va € R: [1-a = a] (existence of multiplicative identitie).

A.10 VYa € R —{0},3'y € R : [ay = 1] (existence of multiplicative inverse). We write

y=-.
a

The last axiom links the operations of summation and multiplication.
A.11 Va,b,c € R: [(a+ b)c = ac+ bc] (distributive law).

Example 2.3.1 Va € R: 0a = 0.

Indeed, we have

a+0a = 1la+0a (byA.9)
= (1+0)a(byA.11)
= la (byA.2 and A.4)
= a (byA.9)

Now add —a to both sides.

—a+ (a+0a) —a+a
(—a+a)+0a=0 (by A.8 and A.5)
0+4+0a=0 (by A.5)

0a =0 (byA.4).

L

Remark 2.3.2 The set of rationals Q also forms an algebraic field (that is, the rational

numbers satisfy axzioms A.1 - A.11.
Now we add axioms of order.

0.1 Va,beR:[(a=b)V (a<b)V(a>D)]
=Va,beR:[(a>Db)A(b>a)= (a=D>) (trichotomy law).
0.2 Va,b,c e R:[(a>b) A (b>c)= (a> c)] (transitive law).

0.3 Va,b,c e R: [(a > b) = (a+ ¢ > b+ c¢)] (compatibility with addition).
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0.4 Va,b,c e R: [(a > b) A (¢ > 0) = (ac > bc)] (compatibility with multiplication).
Remark 2.3.3 Note that
Va,beR: {(a>b) < (a—b>0)}.
This follows from (0.3) by adding —b.

Axioms A.1-A.11 and O.1 - O.4 define R to be an ordered field. Observe that the
rational numbers also satisfy axioms A.1 - A.11 and O.1 - 0.4, so Q is also an ordered
field.

2.3.2 Absolute value

Definition 2.3.4 We define the mazximum and the minimum of two real a and b by:

a ifa>b
b ifb>a

a ifa<b

’ min(a’b){ b ifb<a

max(a,b) = {

Definition 2.3.5 The absolute value |x| of = is defined by

Theorem 2.3.6 We can prove a bunch of theorems about the absolute value function
that we usually take for granted:

1) |x| >0 and (|x| =0 <z =0).

2)Vr e R, | — x| = |z|.

3)Va,y € R, |zy| = ||yl

4) 2% = 2% = |z,

5)If v,y € R, then |z| <y —y <z <y.

6)Vr e R, z < |x|.

Proof. :

1) If x > 0 then |z| =2 > 0. If <0, then —x > 0 = |z| = —z > 0. Thus, |z| > 0.
Now suppose x = 0.Then, |z| = 2 = 0. For the other direction, suppose |z| = 0.
Then, if £ > 0= o = |z| =0. If x <0, then —x = |z| = 0. Therefore,

x=0<|z| =0.

2) If z > 0 then —z < 0. Thus, [z|=2 = —(—2) =| —z|. If 2 <0 then —x > 0 and

thus | -z = [ — (=) = [z,
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3)a)If >0 and y > 0, then xy > 0 and |zy| = zy = |z||y|.
b) If x <0and y <0, then zy > 0 = |zy| = zy = (—x) (—y) = |z||y|.
c)If x <0andy >0, then zy < 0= |zy| = —zy = (—x) (y) = |z||y|.
d) If 2 > 0and y <0, then 2y <0 = |zy| = —zy = (z) (—y) = |z||ly|.
4) Take z = y in 3). Then, |2?| = |z|?. Since 2% > 0, it follows that |z?| = 2.
5) Suppose |z| <y. If x >0, then —y <0 <z = |z| <y. Therefore, —y < z < y.
If x <0, then —z >0 and |z| = —2 <y. Hence, —y < —z <y= —y <z <y.
6) If + > 0 then x = |z|, if x <0 then z < |z| and thus z < |z|. =

Theorem 2.3.7 (triangle inequality)
Va,b e R: |a+b| < |a|+ |b].

Proof. We split the proof into two cases. We use the fact that a < |a| for all a € R.
Case a +b > 0. Then
la +bl =a-+b<|al + |b].

Case a +b < 0. Then
la+b] = —(a+0b) = (—a) + (=b) <la| + [B].
||

Exercise 2.3.8 Prove that
1) (Va € R)(Vb € R)[a? + b2 > 2ab].
b
2)(VaeIR+xVb61R+ﬂ“;' > Vab).

a+b+c+d S ¢

3) (Va € RT)(Vb € RT)(Vc € RT)(Vd € RT) 1

4) Let n > 2 be a natural number. Prove that

abed | .

1 + 1 4ot 1 >1
n+1l n+2 on = 2"

Recall that RT = {z € R | z > 0}.
Proof. 1) The result is equivalent to a + b*> — 2ab > 0. But,
a® 4 b* — 2ab = (a — b)* > 0.

Note that the equality holds if and only if a = b.
2) As above, let us prove that the difference between the left-hand side (LHS)
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and the right-hand side (RHS) is non-negative:

2
‘L;b—mzw;@zu

The equality holds if and only if a = b.
3)By (2) and by (0O.2) we have

a+b+c+d2\/%+\/a2 \/@M:m'

4 2
The equality holds if and only if a = b = ¢ =d.
4) ! + ! +-e 4 ! > ! + ! + -+ ! L L [ |
cee _ _ _ vee —_—=n—- = —.
n+l n+42 2n 2n  2n 2n, 2 2

~~
n

Theorem 2.3.9 ( Bernoulli’s inequality) (Vn € N)(Vx > —1) [(1+2)" > 1+ zn].

Proof. Basic case. The inequality holds for n =0, 1.
Induction step. Suppose that the inequality is true for n = k with k > 1; that is,

(1+x)k > 1+ k.
We have to prove that it is true for n = k + 1; in other words,
1+ ) >1 4 (k+ 1)z
Now,

L+ = (1+2) (1+2)
(1+kz)(1+x)
1+ (k+ 1)z + ka?
1+ (k+1)z.

Vv

v

This concludes the induction step. By the principle of mathematical induction, the result

istrueforalln € N. m

2.3.3 Bounded sets of R

Definition 2.3.10 Let A be a subset of R and non-empty .
We say that A is bounded from above if and only if :

dIMeRVee A:x <M
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We say that A is bounded from below if and only if
dIneR,VeeA:x>m
A is bounded if and only if it is bounded from above and below.

Proposition 2.3.11 The three following conditions are equivalent
1) A is bounded set,
2)ImeR,IM eR;Vee A:m <z <M.
3)3IM e R*;Vx € A: |z| < M.

Definition 2.3.12 Let A C R. We say that M € R is the supremum of A, written
sup A, if

(i)Vr € A:x <M for allx € A; (M is an upper bound of A)

(ii) if z < M for all z € A then M < M (M is the least upper bound of A).

Definition 2.3.13 Let A CR. We say that m € R is the infimum of A, written inf A,
if

(i)Vr € A:x>m for allz € A; (m is a lower bound of A)

(ii) if © > m for all x € A then m > m (m is the greatest lower bound of A).

Definition 2.3.14 Ifsup A € A, it is called max A.
Ifinf A € A, it is called min A.

Notation 3 If A is infinite from above (from below, respectively) in R we write sup A =

+oo (inf A = —o0o,respectively).

Remark 2.3.15 If A has a supremum (an infimum, respectively), then sup A (inf A) is

Unique.

Example 2.3.16 o Let A = [1,2). Then 2 is an upper bound, and is the least upper

. . M
bound: if M < 2 then M is not an upper bound because max(1,1 + 7) € A and

M .
max(1,1+ ?) > M. Note that in this case sup A ¢ A, so Amax A.
o Let A = (1,2]. Then we again have sup A = 2, and this time sup A € A. The
supremum is the least upper bound of a set. There’s an analogous definition for lower

bounds.

Axiom 2.3.17 ( supermum and infimum) Let A be a non-empty subset of R that

is bounded above ( below, respectively). Then A has a supremum ( an infimum, respect-

ively).
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Let’s explore some useful properties of sup and inf.

Proposition 2.3.18 (i) Let A, B be non-empty subsets of R, with A C B and with B
bounded above. Then A is bounded above, and sup A < sup B.
(ii) Let B C R be non-empty and bounded below. Let A ={—x:xz € B}. Then A is

non-empty and bounded above. Furthermore, inf B exists, and inf B = —sup A.

Proof. (i) Since B is bounded above, it has an upper bound, say M. Then z < M
for all x € B, so certainly x < M for all x € A, so M is an upper bound for A. Now A,
B are non-empty and bounded above, so by Axiom of supermum .

Note that sup B is an upper bound for B and hence also for A, so supB > sup A
(since sup A is the least upper bound for A).

(ii) Since B is non-empty, so is A.

Let m be a lower bound for B, so x > m for all z € B. Then —x < —m for all z € B,
soy < —m for all y € A, so —m is an upper bound for A.

Now A is non-empty and bounded above, so by Axiom of supremum. Then y < sup A
forall y € A, so x > —sup A for all x € B, so —sup A is a lower bound for B. Also, we
saw before that if m is a lower bound for B then —m is an upper bound for A. Then
—m > sup A (since sup A is the least upper bound), so m < —sup A.

So —sup A is the greatest lower bound.

So inf B exists and inf B= —sup A. =

Proposition 2.3.19 (Approximation property) 1) Let A C R be non-empty and

bounded above, then

Vee Ao < M
M =supA < <{ and
Ve;dac € A: M — e < ae

2)Let A be bounded from below, then

VeeA:x>m
m=inf A & and
Ve;dbe € A:be <m+e€

Proof. 1) Take € > 0. Note that by definition of the supremum we have x < sup 4
for all x € A. Suppose, for a contradiction, that sup A — e > x for all x € A. Then
sup A — € is an upper bound for A, but sup A — ¢ < sup A. Contradiction.

So there is a. € A with sup A — € < a..

2) In the same way we prove the second case. ®m
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Axiom 2.3.20 ( of Archimedes) Vz > 0; Vy € R; In € N* : y < nx.

Proof. We suppose that: 3z > 0; dJy € R; Vn € N* : y > nz or dx > 0; Jy € R;
VneN' :n< Q’ that’s mean the set N* is limited from above it accepts an upper limit
in R called M .xso

Ve; Ine e N* : M — € < n..

Putting e = 1, we get :
dneeN*:M—-1<ncoran.e N : M <n.+1
but n. + 1 € N*, this is a contradiction with supN* = M. =

Example 2.3.21 A =[1,2[;supA =2¢ A, then imaxA;infA=1=min A

1 1
B=<—meN»yVneN":n>1=0<—-<1, thensupB=maxB=1¢€ B.
n n

Let we proof that inf B =0 i.e.

VreB:x>0
0=inf B & and
Ve;db. € B : b < 0+ €.

On the other side we have
Ve; dbe € B: b < 0+ € < Ve; In € N* . % < €.
and this proposition is true and its according to Archimedes’ Axiom
Ve;In € N* :ne > 1
min B is unavailable, because 0 ¢ B.

Definition 2.3.22 Let x € R, there exists a unique relative integer, the integer part
denoted E(x), such that E(x) < x < E(z) + 1. We also note E(x) = [z].

Example 2.3.23 1) E(3,5) =3 since 3 < 3,5 <3+ 1.
2) E(-3,5) = —4 since —4 < -3,5 < -4 + 1.

3)Vn6N*:E<n%r1):()smceVnEN*:OSn%rl<0+l.
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2.3.4 Dense groups in R

Theorem 2.3.24 Between every two different real numbers there is at least one rational

number.

Proof. Let y and x be two real numbers where x < y. According to Archimedean
axiom

IneN:1<n(y—=x) ornr+1<ny.

On the other hand we have

E(nz) < nz<E(nz)+1
ornr < FE(nz)+1l<nz+1<ny.

So
E(nz)+1
r< T oy
n
E(nz)+1

n

Well the rational number is bounded between the two real numbers x and

y. m

Theorem 2.3.25 between every two different real numbers there is at least one irra-

tional number.
To prove this theory we need the following proposition.
Proposition 2.3.26 if x € I (irrational number)and r € Q* then rxz € I.

Proof. We assume = € I and r € Q*and that rx € Q, then

1 1
< € Q%orrzx € Q) = —rzxec@Q
T r
= z€Q.
This is a contradiction because xr € I. m

Proof (Theorem). Let x, y be two real numbers, where x < y, according to the

theorem , there sexist a rational number r (r # 0) such that:

T
—<r<lora:<7“\f2<y

V2 V2

and according to proposition we conclude that rv/2 is a irrational number. m

Corollary 2.3.27 The two sets Q and I is dense in R.
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2.3.5 Intervals in R

Definition 2.3.28 An interval is a subset of the real numbers that contains all real

numbers lying between any two numbers of the subset.

Let a, b be real numbers, where a < b, we define
- [a,b] ={z € R:a < x < b} is called closed interval.
- Ja,bl ={z € R:a < z < b} is called open interval.
- [a,b] = {x € R:a < x < b} is called half open interval.
-Jab)={r eR:ia<p <P "M AT T
- [a,+oo[={z € R:x > a} is unbounded closed interval.
- |00, b ={x R <ppr MMM AT
- Ja,+oo] = {z € R: 2z > a} is unbounded open interval.

- }—OO,b[Z{xGRx<b}" (LI L L L L L O L B L R 1 H_

LU L L L L L O L B | R 1

S:{l(_;)n:neN}.

Find inf S and sup S and prove your answers.

- |—00, 400

Exercise 2.3.29 Let

1
Solution 2.3.30 We claim that infS = 3 and sup S = 2. Note that, if n is odd,

-1)" 1 -1)" 1
1—Q:1+—,whz’leifniseven,1—( ) =1-—.
n n n n
It follows, if n is odd, that
1" 1
1-— ( ) >1>—.
n 2
If n > 2 is even,
-1)" 1 1 1
1—( ) =1-—>1--==
n n 2 2
. o (-1)" 1 .
Arguing similarly, 1 — —— < 2 and so 3 and 2 are, respectively, lower and upper
n

1 1
bounds for S. Since 5 € S, there cannot be a lower bound m > 3 and so 51'5 the greatest

1
lower bound for S, i.e. infS = 3 Since 2 € S, there cannot be a upper bound M < 2

and so 2is the least upper bound for S, i.e. sup S = 2.
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Exercise 2.3.31 Let A = 1 :n=1,2,3,...p = 1,1,1, 1,
n 2°3°4
1) Show that A is a non-empty set, both bounded above and below.
2) Show that sup(A) = max(A) = 1.
3) Show that inf(A) = 0.
4) Show that min(A) does not exist..

