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Introduction
Ce polycopié est déstiné aux étudiants de la 1ère année Mathématiques et Informa-

tique, a pour objectif de présenter les différents aspects du calcul d’intégrale : intégrale

de Riemann, différentes techniques de calcul des primitives, l’initiation à la résolution

des équations différentielles. Il est recommandé d’avoir des connaissances préalables en

analyse 1. Ce cours est assez détaillé et contient des compléments qui vont parfois au

delà du programme prévu. Il comporte quatre chapitres :

1 Intégrales indéfinies

2 Intégrales définies

3 Équations différentielles du premier ordre

4 Équations différentielles linèaires à coeffi cients constants du second ordre

Chaque chapitre contient des exemples explicatifs. Il est conseillé de s’exercer à ré-

soudre par soi-même ces exercices sans avoir une solution à coté : c’est grâce à ce travail

personnel indispensable que l’on peut aller plus loin dans la compréhension et l’assimila-

tion des notions mathématiques introduites.
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Chapitre 1

Intégrales indéfinies

1.1 Introduction

Il existe un lien remarquable entre intégration et dérivation : pour les fonctions conti-

nues, la notion d’intégrale permet en effet de construire l’inverse de l’opération f → f ′ de

dérivation. Précisément étant donnée une fonction g continue, nous pourrons exprimer

par une intégrale une fonction G telle que G′ = g. Les intervalles envisagés sont supposés

non vides et non réduits à un point.

Définition 1.1.1 Soit f : I → R, on dit que F : I → R est une primitive de f sur I, si

F est une fonction dérivable sur I et vérifie

F ′(x) = f(x) pour tout x ∈ I.

On note une primitive de f par :

F (x) =

∫
f(x) dx,

Cette fonction est appelée l’intégrale indéfinie de f .

Remarque 1.1.1 1.
∫
est le signe d’intégration, f(x) est l’intégrant, et dx est la no-
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tation différentielle.

2. Puisque F est dérivable sur I , il s’ensuit qu’elle est continue sur cet intervalle

3. Comme la dérivée de toute constante C est nulle alors : si F ′(x) = f(x) on a encore

(F (x) + C)′ = f(x). Par conséquent, si f admet une primitive Falors toute fonction de

la forme F + C, où C est une constante quelconqueest encore une primitive de f.

4. L’ensemble des primitives d’une fonction f est noté :
∫
f(x) dx et aussi appelé inte-

grale indéfinie de f et on écrit simplement :
∫
f(x) dx = F (x), en incluant la constante.

5. La variable x est dite variable muette, c’est-à-dire qu’on peut écrire :

∫
f(t) dt = F (t),

∫
f(u) du = F (u) ou encore

∫
f(x) dx = F (x).

Exemple 1 La dérivée de p(x) = xn, n ≥ 0, est p′(x) = nxn−1.

Par conséquent,

P (x) =
1

n+ 1
xn+1 est une primitive de p.

Par ailleurs, si F est une primitive quelconque de p, alors, il existe une constante C ∈ R

telle que,

F = P + c, i.e.F (x) = P (x) + C pour tout x ∈ R.

En terme d’intégrale généralisée ceci devient

∫
p(x) dx =

xn+1

n+ 1
+ C, C ∈ R.

Proposition 1 Soit f et g deux fonctions continues

1.
∫

(f(x)± g(x)) dx =

∫
f(x) dx±

∫
g(x) dx.

2.
∫
λf(x) dx = λ

∫
f(x) dx, λ ∈ R.

3.
∫
f ′(x) dx = f(x) + C. ou

(∫
f(x) dx

)′
= f(x).

4.
∫
f(x) dx = F (x) + C ⇒

∫
f(ax+ b) dx = 1

a
F (ax+ b) + C.
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Les propriétés 1 et 2 donnent la linéarité de l’opérateur intégral. Ainsi, pour beaucoup

de fonctions usuelles on connait les primitives. Voici quelques exemples (utiles à savoir !).

Le tableau suivant résume quelques primitives usuelles, en donnant une primitive F de

la fonction f (penser à ajouter une constante si on demande toutes les primitives, ou si

on utilise le symbole d’intégrale indéfinie).

Fonction f Une primitive F de f Domaine de définition de F

k (k =const) kx R

xa, a 6= 0 1
a+1

xa+1


R si a ∈ N

]−∞, 0[ ∪ ]0,∞[ si a = −2,−3, ...

]0,∞[ pour tout autre a ∈ R� {−1}
1

x
ln |x| sur ]−∞, 0[ ∪ ]0,∞[

ax, a 6= 1 et a > 0
ax

log(a)
/a > 0.a 6= 1 R

ex ex R

sin (x) − cos (x) R

cos (x) sin (x) R
1

cos2 (x)
tan (x) R�

{
(2k + 1)

π

2

}
, k ∈ Z

1

sin2 (x)
− cot (x) R� {kπ} , k ∈ Z

1

1 + x2
arctan (x) R

1√
1− x2

arcsin (x) ]−1, 1[

sinh (x) cosh (x) R

cosh (x) sinh (x) R
1

1− x2
1
2

ln(
1 + x

1− x) ]−1 , 1[

Table 1. Un "petit" tableau de quelques primitives usuelles
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Par exemple, on déduit de la deuxième ligne du tableau que

∫
1

x2
dx = −1

x
,
∫

1√
x
dx = 2

√
x,

sur des intervalles appropriés. On remarque également qu’il est important de connaitre les

dérivées des fonctions usuelles, en particulier des fonctions trigonométriques réciproques.