1 111
Example 2.3.32 Solution 2.3.33 Let A = { : n=12,3, } = {1, 331 }
n

1)1€eA=A#0,YVn:n>1 wehav60<%§1:>1 s an upper bound of A and
0 is a lower bound of A.

2) sup A and inf A exist, according to the axiom of the upper bound : Let’s show that
sup A = 1. Let € > 0, we show that Jxg € A/ g > 1—e¢. In fact, let’s take xo = 1. First
of all xg = 1 wverifies the precedent relation, since : Ye > 0, 1 > 1 — &, morever 1 € A
then : sup A = max A = 1.

3) inf A = 0?7 Let € > 0, we show that 3zg € A/ 0+ ¢ >z, the elements of A are
of the form % we must find n € N*/ % <eorn> é For e > 0 if we take xg = % with

1
n > — we obtain xg € A and 0+ ¢ > xy then inf A = 0.
€

1
4) WehcweVnZl,g>0:>0¢A:39min14.



Chapter 3

Real functions of a real variable

3.1 Introduction

In this chapter the key notion of a continuous function is introduced, followed by several
important theorems about continuous functions. We deal exclusively with functions

taking values in the set of real numbers (that is, real-valued functions).

3.1.1 Bounded functions, monotonic functions

Definition 3.1.1 Let f: D CR — R be a function. It is said that
a) f is said to be bounded above on D if

IM eR,Vx € D: f(x) < M.
b) f is said to be bounded below on D if
dmeR, Yz e D: f(x) >m.
c) f is bounded on D if f is both bounded above and below on D, i.e. if
AM >0,Vz e D:|f(z)] <M or3IM,3m e R,Vx € D:m < f(z) < M.

Example 3.1.2 1/ f(z) = cos (x) is bounded because Vx € R : —1 < cos (z) < 1.
2/ f(z) = e" is bounded below because Vr € R : e* > 0.
3/ f(x) = 2%is not bounded.

Definition 3.1.3 Let f: D — R be a function. We say that:

a) f is increasing over D if
Vz,y €D,z <y= f(z) < f(y).

35
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b) f is strictly increasing over D if

Ve, ye D, x <y= f(z) < f(y).
c)f is decreasing over D if

Vo,y €D,z <y= f(z) > f(y)
d) f is strictly decreasing over D if

Ve, ye D, x <y= f(z) > f(y).

e) f is monotonic (or strictly monotonic) on D if f is increasing or decreasing (or

strictly increasing or decreasing) on D.

Example 3.1.4 i) The exponential function : exp: R — R is strictly increasing.

1) The function absolute value : x — |x| defined on R is not monotonic.

3.1.2 0Odd, even, periodic function

Definition 3.1.5 (Parity) Let I be be a symmetric interval with respect to 0 in R. Let
f:1— R be a function. We say that:

i) fis evenifVe € I: f(—x) = f(z).

i) f is odd if Ve € I : f(—x) = —f(x).

Remark 3.1.6 f is even if and only if its graph is symmetric with respect to on the

y-axis and f is odd if and only if its graph is symmetric with respect to at the origin.

¥t ¥4
TN ®
/ R B
Fo :
| \ i
1i \
X X X -
\ _-'|l \ / -X X X
"\ ll.l" ‘-,_ _r'l
\ / \\ /
- ko
(=x)

Figure 13: Even function Figure 14 : Odd function
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(a) (b)
Figurel5 : Parity function

(a) For any even integer n, f (z) = az™ is an even function,

(b) For any odd integer n, f (x) = ax™, is an odd function.

Definition 3.1.7 (Periodicity) Let f : R — R be a function and T be a real number,
T > 0. The function f is called periodic of period T if Vx € R, f(x +T) = f(x).

Figure 16: Periodic function

Example 3.1.8 The functions sin and cos are 2w-periodic. The tangent function is

w-periodic.

3.1.3 Algebraic operations on functions

The set of functions of D C R in R, is denoted F (D, R).

Definition 3.1.9 Let f and g € F(D,R) and A € R. We define
e Sum of two functions f+g:x — (f+g)(z) = f(z) + g(x).

o For \e R, \f 1z — (\f)(z) = \f(x).
e Product of two functions fg:x — (fg)(x) = f(z)g(x).

Remark 3.1.10 The functions f + g, Af and fg are functions belonging to F(D,R).
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Figure 17: Sum of functions

Definition 3.1.11 Let f and g € F(D,R) and A € R. We say that
e f<gifvVzeD, f(z) <glz).
o f<gifvxeD,f(x)<g(z).

Example 3.1.12 Let f and g be two functions defined on 10,1 by f(z) = x, g(x) = 22
. We have g < f, because Yz €]0,1[ , 2° < x.

3.1.4 Limit of a function

General definitions

Let f: I — R, be a function defined on the interval I of R. Let g € R be a point of

or an end of I.
Definition 3.1.13 Let [ € R. We say that f has [ for limit in xq if,
Ve>0,30 >0,Ve el, |z —xo|<d=|f(z)—1] <e.

In this case, we write lim f (z) = 1.
T—x0

Example 3.1.14 Consider the function f(x) = 2z — 1 which is defined on R. At the
point x = 1, we have limlf (x) = 1. Indeed, for alle > 0, we have |f(z)—1| = 2|z—1| <€,
xr—

if we have |x — 1| < g The right choice will then be to take 6 = %

Uniqueness of the limit

Proposition 3.1.15 If f admits a limit at the point xg, this limit is unique.
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Proof. If f admits two limits I; and [l at the point xg, then we have, by definition,
Ve > 0,

36, > O,Vazel,if\x—xo|<61:>|f(x)—l1|<§.
365 > O,Vmel,if\m—m(ﬂ<62:>|f(:13)—lg|<§.

Let § = min(d1,d2) > 0, then

=l < |f(x) =L+ [f(z) — 12| <e

|l1 — 2]

Since € is any positive value, for e = results inly =1l5. =

Limit to the right, limit to the left.

Definition 3.1.16 We say that the function f admits | as the limit to the right of o,
or when x tends to fbar, if for all € > 0 there exists a § > 0, such that: xo < x < xg+ 4,

results in |f(x) — 1] < e. In this case, we will write:
lim f(z)=10or lim f(x)=1.
Tz x5z0

We say that the function f admits | as the limit to the left of xg, or when x tends
to zy, if for all € > 0 there exists a 6 > 0, such that: g —0 < x < g, results in

|f(x) =1 <e. In this case, we will write:

lim f(z) =1 or lim f(x)=1L.

T—Ty wixo

Example 3.1.17 The function \/z tends to 0 when z — 07,

Remark 3.1.18 If the function f admits a limit [ to the left of the point xo and a limit
U'to the right of xq, then for f to have a limit at the point xq, it is necessary and sufficient
that | =1'.

Example 3.1.19 Consider the function defined by

)L ifx >0,
f(m)_{ 1, ifz <0

It admits 1 as the limit to the right of 0 and —1 as the limit to the left of 0. But it does

not admit any limit to point 0.
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Cases where x becomes infinite

We will pose by definition

a) lim f(x)=1if

Tr——+00

Ve >0, 3A > 0, such that x > A = |f(z) — | < e.
b) lim f(z)=1,if
Ve >0, 3A > 0, such that x < —A = |f(z) — ]| <e.

Infinite limit

Let z¢p € R, we have

a) lim f(z) = +oo,

T—T0

VA > 0,30 > 0, such that |z — x| < d = f(z) > A.

b) lim f(x) = —o0, if

r—T0

VA > 0,39 > 0, such that |z — zo| < 6 = f(z) < —A.
If xg = +00 or g = —00, we put
a) lim f(x)= +o0,
T—+00

VA >0, 3B > 0, such that x > B = f(z) > A.

b) lim f(z) = oo,

r——00

VA>0, E|B>0, such that r < —B = i(LU) > A.
c lim f ) = —00
) 1 ( ) Y

VA >0, 3B > 0, such that z > B = f(z) < —A.

VA >0, 3B > 0, such that z < —B = f(z) < —A.
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3.1.5 Limit theorems

Theorem 3.1.20 Let f : [a,b] — R and zo €la,b]. The following two properties are

equivalent:
(1) lim f () =1,
T—x0

(2) For any sequence (xp)nen, Tn €)a, b such that lim x, = xg, then lim f (z,) =
n—+o0o n—+o0o

l.

Exercise 3.1.21 1) hn% s1n( ) does not eist, and 2) hII(l)ZE sin (1) =0.

Solution 3.1.22 1) z,, = (in Then, x, # 0, and x, — 0. But,

ng-

1
sin () — sin ((Qn —1) f) — ()"
Tn 2
for all n. However, this sequence does not converge (i.e. the limit does not exist).

2) Suppose x,, # 0 and x,, — 0. Then
i 1
sin <> ' < |xn|.
Tn,

. 1
Tpsin | — || = |z
T
T, Sin (g})‘ =0.
n

0<

By the Gendarmes Theorem, lim
n—+00

3.1.6 Operations of limits

Theorem 3.1.23 Let f,g : [a,b] — R and z¢ €a,b|, such that lim f(z) = | and
T—T0

lim g (x) =1, Then

T—T0

a) zli_)rgclo [f(z)+g(x)=1+1".
b) mlirglo (Af (x)) = Al for any A € R.

c) 1imf( ).g(x)=1.

d) hm |f (= )\—Ill
e) hm |f (@) = 1] =
: f(w)_l o
/) gglggog@) = FU#0.

Theorem 3.1.24 Let f : [a,b] — [c,d] and g : [¢,d] — R and z¢ €]a,b[, yo € [c,d], such
that lim f(x) =yo and lim g (y) =1 Then lim (go f)(z)=1.
T—xT0 Yy—Yo T—T0
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Proposition 3.1.25 Let f,g: [a,b] — R and xo €|a, b, we have
1
a) If lim f (z) = +o0, then lim —— = 0.
T—T(

AT
b) If :ch—{gof (x) = —o0, then :Cli_)rgof @ =0.

c)If f <g, and lim f(x) =1, then lim g(x) =1 and I <’
r—TQ T—T0

d) If f <g, and lim f(x) = +oo, then lim g(z) = +oo.
T—x0 T—T0

Theorem 3.1.26 Let f,g,h: [a,b] — R and xg €]a, b, we have
i) f(z) < g(x) < h(z), for all x €la,b]
ii) xlgg f(x)= xlgg h(z)=1€eR.
Then loim g(x) = l.0

r—T0

Indeterminate forms

0
400 — o0, 0 X oo, E, —, 1%, o0,
oo 0
. sinz 0 1 0
Example 3.1.27 lim = —, lim z= = o0”.
z—0 X 0" z—oo

Proposition 3.1.28 Let f and g be two functions if :
1) f is a bounded function in the neighbourhood of xo (3D a neighbourhood of )
8.t
In,M eRVreD:m< f(z) <M

2) lim g (z) = 0.
r—T0
Then lim f(z) x g(x) =0
T—To

sin x

Example 3.1.29 Calculate the limit lim

r——+oo I

1
Indeed sin(co) is not defined but it is bounded because |sinx| < 1 and liI_~I_1 - =0,
T—TOOL

sinx

so lim =0.

r—+o00 X
Equivalent functions

Definition 3.1.30 Let f and g be two functions defined in a neighborhood of a point xq
(o € R or zp = £00).
We assume, moreover, that g does not cancel in a neighborhood of xo, except perhaps

in o where we can have g(xp) = 0.

=1

We say that f is equivalent to g in a neighborhood of xq if, and only if: lim f E:I:;
T—x0 g \T
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We denote this by f ~ g. We also say that f and g are equivalent to the neighborhood
o

of ¢g or in xq.

Example 3.1.31 1) the functions f(x) = In(x + 1) and g(z) = x are equivalent since

1 1
i B+ 1)

z—0

=1. We note In(z + 1) e

: L . . sinz
2) Always, in the vicinity of zero, sinx ~ x because hr%— =1
xr— €T

3.2 Continuity of a function

3.2.1 General definitions

Definition 3.2.1 Let us consider a function f : I — R, where I is an interval of R.

We say that f is continuous at the point xg € I if lim f (z) = f(xg), i.e. if
T—T0

Ve > 0,30 >0,Vx € I, |z —z0| <0 = |f(x) — f(z0)| < e

flzo) + €

J(@o) prosmroemmmnnnnneeeancy .
flao) — |

0 //

- o
Tog—0 I o+ 0

Figure 18: Continuity at the point xqo

Example 3.2.2 Let the real function f be defined by

1

Z sin <> , ifx #0,
x

0, if = 0.

f ) =

At the point xg = 0, we have

. 1
@) = flao) = fosin (3 ) 1< .
For € > 0, we will choose § = €. Thus
z| <6 = [f(z) — fzo)| <e

So f is continuous at the point xo = 0.
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Definition 3.2.3 A function defined on an interval I is continuous on I if it is con-

tinuous at any point of I. The set of continuous functions on I is denoted by C(I).

Continuity on the left, continuity on the right

Definition 3.2.4 Let us consider a function f : I — R, where I is an interval of R.
(1) The function f is said to be continuous on the left at z¢ if lim f(x) = f(zo),
T—T(
n.e. if
Ve>0,30 >0,Veel,if 0<zg—x<d=|f(z)— f(zo)] <e.
(2) The function f is said to be continuous on the right at xq if lim+f (x) = f(xo), i.e.
l’ﬁl’o
if

Ve>0,30>0,Veel,if0<xz—xz9<d=|f(x)— flzo)| <e.

T | /(@) | E

1 / [l

| 1 1 ] | 1 1 1 | | ] | ]
| 1 T ! I T 1 I | I | I I

I I
| |
I I
a X a X

lim f(x) = f(a) lim f(x) = f(a)
J e —ar
left continuous at x=a right continuous at x=a

Figure 19 : Left (right) Continuous at x=a
Note. - The function f is continuous at zq if and only if f is continuous at the left
and right of the point x.

- f is continuous at g < lim f(x) = lim+f (x) = f(=o).

T—T( T—T



3. Real functions of a real variable 45

Summary of discontinuities

lim f{x) # f{a) lim fx) # lim f(x) Either lim fx)=ze or lim f(x)= e
X - LRy Xo= i X—g* =0

Figure 20:discontinuity at point a

Example 3.2.5 The function defined by

)L if x>0,
f(x)_{ -1, ifx <O0.

is continuous on R*. At the point xg = 0, the function f is continuous on the left, but

it 18 not continuous on the right because

lim f(z) = f(0) =—1 and lim f(z)=1+# f(0)

z—0~ z—0t

Y

.

Figure 21: discontinuity at point 0

Definition 3.2.6 (Continuity on a closed iterval.) A function f is continuous on
the closed interval |a,b] if:

1. it is continuous on the open interval (a,b);

2. it is right continuous at point a :

lim f (2) = f(a);

r—a

and
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3. it is left continuous at point b:

lim f (x) = £(b).

r—b—
Example 3.2.7 The function f () = v/x is continuous on the (closed) interval [0, +00) .
The function f (x) = /4 — x is continuous on the (closed) interval (—oo,4].
Continuity extension

Definition 3.2.8 Let I be an interval, xg a point of I. If the function f is not defined
at the point xg € I and admits at this point a finite limit denoted l, the function defined

by

if x = xo.

is said to be a continuity extension of f at the point xq.

Example 3.2.9 The function

flz) = xsin%

1s defined and continues on R*. Now, for all x € R* we have

|[f(2)] =

1
xsin —| < |z|
x

So J:}L%f () = 0. The continuity extension of f to the point O is therefore the function
f defined by:
~ x sin 1, ifx #0,
0, ’ ifx=0.

3.2.2 Operations on continuous functions

Definition 3.2.10 Let I be an interval, and f and g functions defined on I and con-
tinuous at xg € I. Then

(1) \f is continuous at xo, (A € R).

(2) f+ g is continuous at xy.

(8) f.g is continuous at x.

(4) 5 (if g(xo) # 0) is continuous at xg.
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3.2.3 Continuity of composition functions

Theorem 3.2.11 If g is continuous at xo and f is continuous at g (o), then the com-

position function f o g is continuous at xg.
Theorem 3.2.12 If f : [a,b] — R is continuous then f is bounded.

Definition 3.2.13 (Absolute Minimum / Maximum) Let f : I — R. Then, f
achieves an absolute minimum at ¢ € I,if Vo € I, f(x) > f(c). Similarly, f achieves
an absolute mazimum at d € 1if Ve € I, f () < f(d).

| I —

]
\ - 3 C L

Figure 22: Mazximum and minimum

3.2.4 The Intermediate Value Theorem

Whether or not an equation has a solution is an important question in mathematics.

Theorem 3.2.14 (Intermediate Value Theorem) If f is continuous on the interval
[a,b] and N is between f(a) and f (b),where f(a) # f(b), then there is a number c in
(a,b) such that f (¢c) = N

The Intermediate Value Theorem guarantees that if f is continuous and f (a) < N <
f(b), the line y = N intersects the function at some point = c¢. Such a number c is
between a and b and has the property that f (¢) = N (see Figure 23)

e —————

3 flr) v fl(z) ¥
1) 4 M — k) +
[ N -
fla) + — fla) + i
| L J L i } i | : : :: :
a b X a C

Figure 23: IntermediateValueTheorem

(a) A continuous function where IVT holds for a single value c.
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(b) A discontinuous function where IVT fails to hold.
(c) A continuous function where IVT holds for multiple values in (a,b) .

The Intermediate Value Theorem is most frequently used for N = 0.
Exercise 3.2.15 Show that there is a solution of /x + x =1 in the interval (0,8).

Solution 3.2.16 Let f(z) = Jx+x—1,a =0, and b = 8, Since /x, x and —1 are
continuous on R, and the sum of continuous functions is again continuous, we have that
f is continuous on R, thus in particular, f is continuous on [0,8]. We have f(a) =
f(0) = J0+0—-1= —1and f(b) = f8) = V8+8—1=9. Thus N = 0 lies
between f(a) = —1 and f(b) =9, so the conditions of the Intermediate Value Theorem
are satisfied. So, there exists a number ¢ in (0,8) such that f(c) = 0. This means that
¢ satisfies/c+ ¢ —1 =0, in otherwords, is a solution for the equation given.
Alternatively we can let f(x) = Jr+x, N =1, a = 0 and b = 8. Then as
before f is the sum of two continuous functions, so is also continuous everywhere, in
particular, continuous on the interval [0,8], f(a) = f(0) = Y0+ 0 = 0 and f(b) =
f(8) = V/8+8=10. Thus N = 1 lies between f(a) = 0 and f(b) = 10, so the conditions
of the Intermediate Value Theorem are satisfied. So, there exists a number ¢ in (0,8)
such that f(c) = 1. This means that c satisfies ¥/c+ c =1, in otherwords, is a solution

for the equation given.

Proposition 3.2.17 Let f be a continuous function on interval [a,b], such that
f(a).f(b) <0, there exists ¢ €]a, b such that f(c) = 0.

3.2.5 Uniform continuity

Recall the definition of continuity : f : I — R is continuous on [ if Vxg € I and Ve > 0,
36 (e, x0) > 0, such that Vo € I, |z — x0| < d = |f(z) — f(z0)| < e.
Here, ¢ (€, ) denote the fact that 6 can depend on € and xy.

1

Exercise 3.2.18 Let f(x) = —, defined on the interval (0,1). Justify that f is continu-
x

ous on (0,1)7

1 1
Solution 3.2.19 We want to show that if |z — xo| < 0, then |— — —| < e.Specifically,
T i)

2
Ty X
we can choose § = min {20, 206}. suppose |x — xg| < §. Then,
To
2

To

|z — zo| < :>]x]>x0—|x—x0]>2.
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1 2
Thus, — < —.Therefore,
lz| @0

Definition 3.2.20 (Uniformly Continuous) Let f : I — R. Then f is uniformly
continuous on I if Ve > 0, 3 (¢) > 0, such thatVx,y € I,|z—y| < d = |f(x)— f(y)] <e.

Remark 3.2.21 Thus, in the definition of uniform continuity, § only depends on €.

Example 3.2.22 The function f(x) = x? is uniformly continuous on [0, 1].
Indeed : Let € > 0.Choose § = Then, if x,y € [0, 1] then |x —y| < § implies that

€

5"
|2 — | =[x —yllz +y| <20z —y| <25 =«

However, there are of course continuous functions that are not uniformly continuous.

For example, we will show that

1

Exercise 3.2.23 Show that the function f(x) = — is not uniformly continuous on
T

(0,1)7

Negation (Not uniformly continuous)

Let f: I — R. Then, f is not uniformly continuous on I if deg > 0, Vo > 0, such that
dx,y € I with|z —y| < d and |f(z) — f(y)| > €o.

y
2

1
Solution 3.2.24 Let § > 0, choose g = 2, y = min {5, 2} and x = =. Then |x —y| =

NI
N |

< -—< 6 and

1 1 2 1
R IR RS
r Yy y oy
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Theorem 3.2.25 Let f : [a,b] — R. Then, f is continuous if and only if f is uniformly

continuous.

The following procedure is a practical method of showing that a function is uniformly

continuous.

Definition 3.2.26 A function [ definite of I C R in R is said to be k-Lipschitzian over
1 if:
k> 0,Ve,y € I:[f(z) — f(y)| < klz -y

Remark 3.2.27 A k-Lipschitzian function on I is uniformly continuous on I.
Indeed; for € > 0, we just need to take § = %, such that

Ve,yel:|z—yl<d=|f(z) - f(y) <klz—y| <e

Definition 3.2.28 A function f is said to be contracting on I if f is k-Lipschitzian
with 0 < k < 1.

Conclusion 3.2.29 A contracting function on I is uniformly continuous on I.

Here is a theorem very used in practice to show that a function is bijective.

Theorem 3.2.30 Let f : I — R be a function defined on an interval I of R. If f is

continuous and strictly monotonic on I, so

1. f establishes a bijection of the interval I in the image interval J = f(I),
2. The inverse function f~!:.J — I is continuous and strictly monotonic on J and

it has the same direction of variation as f.

fa) /

Figure 24: inverse function
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3.3 Derivable function

3.3.1 Definition and properties

Definition 3.3.1 Let f be defined in a §-neighbourhood (xo—0,x9+0) of xg € R (6 > 0).
We say that f is differentiable at xg if the limit

@)~ f)

z—zo X — X

exists in R. This limit, denoted by f' (xo), is called the derivative of f at xq .

d
Furthermore, if f is differentiable at every xo € I (an interval), we write f' or d—f
x
for the function f'.
Example 3.3.2 1) f(z) =c= f'(x9) = lim R N [ (x0) =0, Vo € R.
T—z0 T — T
z? — 2}
2) f(z) = 2% = f'(z0) = lim = lim (z+ o) = 220 = [’ (x9) = 2.
T—T0 T — I T—T0
. VT — /T : 1 1
3 = = f = lim —— =1 = = f =
) (@) = vz = f(w) = lim w0 At vm | 2vm f' (o)
1
2./%o

Remark 3.3.3 By substituting x — xg = h, we find:

lim f(zo+h) — f(=0)

lim Y exists and is finite < ( f is derivative at xq)

Example 3.3.4 Let f : R — R be defined by f(z) = 2% . The derivative of f at a point
zg € R is

f(zo+h) — f(z0) (zo +h)* —

/ _ . 7

fleo) =i, B
h? + 2h

= ’llin%ﬂ = }llin% (h + 2x0) = 2z

Theorem 3.3.5 If f : I — R is differentiable at xo € I, then f is continuous at xg.

Proof.

Hence

lim (f(z) = f(z0)) = lim (f(zo+h) = f(z0))

— lim f(zo+h) — f(zo)
h—0 h
= f'(wo) limh = 0.

h
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Therefore

lim f(z) = f(z0)

h—0
|

Example 3.3.6 Let f: R — R be defined by f(z) = |x|. Then f is differentiable at any
x € R—{0}. But f is not differentiable at 0.
In fact, we have : if x > 0, then

i@ +h) — fl@) _
h—0 h
If x <0, then
i@t = fl@)
h—0 h

Therefore, the derivative does not exist at 0, as

o FEED 1), St h) )

h—0+ h h—0— h

Note that the function f in the above example is continuous at 0 : thus, continuity

does not imply differentiability. However, the converse is true.

_f'[.r]=[.\'|={ x x20 7(x)=1 x20

¥ xed)

Figure25 : f and f’ s.t f(z)=|z|.

3.3.2 One-sided derivatives

1) In a manner similar to the definition of the one-sided limit, we may also define the

left and right derivatives of f at zg via

flz+h) - f(z) fle+h) - f(z)

/! . K ! 1
L T
%) f is derivative on the right and left at zg N f is derivative at xq
and f” (zo) = f (o) f'(wo) = fL (o) = f} (w0)

3) If f (z0) # f) (x0), then f is not differentiable at z and we say that xg is an

angular point.
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Remark 3.3.7 If f is differentiable at xo € R then there exists a function e(x) such
that lime(z) =0 and

x—0

f (@)= f(z0) + [ (wo) (v = z0) + £() (& — m0)

Indeed, define
f(@) = f(wo)

cla) = RO f (o)

Then e(x) — 0 as x — 0 and f (x) = f (xo) + [ (x0) (x — z0) + e(z) (x — x0)

This enables one to re-interpret the formula in the above Remark as follows. If f is
differentiable at zy € R, then one can write for the value of f(x = zo+h), that is “near”
xo:

f(zo+h)=f(zo)+ f (wo) h+o0(h),

where the notation o(h) reads as “little o of h”, and denotes any function which has the

(h)

following property: lllir% OT =0.

3.3.3 Operations on derivative functions

Theorem 3.3.8 Let f: I — R, g: 1 — R be differentiable at o € I. Then,

1.(Linearity) Vo € R, (af + g)'(x0) = afr(zo) + g/(z0).
2. (Product rule) (fg)/(xo) = f1(z0)g(zo) + f(x0)g/(x0).

3. (Quotient rule) If g(x) # 0 for allx € I, then <£>/ (x0) = J1(o)g(wo) = f(CL‘o)g/(ﬂﬁo)'

9%(zo)
Proof.
1.
iy O+ =S4 a) (oS- flou) , ofe) = oten)
T—T0 r — X0 T—To r — X0 r — X0

— af (1) +4 ().
2. We first write
(f9) (x) — (fg) (xo) _ flz)— f(ﬂﬁo)g(x) + F(a0) g9(z) — g(@o)

T — To =0 T
then
T (f9) («’2 - ;J; 9) (o)  _ lim Wg () + f (xo0) w

= f'(w0)g (z0) + f (z0) ' (x0)
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3.The result follows from

()@ (3) e @) — () f ()

T — X g(x) g (z0) (x — o)
f(x) — f(z0) g (z) — g(zo)
9@ 9 (@0) @—20)° " T G glao) (@ —z0)? 7O
then
/ /

. (5)o-(5)e @) e) — (@) £ (a0)
T—0 T — T a—zo g (x)g(z) (x — x0)

—  lim f(x) — f(x0) oy 9 (z) — g(zo) .

= 1 (st t s Gol o)

f!(x0)g(wo) — f(z0)g/(0)
9?(z0) ‘

||

Theorem 3.3.9 If g is differentiable at xo € R and f is differentiable at g(x¢), then
f o g is differentiable at x¢ and

(f09)" (z0) = f' (9 (x0)) g’ (w0)

Proof. By definition of the derivative and Remark 3.3.7, we have

f ) = f (o) = f (wo) (v — o) +<(¥) (y — %o) ,

where £(y) — 0 as y — yp. Replace y and yo in the above equality by y = g (z) and
Yo = g (xp), and divide both sides by = — xg, to obtain

o) =1 lo@) 9@ —gl) 0@ —g(m)

Tr — X0 r — X0 r — X0

By Theorem 3.3.5, g is continuous at z¢. Hence y = g (z) — g (x0) = yo as © — xo,
and (g (z)) — 0 as © — z.Passing to limit x — z¢ in the above equality yields the

required result. m

Theorem 3.3.10 Let f be continuous and strictly increasing on (a,b). Suppose that,
for some g € (a,b), f is differentiable at o and f'(xg) # 0. Then the inverse function
g = f~tis differentiable at yo = f(xo) and

, _ 1
g (o) = f (o)’

and we write f' (o) as a function of yo.
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Example 3.3.11 Define f : R—R by f(x) = z2. Then f' (0) = 0 and f is not
invertible on any neighborhood of the origin, because the function is non-monotonic. On
the other hand, if f : 0, 4+o00[—]0,+oo[ is defined by f (x) = 22, thenf'(x) = 2x # 0

and the inverse function f=!:]0,+o0o[—]0,+o0[ is given by

) =y

The formula for the inverse of the derivative gives

or, writing x = f~1 (y),

Example 3.3.12 Define f : R — R by f(z) = 3. Then f is strictly increasing. The

inverse function f~': R — R is given by
_ 1
) =ys.

Then f'(0) = 0 and f~ is not differentiable at f (0) =0, On the other hand, f~'is

differentiable at non-zero points of R, with

. 1
or, writing x = Y3,

3.3.4 Derivative of usual functions

u represents a function x — u(x).
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: . function | derivative
function | derivative - :
n n—
" TL:L’n_l (n c Z) /i n,u/,ﬁ ) (n < Z)
T T 2z _%
L 4 3 I lf/
z — Z 5
Ve 2z VH 2/p
z® az® 1 (a € R) pu ap/ pet (e € R)
ev ev et et
1 7
Inz — In p H
z 1
Cos T —sinz oS [ — sin
sinx cosx . sin g1 1/ cos pu
7
tanx 1+tan?z = —— 2 r_ M
2 tan 1+ tan =
cos? x H ( + '“) H cos® 1

3.3.5 The n'" derivative

Definition 3.3.13 Let f : I — R be a differentiable function and let f’ be its derivative.
If the function f': I — R is also differentiable, we denote f" = (') the second derivative

of f. More generally we note:
FO =, fV =1, 1O = §" and f040 = (F0)

If the n'" derivative f™) exists, we say that f is n times differentiable.

- If f isn times differentiable on I and f™ is continuous on I, we say that f belongs
to class C™, and we write f € C™(I,R).

- If f is differentiable an infinite number of times, i.e., ¥n € N, f() exists and is
continuous, we say that f belongs to class C*°, and we write f € C* (I,R)

- If f is continuous but not differentiable, we say that f belongs to class C°, and we
write f € CO(I,R).

Example 3.3.14 Polynomial functions, cosx, sinx, e are functions belonging to class
C* on R.

Exercise 3.3.15 Computing the n'" derivative of the function f (x) = Inz.

Solution 3.3.16 The first derivatives of Inxz are

(—1).1

(-1)%.1.2
x2 )

3

fila)y=— f"(=)= SO () =
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The nt" derivative of Inz, denoted f™, is given by the following formula for : n > 1

(=)™t (n—1)

x’l’b

) (@) =

We assume that the relation is true for some integer n. In other words, we assume
P (n)is true. We must then prove that P (n + 1) is true.

! AN
f(n+1)($) _ (f(n)) (CC):<( 1) ( 1)1)

$n

()"t (=D (=n)z™ ! (=1)".n!

r2n - g+l

Exercise 3.3.17 Using the same method, prove that.

sin™ gz = sin <33 + n%) .
cos™ gz = cos <a: + n%) .

Solution 3.3.18 For sin'™ z: we have

sinz® = cosz = sin <:c + g)
sin®z = sin (w + E>I = cos (:v + E) = sin (m + 2E>

2 2 2
sin® g = sin <w + 2g>/ = cos (a: + 2%) = sin <33 + 3%)

sin™z = sin (x + n—) .
In the same way we demonstrate the second.

Leibniz’s rule:

Let f and g be two functions belonging to class C™(I,R). Then f.g is also a function in
class C™(I,R), and we have:

(f.9)™ = 3 Ck W gnh),
k=0

k _
where Cn = m
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Poof of Leibniz Rule. The Leibniz rule can be proved with the help of math-
ematical induction. Let f(x) and g(x) be n times differentiable functions. Applying the

initial case of mathematical induction for n = 1 we have the following expression.

(f(2).9(2)) = f'(2).9(x) + f(2).9' ().

Which is the simple product rule and it holds true for n = 1. Let us assume that this

statement is true for all n > 1, and we have the below expression.

(f.g)(") — chrff(k) = fOgm 4 4 kR gn=k) L 4 () g(0)

()™ = ((f9™) = ch( )
= ch< (k+1) g(n—k) 4 ¢(k) n+17k))

_ ch k+1 (n—k) +ch (n+1 k:)

We change the variable in the first sum: p=Fk + 1

n+1

ZCﬁf(k“)g(”_k) - ch—lf(p)g(nﬂ—p)‘
k=0 p=1

Therefore: »
(£.9)0F) = 3O pR gl 1) S ) 1),
k=1 o
consequently

n

k

=1

Note that C = C9 =1 and C5~1 + C¥ = C*_| then

n

(f.g)(n—i—l) — (ZCS+1f(k)g(n+l_k)) _|_f(n+1) +f(0) n+1)
k=1

Note that we can include the last two terms in the sum

Cg+1f(o)g(n+1) = fOg+l)  and
C;Lj_-llf(n—&-l)g(n—i-l—n—i-l) — f(n—&-l)g(O),
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then
n+1

(fg (n+1) ch L) glnt1=k)
So, according to the proof by 1nduct10n
(VneN)(Vz € I): (f.9)™ (x Zc’f F®) () g ) (2)
]

Exercise 3.3.19 Culculate the n'" derivative of the function: f (z) = (x2 + 1:) Inx and

g(x) =e"sinz.

Solution 3.3.20 1) f(z) = (#* 4+ ) Inz = f1 () .91 (x) or f1 (z) = 2>+ and g1 (x) =
Inz
fl(o) (z) =224z = fl(l) () =2x+1, f1(2) (x) =2, fl(k) (x) =0 forallk > 3(keN),

—1)" 1t (n—1)!
") (@) = 1 x;f )

I

f @) = (fro) ch "0 ()

= 00" (o >+clf< Yot (2) + 2P g2 (@) + 0
(-1t (n— 1)!

(-D)" 2. (n—2)! n(m-—1) o) (=1)"3 . (n— 3)!

= (2% +2) n(2z+1)

" an—1 + 2

2) f(z) =€e"sinx = fa(x).92(x) or fa(x) =€* and g2 (x) = sinz.
fQ(n) (x) =€ and g(n) (z) = sin (;v + n%)

fM @) = (fag2) ZO% ()

= Zn:Clrfex sin (a: +(n—k) g) .

k=0
Definition 3.3.21 ( Critical Points) Let ¢ be an interior point in the domain of f.
We say that ¢ is a critical point of f if f'(c) =0, or f’(c) is undefined.

Theorem 3.3.22 (Fermat’s Theorem) If f has a local extremum at ¢ and f is dif-
ferentiable at ¢, then f'(c) = 0.

Exercise 3.3.23 Find the local extremum (mazimum and minimum) over the specified
interval
f(x)=—2*+3z -2 over|[L,3].
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Solution 3.3.24 Step 1.Fvaluate f at the endpoints x =1 and x = 3.
f(1)=0and f(3) = —2.

3 3 3

Step 2 Since f'(x) = 2z +3=0atz= §and iis in the interval [1,3], f (2) =
1
1 is a candidate for a local extremum of f over [1,3].

Step 3. We compare the values found in steps 1 and 2.We find that the local
extremum minimum of f is —2, and it occurs at x = 3. The local extremum mazimum

1

of f is T and it occurs at x = 5 @3 shown in Figure

¥i
1t

11

i1 r_u_/.aa.:\'
1 2

1 i, \ 3#’
11 \rr_c:- X Ix - 2

21 Ve -2

34

Figure 26 : This function has both local extremum mazimum and minimum

Method of finding points where the function f possesses extreme values:
Theorem 3.3.25 Let f € F (D,R) be differentiable on D, assuming that f" exists, let
zo € D then :

!
=0
{ f (arg)) . = w0 15 a local minimum point of f
)=0

(
!
{ j:,, ((scg) 0 = 9 s a local mazimum point of f
o) <

Example 3.3.26 Let the function f(x) = cosz and 9 =0, x1 = 7.
"(0)=0

f'(z) = —sinz = J7(0)
fi(m) =0
7 (2) = — cosw = { f7(0)=—-1<0—x9=0 is a local mazimum point of f.

f"(m)=1>0 — x1 = is a local minimum point of f.

= x9 and x1 are critical points.

In general : Let f € C™ (D,R), where:

F(@o) = f"(w0) = .. = FV(x0) = 0, " (wo) #0
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Casel: If n is even

F™(zg) > 0 = g is a local minimum point of f.

f™(x0) < 0 = =z is a local maximum point of f
Case2: If n is odd
M (z0) # 0 = z is not extreme point but rather an inflection point.
Example 3.3.27 z9 =0 and f (z) = 23

f(x) = 32%>= f(0)=0— f has a critical point at xo =0
f(x) = 6z=f"(0)=0
@) = 6= 7(0) £0

With n = 3 being an odd number and f" (x) # 0, hence xg = 0 is an inflection point,

and f does not possess an extreme value at xg = 0.

Example 3.3.28 Let the function f : R — R where f (x) = 6Ilnz — 223 + 922 — 18x.

Does f have an extreme value at xg = 07

fiw) = g—6x2+18m—18:>f’(1):0
f'(z) = —%—12x+18:>f”(1):0
fM(z) = % —12= (1) =0

O (z) = —%:f(‘” (1) # 0.

Since n = 4 is even number and f* (1) < 0, then zo = lis a local mazimum point
of f and f (1) = —11 is the local mazimum value of f.

Theorem 3.3.29 (Rolle’s Theorem) Let f : [a,b] — R be a continuous function over

the closed interval [a,b] and differentiable over the open interval |a,b| such that

There then exists at least one ¢ €]a,b[ such that f'c) = 0.

Proof. - If f is constant over [a,b] then it is obvious (f’ = 0).
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-Otherwise; since f is continuous on [a, b] then it is bounded on [a, b], so sup f(xz) = M
z€la,b]
exists, we then have Vz €la,b: f(x) < M, we can assume that M is different from

f(a) = f(b) and therefore there exists c in ]a, b| such that M = f(c), therefore

Yz €la,bl: f(z) < f(o),

then ¢ is a local maximum of f so according to Fermat’s theorem f'(¢) =0. =

(@) (b) (©
Figure 27 : Illustration of Rolle’s Theorem

- If a differentiable function f satisfies f (a) = f (b), then its derivative must be zero
at some point (c¢) between a and b
- This means that the curve at the point (¢, f (¢)) accepts a tangent parallel to the

T-axis.

Example 3.3.30 Can Rolle’s Theorem be applied to the function f (x) = 2% + 1 in the
interval [—1,1]7

We have f is continuous in the interval [—1,1], differentiable on |—1,1[, and f(1) =
f(=1). Therefore, Rolle’s Theorem can be applied.

Example 3.3.31 Can Rolle’s Theorem be applied to the function f(x) = (|z| —1) on
[—1,1].

We have f is continuous over [—1,1] and f(1) = f(=1) = 0, but f'(¢) # 0 for any
¢ € |—1,1[because f is not differentiable at x = 0, the conditions of Rolle’s theorem are

not satisfied. In fact, the conclusion does not hold here; there is no ¢ € |—1,1[, such
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that f' (c) = 0.

fix) = |x] = 1

Figure 28 : No c such that f'(c)=0

Example 3.3.32 Consider f (x) = 23 + 1. The function is continuous on [—1,1]and
differentiable on |—1,1[, with
f'(z) = 322

Thus, there exists a poin ¢ € |—1,1[ such that f'(c¢) = 0.

However,
F-)=0#2=F(1),

so the condition f(a) = f(b) is not satisfied. Therefore, the existence of a point where

1" (¢) =0 does not guarantee that Rolle’s Theorem applies.

Theorem 3.3.33 (Finite Increment Theorem or Mean Value Theorem) Let f be
continuous over the closed interval [a,b] and differentiable over the open interval ]a, b].

Then, there exists at least one point c € |a,b[ such that

F(b) = f(a)

7o =10t

Proof. We put
)= 1@ - |11 @ - ).

Then g is continuous on [a, b] and differentiable on |a, b[, and
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Therefore, by Rolle’s theorem,

(3c €la,b]) [¢' (c)] = 0.

Corollary 3.3.34 If f is differentiable on an interval I and f'(x) = 0 for all x € I,

then f is constant on I.

Proof. Let a and b be any two points in the interval with a # b. Then, by the Mean

Value Theorem, there is a point z in |a, b] such that

oy J(0) = f(a)
f (I’) - b—a
But f’(z) =0 for all z in the interval, so
) 110~ f@)
b—a

and consequently, f(b) = f(a). Thus the value of f at any two points is the same and f

is constant on the interval. m

Corollary 3.3.35 If f and g are defined on the same interval and f'(z) = ¢'(z) there,

then f = g + ¢ for some number ¢ € R.
The proof is left as an exercise.

Corollary 3.3.36 If f'(z) > 0 (resp. f'(x) < 0) for all x in some interval, then f is

increasing (resp. decreasing) on this interval.

Proof. Consider the case f'(xz) > 0. Let a and b be any two points in the interval,

with a < b. By the Mean Value Theorem, there is a point z in |a, b such that

oy f(0) = fla)
fi(@) = T bh—a
But f’(z) > 0 for all z in the interval, so that
50~ fa) _
b—a

Since b — a > 0, it follows that f(b) > f(a), which proves that f is increasing on the
interval. m

The case f'(z) < 0 is left as an exercise.
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Exercise 3.3.37 Using the Finite Increments Theorem on the function f (x) =sinx ,
we prove that

Vo > 0:|sinz| < |z|.

Solution 3.3.38 The function f is continuous on R and differentiable on R, so it is

continuous on [0, x| and differentiable on |0, z[, according to the Finite Increments The-

orem:
Je €]0,2[: f(z) = f(0) = (z = 0)f'(c)
So:
sinz = zcosc = [sinzx| = |z||cos |
= [sinz| < |z| (Vx € R:|cosz| <1)
Hence:

Ve >0:|sinz| < |z|.

Exercise 3.3.39 Prove that Vo > 0:

:c—T—l <In(l+z)<uz.

1
Solution 3.3.40 We set : f(t)=In(1+1t)= f'(t) = —— is continuous and differen-
tiable on]—1, 4+oo[. Thus, f is continuous on [0, z] and differentiable on |0, z[. According

to the Finite Increments Theorem:

e €0, : f() = £(0) = (& — 0)f (¢)

So,
In(l+2)=z.

c+1
And we have :

O<c<r=1<l4e<l+zx

Which implies:

x
forx>0,—— <

<z,
1+« 1+c¢ v

andIn(l1+z) =
Therefore,

x
1+c¢
fora:>0,1+%<ln(l—|—x)<a:

The next theorem is a generalization of the Mean Value Theorem. It is of interest

because of its use in applications.
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Theorem 3.3.41 (Cauchy Mean Value Theorem) If f and g are continuous on
[a,b] and differentiable on |a,b|, then

de € a,b[: [f(b) — f(a)] g () = [g (b) — g (a)] f'(c).
(If g(b) # g(a), and ¢'(c) # 0, the above equality can be rewritten as

f) = fla) _ f'(c)
gb)—g(a) g(c)

Note that if g(z) = =, we obtain the Mean Value Theorem.)

Proof. Let h: [a,b] — R be defined by

Then

so that h satisfies Rolle’s theorem. Therefore,

Je € a, b : h(c) = 0=[f(b) — f(a)lg'(c) = [ (b) — g (a)] f'(c).

3.3.6 Hopital’s rule:

Eliminate cases of indeterminacy in the form (oo — 00) (0 x 00)

It is used to remove cases of indeterminacy in the formaor —.
00

Theorem 3.3.42 Let f and g be differentiable functions near xo in domain D:
Where:

T—0 g (:[;) 0 T—To ¢ (1’) 00

f@) 0 )

!/
Therefore: lim f/ Ex; =1 (supposing l is a defined limit, it could be o),
z—wzo g’ (x
S L8
v g ()

Proof. By the Cauchy Mean Value Theorem,
flat+h) = f(a) _ fla+th)

gla+h)—g(a) ¢ (a+th)

for some 0 < ¢t < 1. Now, move to the limit A — 0 to obtain the result. m
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T _ T T _
€ 1—<8>ihme o mE o

Example 3.3.43 1- lim — =
z—0 sinx z—0COS X z—0 sinx
. Inz oo\ H .. o . 1 . Inz
2- lim :(—)—>hm£zhm—zOz>hm—zO.
rx—oo el o0 r—o00 el T—00 L e r—oo e¥

f(x)

Remark 3.3.44 The converse of Hopital’s Rule is not true. It is possible for lim @)
.’L'—)(E()g €T

!
x
to exist while lim f,(( ; does not exist (where either f or g is not differentiable at xq ).
z—wo g' (2

Example 3.3.45

2

T sin — xsin —
0
T A B N O S
z—zog(x) 2—0 sinx a—0 (‘sinx 1
T
1 cos—
2rsin — — L (g2
| L @)
im ) = lim
r—x0 g’ (,’L’) x—0 COS T
2 sin — — cos — 1
T x
= lim (lim cos — does not ezxist)
z—0 Ccosx z—0 x
/
T
So lim @) doesn’t exist
g (@)

Eliminate cases of indeterminacy in the form (oo — c0) or (0 x o0)
To remove cases of indeterminacy in the form (0 x oo), we apply Hospital’s rule, we

write it in

the form 901r >
0 o0 0 0
*(Oxoo):limf(m)g(a:):limf(m):——f H.
T—xQ T—x0 1 i 0
g(z) o0
* (0o x0)= lim f(z)g(xz) = lim f (@) _X_® .5
T—T0 T—T0o 1 1 00
gx) 0
To remove cases of indeterminacy in the form co — co we use:
(z

* (00 o) = Jim (f () g (x)) = Jim f (@) |1~
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f(x)

00
Applying Hopital’s rule to @) which is of the form —, we have two cases:
x 00

a) lim f(2)

v g (x)

#1. Honce, lim (1) {1 - g Eiﬂ .

b) lim ! @) = 1.It becomes the indeterminacy of the form oo x 0.
xﬂxog €T

1

v
0

T—T0 T—To

T
f () 00

Example 3.3.46 a) lim e ®lnz = (0 X 00).

T——+400

lim m
x—+oo e¥ z—+oo  e¥ r—+oo e’

1
b) lim lnx—i—;z(—oo—l—oo).

z—0t

1
lim lnz4+ == lim Inz | 14+ £
z—07+ x —0+ Inz

1 1

. +oo m .. 2 . 1
lim £ = — 35 lim — = lim — - = —c0.
e—0+tlnz —oo  z—ot 1 e—0+ T

T
1

1
Therefore lim Inz + — = lim Inz | 1+ =X | = (—00) (—00) = +00.
z—0+ T z—0t Inx

3.4 Elementary functions

We now use power series to strictly define the Exponential, Logarithmic, and Trigono-
metric functions and describe their properties.
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3.4.1 Trigonometric functions

Arcsine function
T
==, = -1,1
fol-35  —ul
x — f(zr)=sinz
f is continuous, strictly increasing over {—g, g], then f is bijective and therefore
f~! exists, is continuous and strictly increasing, and we have f <[—g, gD = [-1,1]
and .
-1 [-1,1 [ ]
f [ ) ] 2

Yy fHy) = arcsiny

arcsiny = x sinz =y
1<y<1 )] T\ Zeac T )
=Ys 2 =" =773

Forthermore, the arcsine function is:
- Differentiable on |—1,+1[ and

from where we have

Yy € ]-1,1], (arcsiny)’ = ————

in fact
€]-1,1[: arcsiny = z < y = sinx and
arcsiny) = = )
Y (sinz)  cosx

But we have

cos?2z+sin?r=1 < coszx==+V1—sin’z

T
& cosx = /1 —sin? (arcsiny) (cosz > 0, on }—5,—[)
S cosx = /1 —1y2.

So )
(arcsiny) = ————,Vy € ]—-1,1].

N
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See Figure 29
y=x

(arcsin)

(sin)

12 Iis N 05 05 1 5

3
ST sl

214 -05

-1

=15

-2
Figure 29 : sin and arcsin

Note

sin (arcsiny) = y Vy € [-1,1]
in (sin ) v e{ﬂﬁ]
arcsin (sinxr) = x Vx T 5r 9|
272
In other words
. . . 7-[- 7T
sinz =y < x =arcsiny if x € [—5, 5}

Arccosine function

f: [0,7‘(’] - [_171]

x — f(z)=cosz
f is continuous, strictly decreasing over [0, 7|, then f is bijective and therefore f—1
exists, is continuous and strictly decreasing , and we have f ([0, 7]) = [-1,1] and
fil : [_17 1] - [Oaﬁ]
y — f7H(y) = arccosy,

arccosy = x o COST =Y
—1<y<1 0<z<m |

Forthermore, the arccosine function is:
- Differentiable on |—1, +1[ and

from where we have

Vy € ]-1,1[, (arccos y)' =

in fact

Vy € ]-1,1[ : arccosy = z < y = cos x,
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and )
(arccosy) = -
(cos )
=g (sinz >0, on |0,7[)

-1 -1
V1 —cos2x \/1—y2.

See Figure 30

(arccos)

15
Figure 30 : cos and arccos

Note
cos (arccosy) = y Yy € [—1,]1]
arccos (cosz) = x Vx € [0,7]
Arctangent function
f:i|_%7g|: _>]_OO5+OO[ '
sinx
x — f(zr)=tanz =
cos T
f is continuous, strictly increasing on ]fg, g {, then f is bijective and therefore f—1
exists, is continuous and strictly increasing and we have f (] —g, g D = ]—o00, +oo[ and

fli]—o0, 40 — —g,g[

arctany = o tanz =y
R P A
ve 2 2

from which we have
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Forthermore, the arctangent function is:

- Differentiable on R and
1

Yy € R, (arctany) = 5

in faCt
Vy € R:arctany =z < y = tanx
and
' 1
(arCtan y) _ |
(tan ;1;)
= 1
— 1 _|_ tan2 -
— 1
=1 - y2
See Figure 31
. |
\
3 f
!/I
’ (tan) ,/ 1:’:/—4)7
(arctan)
/
F/
{
|
|
|

Figure 31 : tan and arctan

Example 3.4.1 1)

tan 0 e|-2.2]
arctan0 = a:a€|——, =
2°2
= tan (arctan0) = tan «

= 0=t e] Wﬂ[
=tana:a € |—=, =
2’2

= a=0.

2)
. 7r _ T
lim arctany = —— and lim arctany = 5

Yy——00 Yy—00
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Arccotangent function

10,7 — ]—00, +00]
cos T

x — f(x)=cotx = —
sin x

f is continuous, strictly decreasing on ]0, [, then f is bijective and therefore f~! exists,
g

is continuous and strictly decreasing and we have f (]0, 7[) = |—00, +00[ and

f_l :]_OO’+OO[ —>]0,7T[
y — f(y) = arccoty,

arccoty = x - cotrx =y
yeR O<z<m |

Forthermore, the arccotangent function is:
- Differentiable on R and

from which we have

1
Yy € R, (arccot y)' = T2
in fact
Vy € R:arccoty =z < y =cotx
and
/ 1
(arccoty) = ]
(cot :L?
T cot?x
-1
14y
- Class C*° on R.
See Figure 32
le
it y=cot(x) v=x

N

y=arccot(x)
X

In

Figure 32 : cot and arccot



3. Real functions of a real variable

74

1— 22

1+ 22
2. Deduce a simplified expression of cos (4 arctanx) .

Example 3.4.2 1. Show that:2 arctan x = arccos

3. Solve the equation
T
arctan x + arctan4xr = 1 arctan 5

Solution 3.4.3 1. Let’s assume

o = arctanx & r = tana with o € }—57—

7T7T[
9’

and determine:

cos (2arctan ) = cos 2o = 2cos? o — 1,

hence
) 1 1
cos” o = =
1+tan?2z 14 22’
where from
2 1—22
cosdae=g e T e
and
2a0 = arccos ———= = 2arctanz.
1+ 22
2. Relationship
cosda = 2cos®(2a) — 1
1— 2
= 2cos? [ arccos :1: —1
1+ x2
_ 2\ 2
PN kil N
1+ 22
212" (142%)”
N (14 22)?
B 2t —622+1
(1+22)°
4 2
-6 1
cos (darctanz) = %
(14 x2)

3. We consider the equation

T 1
arctan x + arctan 4x = Z — arctan —.

)
— t 71 E[O'—]
1 arc an5 Wik

Since



3. Real functions of a real variable 75

the values of x we are looking for must satisfy
77
0 < arctanz + arctan4z < 1

Thus, we may safely take the tangent of both sides. Using the identity

tan A + tan B
1—tanAtan B ’

tan (A + B)

we obtain 4 5
tan (arctan z + arctan 4x) = fj_4xx2 1 7Z$2'

On the right-hand side,

1

o (™ et L) L5 2

an 4 arcan5 == 1—3
1+

We are therefore led to the equation.

ST 2 9 9

This quadratic equation has discriminant

A= (152 —4x (=2) x 8= (17)%.

Hence,
1
T = -
—15+17 T8
T = 16 = and
T9 = —2, rejected

1
However, only x1 = 3 satisfies the inequality

0 < arctanx + arctan4x <

N

3.4.2 Exponential function

Definition 3.4.4 The exponential function denoted exp is the only differentiable func-

tion on R, equal to its derivative and verifying: exp(0) = 1.
Properties

1. Vz € R:exp(z) > 0.
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2. Vz,y € R:exp(z+y) =exp(z)exp (y).
3. BEuler’s notation: We set exp (z) = e%; where e! = e ~ 2.718, whence Vz,y €
X
R:e™tV =¢%¥ e = —, e Y= - (e")" =e".
) ex’ e_y7

4. The exp function is strictly increasing on R.

ef=eVY s x=y.

ot

. Vr,y e R:
et <eVeax<y.

6. The function x — € is a bijection of R in R*.

Some reference limits:

e’ —1
1. lim e* =0, lime® = 400, lim =1,
T——00 T—00 z—0 X
eI
2. lim— = 400, lim z"e® =0, for all n € N.
z—0x" T——00

3.4.3 Logarithm function

We call the natural logarithm function denoted In, the reciprocal function of the expo-

nential function, defined from ]0, +oo[ on R such as
Vr>0:x=¢<y=Inz.

Note: The graphs of the natural logarithm function and the exponential function are
symmetric with respect to the first bisector, i.e. the line of equation y = x, see Figure
33

flx), fix) = x
L’
m e
#
s
#
. #
# -
. fix) = Inx
-— /z
fx) = e P
s
#
T T T T T -
. X
#
s
# m
e
e
//

Figure 33 : e and Inxz

Properties
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1. In1=0,lne=1.
2. Vz € R:Ine” = 2 and Yz € )0, +oo[ : e® = .
3. The function In is strictly increasing on |0, 4+o00].
4. Vz,y €0, +oo[:Inz =lny &z =1y.
5. Vz,y € ]0,400] : In(zy) =Inz + Iny.
1 y
6. Vz,y € ]0,+oo[:In— =—Inz;In= =Ilny — Inz.
x T
7. Vx €]0,+o0[,Vn € N:Inz" =nlnz.

Some reference limits:

1 1
1. lim Inz = —oc0, lim Inxz = +oo, limM =1,
z—0+ r——+00 x—0 xT
|
2. lim —F = 0, lim z"lnx =0, for all n € N.
z——+oo " T——00

3.4.4 Logarithm function of any base

Definition 3.4.5 Let a be a strictly positive real number different from 1. The logarithm
function with base a is the real function denoted log,, defined on |0, +oo] by

f () = log, (z) = 21

Ina

where In denotes the natural logarithm.

e For a = e, we obtain the natural logarithm function In, since Ine = 1.

e For a = 10, the logarithm is called the decimal logarithm, denoted log. Since
In10 ~ 2,302, it ©s commonly used in chemistry.

o Another frequently used logarithm is the base-2 logarithm, denoted log,, defined by

logy, x = , and widely used in computer science.

n
In2
Properties Let a and b be strictly positive real numbers different from 1. For all x,

y € (0,+00), we have:

1. log,1=0,log,a = 1,log: (z) = —log, (z).

Inb
2. log,x = o logy .

Ina
In particular, for a = e and b = 10, we have Inx = In 10 log x.



3. Real functions of a real variable 78

3. log,x=log,y &z =y.
4. log, (zy) = log, x + log, y.
1 z
5. log, (> = —log, y, log, () = log, = — log, y.
Y Y
6. For all z € (0,400) and n € N, log, (") = nlog, .
7. The function log, is strictly increasing on |0, + oo[if @ > 1 and strictly decreasing
on ]0, +oolif0<a< 1.
3.4.5 Power (Exponential) function

Definition 3.4.6 Let a be a strictly positive real number different from 1, and let x € R.

The exponential function with base a is defined by
g% — erlna
This function is the inverse function of the logarithm function log,
Properties Let a and b be two strictly positive real numbers, x, y € R.
1. a® >0, Ina” =zlna.
2. 12 =1, a*" = a%a¥, a % = 1 a¥=v = —.
a
3. (ab)" = a®b", (a*)? = a™.
4. The exponential function a” is :
- strictly increasing on R if a > 1,

- strictly decreasing on R if 0 < a < 1.

5. There also exists the power function ¢, defined for a € RY .

3.4.6 Hyperbolic functions and their inverses
Hyperbolic sine and cosine

Definition 3.4.7 The functions hyperbolic sine denoted sinh or sh and hyperbolic cosine

denoted cosh or ch are defined on R by

cosh : R — [1, +o0[ sinh : R —R
e +e er —e "
r — ——) r — —

2 2
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Remark 3.4.8 Any function f : I C R— — R decomposes uniquely into the sum of an

even function and of an odd function

Veel, f(z) =112 +2f(—x) RAC) —2f(—x).

PRICETIC. f @)~ f(-2)

hyperbolic sine functions are respectively the even part and the odd part of the exponential

is even and 1s odd. The hyperbolic cosine and

function in this decomposition.
Proposition 3.4.9 The functions cosh and sinh are differentiable on R, for all x € R

(coshz) =sinhz, (sinhz) = coshz.

Figure 34 : sinh and cosh

Hyperbolic tangent

Definition 3.4.10 The hyperbolic tangent function, denoted tanh (or sometimes th ),
is defined on R by

tanh : R — R
sinh x et —e
r — tanhx = = ,
coshr e*+e®
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1.0

Saturates at +1

0.5

0.0

—er—ex
-0.5 tanh(x) = g

Saturates at -1

-1.0

Figure 35 : tanh

Proposition 3.4.11 The hyperbolic tangent function tanh is odd function and is dif-

ferentiable on R. For all x € R, its derivative is

1

(tanhz) = 1 — tanh? z = 5
cosh” z

Consequently, since (tanhz) > 0, for all x € R, the function tanh is strictly increasing
on R .

Hyperbolic cotangent

Definition 3.4.12 The hyperbolic cotangent function, denoted coth, is defined on R*

by
coth : R* — ]—o00, —1[U]1, +0o0[
cosh x 1 et +e*

r — cothx = — = = ,
sinh x tanhx e —e %

Proposition 3.4.13 The hyperbolic cotangent function is odd function and is differen-

tiable on R*, for all x € R*, its derivative is

-1

sinh? x

(cothz) =1 — coth?z =

Consequently, since (cothx)’ < 0, for all x € R*, the function coth is strictly decreasing
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on each interval |—o0,0[ and |0, 40|

y = coth(x)

Figure 36 : coth

Proposition 3.4.14 For allxz € R

1. chx + shx = €* 5.
2. chx — shx =e™ % 0.
3. ch?x — sh?zx =1 7.
4. ch(z +y) = chxchy + shxshy 8.

9.

Hyperbolic sine argument function

ch(x —y) = chachy — shaxshy
sh(z + y) = shxchy + chzshy
sh(x — y) = shxchy — chzshy
th(z) + th(y)
th — B TIMY)
@) = T )tk
h( )= th(z) — th(y)

1 —th(x)th(y)

Proposition 3.4.15 The hyperbolic sine function sinh : R — R is continuous and

strictly increasing. Therefore, it admits an inverse function, denoted argsin or arg sh,

defined from R to R.
Hence, for all x, y € R,

(

argsinhy = x
yeR

)<

sinhx =y
zeR
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See Figure 37

(sh) ‘,-"‘ Y =x

Figure 37 : sh and argsh
Forthermore, the argsinh function is:
- Differentiable on R and

argsinhy) = ———
( ) y? +1

- For all y € R, argsinhy = In (y+ VY2 + 1) .
Proof. in fact
argsinhy =z < y = sinhz

and 1
(argsinhy) = ——
(snllh x)

h
coshz,

\/Si{lhzw +1
IRV

argsinhy = In (y—l— V2 + 1) .

For all y € R,

Let
x = argsinhy < y = sinh z.

Using the hyperbolic identity

cosh? z —sinh?z = 1,
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we obtain

coshz = Vsinh?z 4+ 1 = \/y2 + 1,

where we take the positive square root since coshx > 0 for all x € R. Now recall the

exponential representation:

e? =sinhz +coshz =y + \/y?2 + 1

x:ln(y+\/?m).

Hyperbolic cosine argument function

Proposition 3.4.16 The hyperbolic cosine function cosh : [0, +oo[ — [1,+o0[ is con-
tinuous and strictly increasing. Therefore, it admits an inverse function, denoted arg cosh
or argch, defined from [1,+o0[ to [0, +o0].

Hence, for x > 0 and y > 1, we have the equivalence :
argcoshy =x < y =coshz

See Figure 38

S/ (argeh)
/

Figure 38 : ch and argch
Forthermore, the argcosh function is:
- Differentiable on |1,4o00[ and

1

V=1

- For ally € [1,+0o0[, argcoshy = In <y + \/y27—1) )

(arg coshy)’ =
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Proof. in fact

argcoshy = x < y = coshx

and 1
(argcoshy) = ——
(coshz)
1
=
- sinhz
Vcosh?z — 1
_ 1
ViP—1
For all y > 1,
argcoshy = In (y +Vy? — 1) .
Let
x = argcoshy < y = coshz.
Since
e® =sinhz +coshz =y + /32 + 1
we obtain

" =y+ vy +1,

Taking the natural logarithm gives

len(y—i—\/yﬂ—i—l).

Hyperbolic tangent argument function

Proposition 3.4.17 The hyperbolic tangent function tanh : R — ]—1,1], is continu-
ous and strictly increasing. Therefore, it admits an inverse function, called the inverse

hyperbolic tangent, denoted argtanh or argth, defined by
argtanh : |—1,1[ — R.
Hence, for x € R and y € |—1, 1], we have the equivalence :

argtanhy = ¢ < tanhx =y
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See Figure 39

(argth)

Figure 39 : th and argth
Forthermore, the argtanh function is:

- Differentiable on |1,1], and its derivative is

(arg tanhy) =

- For ally € ]1,1],
1+y

1—y

1
argtanhy = 3 In
Proof. in fact, forally € |[-1,1[ and z € R :

argtanhy = r < y = tanhx

and 1
argtanhy) = -——
"1 tanh’z
1
=1
-Forall y € |-1,1]
1.1
argtanhy = —In —i—y'
2 1—y

Indeed, ¥V (y,z) € |-1,1[ x R,

x = argtanhy < y = tanhz

- _ex+e*x_62“—1
y_e:r_ef:r_ezv_i_l
<:>y(62a:_’_1):€2x_1
<:>€2‘T:71+y
1Y
S =—In Yy

21—y
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Hyperbolic cotangent argument function

Proposition 3.4.18 The hyperbolic cotangent function coth : R* — ]—oo, — 1[U]1, + oo,
is continuous and strictly decreasing on each interval |—oo, 0] and |0, + oo[. Therefore,

it admits an inverse function, called the inverse hyperbolic cotangent, denoted

arg coth or argcth,

defined by
arg coth : |[—oo, — 1{U 1, + co] — R*.

Hence, for x € R* and y € |—o0, — 1[U]1, + oo
argcothy = x & y = cotha

See Figure 40
v = Argeothx

Figure 40 : coth and argcoth
Forthermore, the arg coth function is:

- Differentiable on |—oo, —1[U 1, +o0[, and its derivative is

(argcothy)’ = 7
- For all y € |—00, —1[U]1, +0o0],

1 1
argtanhy = 5 In ztl

Proof. in fact, Vy € |—o00, —1[U |1, 400 and = € R*:

argcothy = x & y = cotha
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and
(argcothy)’ =

- For all y € |—00, —1[U]1, +00[

1 1
argcothy = —1In &
2 y-—1
Indeed,
x —T
a::argcothy@yzcothx:%
et —e™ %
e +1
<:>y:(2290—1
1
@ezx—iy—i_
y—1
1, y+1
Sr=—=In
2 y-—-1



Chapter 4

Internal composition laws

Definition 4.0.19 Let E be a set. An internal composition law (ICL) on E is a map

x:Ex E —F
(a,b) — axb,

and we say that a b is the composite of a and b for the law x. A set E provided with

an internal composition law constitutes an algebraic structure and denoted (E, *).

Example 4.0.20 1. The addition defined by (a,b) — a + b is an internal composition
law in N, Z, Q, R and C.

2. The multiplication defined by (a,b) — a X b is an internal composition law in N,
Z, Q, R and C.

3. The composition defined by (f,g) —f o g is an internal composition law on the
sets of applications from E to E.

4. (a,b) — a — b isnt an internal composition law in N.

Definition 4.0.21 (Usual properties of internal laws). Let x be an internal law on a
set E. We say that

e The law * is commutative if
Va,be E:a*xb=">bx*a.
o The law * is said to be associative if
Va,b,c€ E:ax(bxc) = (ax*b)*c.

88
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e The law * admits a neutral element e € E if
Vae F:axe=ex*xa=a.
e An element a € E is the symmetric of a in E if
axd=e=axa.

a is the inverse of a and is denoted a~lfor the law x, (a is the opposite of a and is
denoted —a for the law +).

1
Example 4.0.22 In R— {2} we define the internal law * by :
Txy=x+y—2zy.

1
1. Closure (internal law): In fact, let z,y € R— {2}, let’s show that x xy €

Sl

1 1

TrYy=- S r+y—2rYy==

2 12

<:>:L‘(1—2y)—§(1—2y)20

1
@(1—2y)<x—2>:0
& L L =0
Y7a)\" T 2) "

o 1 1

=—orz=—_.

Y73 2

1
Hence x,y € R— {2} and then x is an internal law.

1
2. Commutativity : Let x,y € R— {2}, we have
TxyYy=x+y—2xy=y+x—2yr =y *x,

so the law * 18 commutative.

3. Assoctativity :

(xxy)xz=(r+y—2zy)*xz =(r+y—22y)+2z—2(+y—2zy)2
=x+y+z—2xy — 20z — 2yz + dxyz
=z+ (y+2z—2yz) —2z(y + 2z — 2y2)
=x+ (y+2z—2yz) —2z(y + z — 2yz)
=z+(yxz) —2x(y*xz) =x*(y*2),
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so the law * is associative. )
4. Neutral element : Let e € R— {2}, such that x xe = e xx = x, then

1
37"‘6_2%6:6+(L‘-26.’L’:(L‘<:>6(1—2x):0<:>6=0€R—{2}.

Thus, the law * admits as neutral element the element e =
1
5. Symmetric element (Inverse) : Let x € R— {2}, such that T+ = Txx = e,

then

r—2xx=0&2(1 -2 T &2
T+ — 22 x( x) = 2$_1

Therefore, the symmetric element of x is

1
= x_l,foralla:GR—{2}.

2z
1
re R—<—5.
ven- {3}

T 1

“5%_173

Let’s show that

Indeed, we must check:

Assume
Tl oo 1e 120
2r—1 2 - o

1
Impossible, hence. © € R— {2}

Definition 4.0.23 Let G be a set with two internal laws of composition, denoted A and

x law 1s said to be distributive with respect to A if Vr,y,z € G :
x (YAz) = (x x y)A(z * 2)
and
(yAz)xx = (y x x)A(z x x).
4.1 Group, Subgroups
Definition 4.1.1 Let G be a nonempty set with an internal composition law
*x:GXG—G

The pair (G, *) is called a group if the following conditions are satisfied :
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(1) * is associative.
(2) * admits a neutral element(identity elements) e.

(8) Each element of G admits a symmetric (inverse) element with respect to x.

If, moreover, the law * is commutative, then the group is said to be commutative or

abelian, (named after the mathematician Abel).

Proposition 4.1.2 e The neutral element of any commutative group is unique.
e Let (G, %) be a commutative group. For each g € G, the symmetric of g (denoted

g is unique.

Proof. e Suppose e and 6 are any neutral elements of a commutative group (G, *)
Then

e = ex0 (0 is an neutral element )
= @=xe (* is commutative)

= 0 (e is an neutral element )

Since e and € are arbitrary neutral elements of (G,x*), this implies that all neutral
elements are equal to each other, so the neutral element is unique (there is only one of
them).

® Suppose ¢’ and h are any symmetric of g. Then

g = ¢ *e (eis an neutral element )

= ¢ x(gxh) (hisa symmetric of g)
= (¢'*g) *xh (* is associative )

= (g*¢')*h (* is commutative )

= e xh (¢' is a symmetric of g)

= h (e is an neutral element )
Therefore, all symmetric of g are equal, so the symmetric is unique. =

Example 4.1.3 (1) (Z,+) is a commutative group.
(2) (R, x) is not a group because 0 does not admit a symmetric element.

(3) (R*, x) is a commutative group.

Definition 4.1.4 Let (G, *) be a group. A part H C G (non-empty) is a subgroup of G

if, the restriction of the operation x to H gives it the group structure.
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Proposition 4.1.5 Let H be a non-empty part of the group G. Then, H is a subgroup
of G if, and only if

(i) for all a,b € H, we have axb € H;

(it) for all a € H, we have o' € H, where a' is the symmetry of a.

Example 4.1.6 (R%, x) is a subgroup of (R*, x). Indeed

o Ifx,y € Ry thenx xyeRY;

1
o Ifx e RY thenac':a:_IZEERi.

Example 4.1.7 We set 2Z = {2z : z € Z}, (2Z,+) is a subgroup of Z. In fact:
o [fx,y € 27, there exists x1, y1 € Z such that x = 2x1 and y = 2y1, then

T4y =2x1+2y1 = 2(x1 +y1) € 2Z,

o If x € 27, there exists x1 € Z such that x = 2x1 then
¥ =—z =221 =2(—21) € 2Z.
Proposition 4.1.8 If H is a subgroup of (G, ) then the neutral element e € H.
Exercise 4.1.9 We define the internal composition law * by:
Va,y € R, m*y:$y+(x2—1) (y2—1)

1. Show that * is commutative, non-associative, and that 1 is neutral element.

2. We define the internal composition law * on RT* by:

Vo, y € RT*,  wxy=+/22+y2

Show that x is commutative, associative, and that 0 is neutral element. Show that no

element of R™ has a symmetric with respect to *.
Solution 4.1.10 1.
THyYy =2ay+ (:U2—1) (yQ—l) :yx+(y2—1) (1‘2—1) =Y *x.

The law is commutative.

To show that the law is not associative, it is sufficient to find x, y and z such that:

rx(yxz)# (T*y)* 2.
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Take, for example : x =0, y =2 and z = 3,

zx(yxz) = 0%(2x3)=0x*(2x3+(2°-1)(3*-1))
= 0%(6+3x8) =0x30
= 0+ (—1)(900 —1) = —899.

(wry) ez = (0%2)x3=(0+(=1)(3)) 3
= —3+3=-3x3+((-3-1) (*-1)
= —-94+8x8=5b.
The law * 18 not associative.

lxz=z+(1-1)(z* - 1) ==z

Moreover, since the law 1s commutative 1 x . = x x 1.
We have 1 xx = x %1 = x, 1 is the neutral element.
2Vx,y € RT*

cxy=vVr2+y2 =12+ a2 =yx*z.

The law * 18 commutative.
2
(Txy)*xz = \/x2+y2*z:\/(\/a:2+y2) +22 =22 +y2 + 22
2
fﬂ*vy2+22=\/m2+<\/y2+22> =Va? +y? + 22

The law * is associative.

0*;1;:\/02+q:2:\/33>2:|m|:a: because = >0

T * (Y * 2)

As * 18 commutative

Oxz=xx0==zx

0 s the neutral element.

Suppose that © admits a symmetric y

rxy=0 V22412 =02+ =02=y=0

However, if x > 0 and y > 0 then x xy = 0 is impossible.

Therefore, for any x > 0, x does not have a symmetric element with respect to .
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4.2 Ring Structure

Definition 4.2.1 Let A be a set with two internal composition laws that we will denote
« and A. (A, x,A) is said to be a ring if the following conditions are met:

1) (A, %) is a commutative group.

2) The A law is associative.

3) The A law is distributive in relation to the x law, i.e :
Va € A,Vb e AVc € A: (ax*b)Ac=alcx*bAc.
and
cA (a* b) = cAa * cAb.

If the A law is commutative, the ring (A, x, A) is said to be commutative. If the A

law admits a neutral element, we say that the ring (A, x, A) is unitary.
Example 4.2.2 (Z,+, X) is a commutative and unitary ring.

Definition 4.2.3 If (A, *,A) is a ring and B is a part of A, we say that B is a subring
of A if, provided with the laws induced by A, is itself a ring, i.e. (B,*,A) is a ring.

In the following, A will denote the ring (A, +, x) with 0 the neutral element of +

and if it is unitary, 1 would be its unit.

Proposition 4.2.4 (characterization of the subrings). A part B of ring A is a subring
of A if and only if:

(i) for alla, be B,a—be B

(it) for all a,b € B, a x b € B.

Example 4.2.5 The set 27Z = {2z : z € Z}is a subring of the ring ,(Z,+, x). In fact,

let x,y € 27, there exists n,m € 7, such that x = 2n and y = 2m, and we have

x—y=2(n—m)€2Z and x X y = 2(2nm) € 2Z

4.3 Structure of a field (body)

Definition 4.3.1 Let K be a set with two internal composition laws always denoted
and A. (K, *,A) is said to be a field if the following conditions are met:

1) (K,*,A) is a ring.

2) (K —{e},A) is a group, where e is the neutral element of *.

If A is commutative, we say that (K, x, A) is a commutative field.
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Example 4.3.2 (R, +, x) is a commutative field (body).

Definition 4.3.3 If K is a field and H a non-empty part of K then, H is said to be
a subfield of K if the restrictions of the two operations of K give H the structure of a
field.

The following result characterizes any subfield H of a given field :

Proposition 4.3.4 If H is a non-empty part of a field K then, H is a subfield of K if,
and only if,

(1) ac Handbe H=a—-bec H,

(2)acH andbe H—{0} = ab~! € H.

Example 4.3.5 o The set (R, +, x) of real numbers is a subfield of the field (C,+, x).
e The set (Q,+, x) of rationals is a subfield of the field (R,+, X) and therefore of
(C,+, x).



Chapter 5
Vector spaces

In this chapter K represents a field.

5.1 Vector space

Definition 5.1.1 Let K be a commutative field (usually it is R or C ) and let E be a

non-empty set with an internal composition law called addition and denoted "+”

+: ExFE—=F
(z,y) —z+y

”»

and an external composition law called multiplication by a scalar and denoted by

KxE—FE
(Nz)— Ay
Definition 5.1.2 A wvector space on the field K or a K- vector space is a triplet (E,+,.)
such that:
1. (E, +) is a commutative group, where the neutral element is denoted by Og and

the symmetric of an element x of E will be denoted —.
2Va,8 €K,V e E,

a-(B-2)=(af)
3. Va,B €K, Vx € F,
(a+B) z=a-z+p x
4. YVaeK, Vx,y € F,
a-(r+y)=(a-z)+(a-y)

5. g -x = .

96
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Remark 5.1.3 1. The elements of E are called vectors and those of K scalars.

2. “vector space over K”, means K-vector space.

Example 5.1.4 - (R, +,-) is an R- vector space,
- (C,+,+) is an C- vector space,

- If we consider R™ with the following two operations

(+): R*xR" —R"
((:Elaan ,.'En) ) (y17y27 7yn)) - (:L'l + Y1, T2 + Y2, -y Ty + yn)

and
(): RxR” L R?
(A, (21,22, oy ) — (A1, A2, ..oy ATy

we can easily show that (R™,+,.) is an R- vector space.

Example 5.1.5 The set E = F(R,R) of functions from R to R endowed with the usual

laws, addition of fuctions and multiplication of the functions by a real number:

(f+9)(z) = f(z) + g(x)

and
(a.f)(@) = a.f(z),

18 a R - vector space.

Proposition 5.1.6 If FE is K- vector space, then we have the following properties:
(1)Vz € E, Ogx.x =0g ,
(2)Vzx € E, (—1g).x = —x
(3) VA €K, N0g =0g
(4)VAeK,Vz,y e E, A(x —y) = Az — Ay
(5)VAeK, Ve e E, \\x =0 & A=0k orz =0g.

5.1.1 Vector subspace

In this part, £ will denote a K-vector space.

Definition 5.1.7 A subset F' of E is called a vector subspace of E if
(1) 0 #F C E,

(ii) F is a K-vector space with respect to the same laws.
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Remark 5.1.8 1) When (F,+,.) is a vector subspace of E then O € F.
2) If 0g ¢ F. then (F,+,.) cannot be a vector subspace of E.

Theorem 5.1.9 Let F' be a nonempty subset of E, the following assertions are equival-
ent :
(1) F is a vector subspace of over K,

(2) F is stable for addition and for multiplication by a scalar .i.e
VieK, Ve,ye F, \e e Fandx+y € F.
(B)VA\peK, Ve,y e F, e +puy € F.

Theorem 5.1.10 A subset F' of E is called a vector subspace of E if the following
condition hold :

(i) Op € F,

(ii) Ve,y € F, x+y € F,

(ii))Va e K,V € F, ax € F.

Example 5.1.11 (1) E and Og are vector subspaces of E.
(2) F = {(z,y) € R*/z +y = 0} is a vector subspace of R* over R because ,
-0 =0r2 =(0,0) € F=F #10
-V(z,y), (',y) € F,Va,8 e R: a(x,y)+8(z,y) € F, i.e (ax+ B2, ay + YY) €

F', we have

(z,y)eEF=az+y=0and (2',y)eF=2"+y =0
ar+ Bz’ +ay+ Py =a(z+y)+B (' +y)=a(0)+5(0)=0

Then a (z,y) + B (2',y') € F, so F is vector subspace of R2.
(3).The set F = {(z,y) € R*/z —y+1 =0} is not a vector subspace of R* because

the zero vector Op2 does not belong to F'.

5.1.2 Intersection and union of vector subspaces

Proposition 5.1.12 The intersection of two vector sub-spaces is a vector subspace.

Proof. Consider F7 and F5 two vector subspaces of E. First Og € F}, because F} is
a vector subspace of F. Similarly, 0 € F5. Thus, 0 € Fy N F, and Fy N Fy is therefore
not empty. Given z, y € F1 N Fy and o, § € R, then we have az + Sy € F} since F] is a
vector subspace of F. Similarly, ax + Sy € F>. Thus, az + By € F1 N Fs. It follows that
1N Fy is a vector subspace of E. m
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Lemma 5.1.13 The intersection N}'_ F; of n vector subspaces of a vector space E (n >

2, n € N) is a vector subspace of E.
Remark 5.1.14 The union of two vector subspaces is not necessarily a vector subspace.

Example 5.1.15 Let Fi = {(z,y) € R®, 2 =0} and F» = {(z,y) e R*,y =0} two
vector subspaces in R? | Fy U Fy is not a vector subspace, because u; = (0,1) € Fy,
Ug = (1,0) € Fy and up +us = (1,1) §‘é Fi U Fy.

5.1.3 Sum of two vector subspaces

Definition 5.1.16 Let E1, Fo be two vector subspaces of a K-vector space E, we call
the sum of the two vector subspaces E1 and Ey that we denote E1+ Ey the following set:

E1+ Ey={z € E: 3z € F1,3x9 € Ey such that x = x1 + z2} .

Example 5.1.17 Let By = {(z,y) € R%, 2 =0} and E> = {(z,y) € R?,y =0} wvector
subspaces in R?, if (x,y) € R2, then

(x,y) - (.%',0) + (Oa y),
€k E

so (x,y) € By +Es, hence By +Ey = R? .

Proposition 5.1.18 The sum of two vector subspaces E1 and Es (of the same K -vector

space) is a vector subspace of E containing Fy U Ea, i.e., By U FEy C Ey +Es.

5.1.4 Direct sum of two vector subspaces

Definition 5.1.19 Let E1 and Eo be two vector subspaces of the same K-vector space
E. We will say that the sum: Ey+ Esy of two vector subspaces is direct if E1NEy = {0g}.
We write Eq ® Es.

Proposition 5.1.20 Let E1 and Es be two vector subspaces of the same K-vector space
E. The sum Eq1 + Es is direct if Vo € E1 + Es, there exists a single vector 1 € Fq, a

single vector xo € Fa, such that x = x1 + xo2.

Example 5.1.21 Let F} = {(z,y,2) € R® : 2 =0} and F> = {(z,y,2) € R® : y = 2 = 0}
be two vector subspaces in R3 .

- Let (SC,y,Z) € Rg} then (.T,y,Z) = (O7y7z) + (13,0,0), S0 (.T,y,Z) €+ FZ; hence
S (S
Fi + Fy = R3.
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- Let (z,y,2) € F1 N Fy, then (z,y,z) € F1 and (x,y,2) € Fy, this means that x = 0
and y =z =0, then (x,y,z) = Ogs, i.e. F1 N Fy={0ps3}.
Finally, we conclude that RE=F @ F,.

5.1.5 Generating, free, and basis families
Linear combination

Definition 5.1.22 For n € N*, A linear combination of vectors ui,us,...,un of a K-
n

vector space E, is a vector which can be written V=Y Nju;. The elements A1, Az, ..., \p, €
i=1

K are called coefficients of the linear combination.

Example 5.1.23 In R?, the vector U = (9,8) is a linear combination of vectors (1,2)

and (3,1) because
U =(9,8) = 3(1,2) +2(3,1)

Remark 5.1.24 e If F' is a vector subspace of E, and u1,usg, ...,uy € F, then any linear
combination of ui,us,...,u, is in F.

o Let uy,Us, ..., Uy, n vectors of a K-vector space EE. One can always write Op as a
linear combination of these vectors, because it suffices to take all zero coefficients of the
linear combination.

o [fn=1, then V = \juy we say that V is collinear with uy..

Generating (Spanning) family

Definition 5.1.25 We consider a nonempty family A = (u1,usg, ..., u,) of vectors of a
K-vector space E withn € N*. We say that A generates (spans) E, or that it is generator
of E if and only if

Span {uy,ug,...,up} = E.

In other words, any vector of E is a linear combination of the elements of A.

Notation 4 Given the vectors uy, us, ..., u, of K-vector space E, we denote Span(ui,ug, ..., uy)

or (ui,ug, ..., up) the set of linear combination of uy,ua, ..., u, . So we write :
n
(U1, U2, ..., Up) = Span{u1, ug, ..., un} = {u € E/TN, Ny A €Ku = Z/\lul} )
i=1
Example 5.1.26 A = {u; = (1,0,0),us = (0,1,0),u3 = (0,0,1)} generates R3, because
for all U = (z,y, 2) € R® we have:

(z,y,2) = 2(1,0,0) +y(0,1,0) 4+ 2(0,0,1).
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Example 5.1.27 In R%, we consider the vectors u1 = (1,1), uz = (1,0) and uz =
(0,—1). Let us check that the family (uy,us2,u3) generates R2. Let X = (z,y) € R2, we
seek if there exists (A1, Ao, A3) € R? such that X = A\ui + Aaug + Agus.

rT=A+A
X:(xay):)\lu1+)\2u2+)\3U3 = 1 2
y=A1— A3
)\2:33*)\1
<~
A3 = A1 —y.

We therefore obtain X = Ajui + (z — A1) ug + (A1 — y) ug, with A1 € R. So (u1,uz,u3)

is a generating family of R2.

Free families

Definition 5.1.28 We consider a nonempty family A = (u1,us, ..., un) of E with n €
N*.We say that A is free if and only if the null vector O is a linear combination of

elements of A unique way. In other words:

YA A2, e €K, D> Ay =0 = A = dp = ... = \; = Ok.
i=1
Example 5.1.29 The set A = {u; = (1,0,1),u2 = (0,2,2),us = (3,7,1)} is free.
Indeed, let A1, A2, A3 € R, we have

)\1(1,0, 1) + )\2(0,2,2) + )\3(3, 7, 1) =0ps = A1 = Ay = A3 = OR.

Remark 5.1.30 We can use the following expressions:
o If A is free then we also say that the vectors uy, us, ..., uy are linearly independent.
o If A is not free, we say that A is linked.

e A family of a single vector is free if and only if this vector is non-zero.

Example 5.1.31 In R2, the vector u = (2,1) is not collinear with v = (1,1), that is to
say is free.
Indeed: let (A1, \2) € R?, such that
2A01+ A2 =0
)\1U+A27J_0R2<:>{ )\1+>\2:O :>)\1:A2:0R.
The unique solution found is the trivial solution (0,0), the family (u,v) is therefore

free.
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Example 5.1.32 In R?, the vectors u = (1,2), v = (3,4) and w = (5,6) are linearly
dependent.
Indeed: let (M1, A2, A3) € R3, such that

AM+32+5M3=0
21 + 44X +6X3 =0
A1 +3X+5A3 =0

AU+ A0+ Azw =0pe & {

<~
Al +2X+3X3=0
Ao +2X3 =0

<~
A1 +2X+ 323 =0
Ao = —2)3

<~
Al = As.

So, this system admits at least one non-trivial solution, for example:
)\1:1, /\2:—2 and)\gzl.

Since u — 2v + w = Oz, the family {u,v, w}is linearly dependent

Basis

Definition 5.1.33 Let E be a vector space over a field K. A family
A = (u1,ug, ..., up)

is called a basis of E if it is linearly independent and generating.
Equivalently, A is a basis of E if and only if every vector u € E can be written in a

unique way as a linear combination of the vectors in A :

n
Vu € E, A (A1, A2y ...y An) € K", such that u = Z it
i=1

The scalars A1, Az, ..., An are called the coordinates of u in the basis A.

Example 5.1.34 o By = {(1,0),(0.1)} is the canonical basis of R2.
e By ={(1,0,0),(0,1,0),(0,0,1)} is the canonical basis of R3.
e B3 ={(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)} is the canonical basis of R™.

Example 5.1.35 Consider the vector space of real polynomials of degree less than or

equal to 2.
Ro[z] = {P(z) = a+bx +c2® / a,b,c € R}



5. Vector spaces 103

We claim that the family
B={Pi(z)=1, P(z) =z, P3(z) = 2°}

is a basis of Ro[z].
In fact,

i) Linear independence

Let o, B, v € R, suppose that
Ve e R, aP; (LL’) + 6P, (m) + ~vPs (ac) = 0.

This is equivalent to
Vz €R, a+ Bz + vz =0.

(Since a polynomial that is identically zero must have all coefficients equal to zero, we

obtain.

Hence, {1, T, 332} is a linearly independent (free) family.
ii) Generating property
Let P € Ro[z], by definition, there exist a, b, ¢ € R, such that

Vr €R, P(z) = a+bx +cx® = aPy (z) + bPy () + cPs (2),

or equivalently,
P = CLPl + bP2 + CP3.

Therefore, {1, T, x2} generates Ra[z].
Example 5.1.36 Let
uyp = (1, 1), Ug = (1,0), us = (0, —1)

be vectors in R2. As seen in the previous example, the family (ui, uz,us) is a generating

family of R? However, this family is linearly dependent (linked), since
ul + uz = uz,

which yields a non-trivial linear relation between the vectors. Therefore, (u1,us,us) is
not a basis of R2. On the other hand, the family (u1,us) is both linearly independent

and generating in R?. Consequently, (u1,uz) is a basis of R2.
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Example 5.1.37 Let F be the subset of R? defined by:
F={(z,y,2) € R/ z= -2y +z}
F is therefore a vector subspace of R® generated by the vectors
=(-2,1,0) andv = (1,0,1).
Indeed

F={(z,y,2) €eR® [z = -2y + 2} { 2y+z y,2) | (y,2) € R*}
={y(-2,1,0) 4+ 2(1,0,1) / (y,2) € R?}
:S an{( 2,1,0),(1,0,1)} = ((-2,1,0),(1,0,1))

Furthermore, these vectors form a free family so (u,v) is a basis of F'.
Proposition 5.1.38 Let E be a vector space. If
{e1, €2, ..., en} and {u1, ug, ..., up}
are two bases of E, then n = m.

Remark 5.1.39 If a vector space E admits a basis, then all the bases of E have the
same number of elements, this number does not depend on the basis but it only depends

on the space E. This common number is called the dimension of E.

5.1.6 Dimension of vector spaces

Definition 5.1.40 Let E be a vector space over a field K , and let B = {e1, ea, ..., ep}
be a basis of E, The dimension of E, denoted dim (E) , is defined as

dim(F) = Card(B),
that is, the number of elements of the basis B.
Example 5.1.41 Let
e1 =(1,0,0),e2 = (0,1,0),e3 = (0,0,1).

The family {e1, ea, e3} is a basis of R3, called the canonical (standard) basis.
Therefore,
dim(R3) = Card ({e1, ez, e3}) = 3.
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Example 5.1.42 In the vector space Ra[x], the family {1, T, :r:2} s a basis. Therefore,
dim (Rs[z]) = Card {1, z, 2*} = 3.

Theorem 5.1.43 Let E be a vector space of dimension n, then :

1) Characterization of a basis: A family {e1, ea, ...,en} of n vectors in E is the basis

of E if and only if it is either: generating, or linearly independent (free). That is,

{e1, ez, ...,en} is abasis < il is generating < it is free.

2) Families with more than n vectors: Let {e1, ea, ..., ep} be p vectors in E, with
p>mn, then :

e The family cannot be free (it is linearly dependent).

o If the family is generating, then there exists a subset of n vectors among them that
forms a basis of E.

3) Families with fewer than n vectors: Let {e1, ea, ...,ep} be p vector in E, withp < n
, then :

e The family cannot be generating (it does not span E ).

o If the family is free, it is possible to find (n—p) additional vectors {ep+1, €pt+2, ....en}
in E such that {e1, ez, ..., ept1, ...,en} forms a basis for E.

4) If F is a vector subspace of E : then dim F < n, and moreover dimF = n <
F=F.

Proposition 5.1.44 Let E be a finite-dimensional vector space, and let Fy, Fy be sub-
spaces of E, then:

d1m(F1 + Fg) = dim F} + dim F5 — d1m(F1 N Fg),

where F1 + Fo = {u+v /u € Fy, v € Fy} is the sum of subspaces and Fy N Fy is their

intersection.
Exercise 5.1.45 Consider the subsets of R3:
E={(z,y,00€R® /2,y e R} and F = {(2,0,2) / z € R}.

1. Show that E and F are vector subspaces of R3 over R.
2. Calculate dim(F) and dim(F).

3. Determine ENF.

4. sR3=FE®F?
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Solution 5.1.46 1. Show that E and F are vector subspaces of R over R.
e To show that E is a vector subspace, we verify the following conditions:
(a) Non-empty: The zero vector (0,0,0) € E (taking x =0,y =0).
(b) Closed under addition: Let w = (z1,y1,0) and v = (x2,y2,0) be in E. Then:

u+v = (1 + x2,y1 + 42,0) € E.
(¢) Closed under scalar multiplication: Let w = (z,y,0) € E and X\ € R. Then:
M = (A\z, \y,0) € E.

Thus, E is a vector subspace.

o For F':

(a) Non-empty: The zero vector (0,0,0) € F (taking x =0).

(b) Closed under addition: Let u = (x1,0,21) and v = (x2,0,z2) be in F. Then:

u+v=(z1+x2,0,21 + x2) € F.
(c) Closed under scalar multiplication: Let u = (z,0,x) € F' and A € R. Then:
A = (Az,0,\z) € F.

Thus, F'is also a vector subspace.
2. Calculate dim(FE), dim(F')
(a) To find the dimension of E, we have:

E ={(z,y,0): z,y € R}
= {z(1,0,0) +y(0,1,0) : z,y € R}
= span{(1,0,0),(0,1,0)}.

The vectors (1,0,0) and (0,1,0) are linearly independent and therefore form a basis
for E. Thus, we conclude that the dimension of E is: dim(E) = 2.
(b) To find the dimension of F':The vector(1,0,1) spans F since any vector in F can

be expressed as x(1,0,1) for some x. Thus, we have:
dim(F) = 1.
3. To find ENF, we note that:

(z,9,2) E ENF = (z,y,2) € E and (z,y,2) € F.
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This implies:
(r,y,2) e E=2=0,(z,y,2) € F=y=0 and z = x.

Thus, the intersection 1is:
EnF ={(0,0,0)}.

4. The dimension of E + F can be calculated using the formula:
dim(F + F) = dim(E) 4+ dim(F) — dim(E N F).
Substituting the dimensions, we find:
dm(E+F)=2+1-0=3.

Since dim (R®) = 3 and dim(E + F) = 3, we conclude that E + F = R3. Furthermore,
since E+ F = R3 and from Question 3 we have ENF = {(0,0,0)}, we conclude that
RE=E®F.
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5.2 Linear applications

5.2.1 Definitions and examples

Definition 5.2.1 (linear map) Let E and F be two vector spaces over a field K.
A map f: E — F is called linear if it satisfies both of the following conditions:

Vo, y e B, f(x+y) = f(x) + f(y),
Vz € B, VA €K, f(Az) = Af(),

Equivalently,
Ve, y € E, A€ K, f(Az+y) = Af(z) + f(y).

Remark 5.2.2 The set of linear maps of E to F is denoted by L (E, F).

Example 5.2.3 The map f defined by
f:R3 = R?,
(%?J,Z) - f(xvyvz) = (2I+y,y—2§) ,

1$ a linear map.
Indeed, let (x,y,z2), (£,9,%2) € R® and A € R. Then

~

(x+2Z,y+7,2+ %)
2@+2)+(y+9),W+9) —(2+32))
20+ 2t +y+y,y+9—2—3%)
(2z4+y)+ 22 +9),(y—2)+ U —2)
204y, y —2)+ (2&+ 9,9 — %)
(z,y,2) + f(£,9, %),

i@y, 2) +(£,4,2)] =

\AA/—\/—\

and

f(A(@,y,2)) = [(Az, Ay, A2)
= (2Az+ Ay, \y — A2)
= (AQ2z+y),A(y—2))
= AN2z+y,y—2)
= M(z,y,2).
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Example 5.2.4 The map f : R? — R3defined by

f(xvy) = (3'52,-’13+y, 1)

1s not linear.

Indeed,
f((1,0)+(0,0)) = f(1,0) = (1,1,1),
whereas
f(1,0)+ f(0,0) =(1,1,1) + (0,0,1) = (1,1,2).
hence,

f((1,0)+(0,0)) # f(1,0) + f(0,0).

Proposition 5.2.5 If f is a linear map from E to F, then :
1.f(0g) = 0p.
2 f(-a) = —f().
3. If Vi is a subspace of E , then f(V1) is a subspace of F'.
4. If W1 is a subspace of F, then f~*(W1) is a subspace of E.

5. The composition of two linear maps is a linear map.

Proposition 5.2.6 Let E and F be vector spaces over K, and let f, g € L(E, F). If

E is finite-dimensional of dimension n and {e1, e, ..., ep} is basis of E, then
Vk € {1327 -"an}7 f(ek) = g(ek) & Vo e E; f(IL‘) = g(gj)

Proof. The implication (<) is obvious.
For (=), since {e1, e, ..., e,} generates F, for any x € F there exist scalars A1, Ag, ..., A, €

K such that "
T = Z ;€.
i=1
Since f and g are linear maps,
@)=Y Aif(e), g(@) =) Nig(ei).
i=1 i=1
If f(ei) =g (e;) for all 4, then f(z) =g (z)forallz € E. m

5.2.2 Linear maps and dimension

Let f: E — F be a linear map.
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The kernel of a linear map

Definition 5.2.7 The kernel (or null space) of f, denoted by ker f, is the set of all
vectors x € E such that f(z) = Op (the zero vector of F ):

ker f={z€E | f(z)=0r}=f 1 ({0r})

The image of a linear map

Definition 5.2.8 The image of f, denoted by Im f, is the set of all vectors in F' of the
form f (z) for some x € E:

Imf={f(z) /zeE}=[f(E)

Proposition 5.2.9 Let f: E — F be a linear map. Then:
1. ker f is a subspace of E.
2. Im f is a subspace of F'.
3. f is injective if and only if ker f = {0g}.
4. [ is surjective if and only if Im f = F.

Example 5.2.10 Consider the map f : R> — R? defined by

f(z,y,2) = (z +y,2).

This map is not injective but is surjective.

o Injectivity

ker f = {(z,9,2) €R® / (z+y,2)=(0,0)}
= {(z,y,2) €R® Jz4+y=0, z2=0}
= {(@,y,2) eR’ [ y=—z, 2=0}
= {(z,—z,0) / xz € R}
Since
(1,—-1,0) € ker f = ker f # {Ogs}.

Hence, f is not injective.

o Surjectivity.

Imf = {(z+y,2)/ (x,y,z)ER?’}
= {x(1,0) 4+ y(1,0) + 2(0,1) / x,y,z € R}.
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Thus,
Imf = span{(l,()), (Oa 1)} = RQv

and f is surjective.

Proposition 5.2.11 Let f: E — F be a linear map, with E of finite dimension. Then:

dim E = dimker f + dim Im f

The rank of a linear map

Definition 5.2.12 The rank of a linear map f is the dimension of its image :
rankf = dimIm f
Example 5.2.13 Find ker f, Im f and rankf for the map f : R* — R? defined by
fay,zt) =(x—yz+tx—y+2)

Kernel
ker f = {(z,y,2,t) €R* / (x—y, 2+ 1,z —y+2) = (0,0,0)}

From x —y =0, we get x = y.
Fromz —y+2=0, we get z =0, hence t = 0.
Thus,
ker f = {(z,2,0,0) / x € R} = span{(1,1,0,0)}.

Image
Imf = {(x—y,2+t,.%'—y+2')/.’L',y,Z,tGR}
= {(z—-9).(1,0,1) +£.(0,1,0) + 2(0,1,1) / =,y,2,t € R}
= span{(1,0,1), (0,1,0), 2(0,1,1)}.
To check linear independence, let A1, Ao, A3 € R:

>\1(1707 1) =+ AQ(Oa 170) + )\3(07 17 1) = (07070)
= (A1, A2 + A3, A1+ A3) = (0,0,0)
= A=A =X =0.

Hence, the vectors are linearly independent and form a basis of Im f.

rankf = dimIm f = 3.
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