Plus tard nous allons voir des techniques d’intégration qui permettent, à partir de pri-

mitives connues comme celles du tableau, de trouver des primitives de fonctions plus

élaborées. Il s’ensuit donc que si une fonction admet une primitive alors on peut détermi-

ner toutes ses primitives. Mais on peut se poser la question préalable de savoir d’abord si

toute fonction admet une primitive ? La réponse est négative comme le montre l’exemple

suivant :

Exemple 2 Soit f une fonction définie sur ]0, 2[ par :

f(x) =

 0 si x ∈ ]0, 1[ ∪ ]1, 2[

1 si x = 1

Si f admettait une primitive F , alors F serait dérivable et donc continue sur ]0, 2[. En

particulier, F serait continue au point 1, mais

F ′(x) = f(x) = 0,

pour tout x 6= 1, impliquerait que F serait constante sur chacun des intervalles ]0, 1[ et

]1, 2[. Par continuité, F serait constante sur ]0, 2[ avec

F ′(1) = f(1) = 0,

ce qui contredit l’hypothèse f(1) = 1.
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Exemple 3 Soit f la fonction définie sur R par :

f(0) = 0 et f(x) = 2x sin(
1

x
)− cos(

1

x
),

f admet une primitive sur tout intervalle contenant 0.

Soit

F (x) = x2 sin(
1

x
),

on a

F ′(x) = f(x) et f(0) = 0,

bien qu’elle ne soit pas continue en 0.

1.2 Quelques règles de recherche de primitives

1.2.1 Méthode directe d’intégration

Cette méthode consiste grâce aux propriétés des intégrales et aux transformations sur

la fonction à intégrer.

Exemple 4

∫
(sinx− 2x2 +

√
x+

3

1 + x2
) dx =

∫
sinx dx− 2

∫
x2 dx+

∫ √
x dx+ 3

∫
3

1 + x2
dx

= − cosx− 2

3
x3 +

2

3
x
3
2 + 3 arctanx+ C.

1.2.2 Intégration par parties

Elle repose sur la formule simple : (uv)′ (x) = u′ (x) v (x) + u (x) v′ (x)

Théorème 1.2.1 Soient u, v deux fonctions dérivables sur I, telle que la fonction u′v
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admet une primitive sur I. Alors la fonction uv′ admet une primitive sur I et on a :

∫
uv′(x) dx = u(x)v(x)−

∫
u′v(x) dx.

Exemple 5 1.
∫
xex dx = xex −

∫
ex dx = xex − ex + C.

2.
∫
xn lnx dx =

xn+1

n+ 1
lnx−

∫ xn

n+ 1
dx =

xn+1

n+ 1
lnx− xn+1

(n+ 1)2
+ C.

3.
∫

arcsin (x) dx = x arcsin (x)−
∫ x√

1− x2
dx = x arcsin (x) +

√
1− x2 + C.

4.
∫
x arctan (x) dx, on pose

u(x) = arctan (x)→ u′(x) =
1

1 + x2

v′(x) = x→ v(x) =
1

2
x2,

alors

∫
x arctan (x) dx =

1

2
x2 arctan (x)−

∫
1

2

x2

1 + x2
dx

=
1

2
x2 arctan (x)− 1

2

∫
x2 + 1− 1

1 + x2
dx

=
1

2
x2 arctan (x)− 1

2

∫ (
1− 1

1 + x2

)
dx

=
1

2
x2 arctan (x)− 1

2
(x− arctan (x)) + C.

1.2.3 Changement de variables

En posant x = ϕ(t), en utilisant le fait que dx = ϕ′(t) dt et en remplaçant dans∫
f(ϕ(t))ϕ′(t) dt, on obtient :

∫
f(ϕ(t))ϕ′(t) dt =

∫
f(x) dx

Exemple 6 1. Pour calculer
∫ 1√

x+ 1
dx, on pose

√
x = y, on a alors x = y2 et dx = 2y
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dy et l’intégrale indéfinie devient :

∫
2y

y + 1
dy = 2

∫
y + 1− 1

y + 1
dy = 2

∫ (
y + 1

y + 1
− 1

y + 1

)
dy

= 2

∫ (
1− 1

y + 1

)
dy = 2 [y − ln(y + 1)] + C.

= 2
[√
x− ln(

√
x+ 1)

]
+ C.

2. Pour chercher ∫
6x2 + 4

x3 + 2x+ 4
dx,

on pose y = x3 + 2x+ 4, alors dy = (3x2 + 2) dx, donc

∫
6x2 + 4

x3 + 2x+ 4
dx =

∫
2

y
dy = 2 log |y|+ C = 2 log

∣∣x3 + 2x+ 4
∣∣+ C.

3. Pour calculer ∫
(ax+ b)m dx,

avec m 6= −1, a et b ∈ R, on fait le changement de variable y = ax+ b, on a alors dy = a

dx et l’intégral devient :

∫
(ax+ b)m dx =

1

a

∫
ym dy =

1

a

ym+1

m+ 1
+ C =

1

a

(ax+ b)m+1

m+ 1
+ C.

4. Calculer
∫

1

x2 + a2
dx

∫
1

x2 + a2
dx =

∫
1

a2

(
x2

a2
+ 1

) dx =
1

a

∫
1

(y2 + 1)
dy

=
1

a
arctan y + C =

1

a
arctan

(x
a

)
+ C.
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5. Pour tout réel a strictement positif,

∫
1√

a2 − x2
dx =

∫
1√

1− (
x

a
)2

d(
x

a
) = arcsin(

x

a
) + C.

Si a est quelconque on aboutit à arcsin(
x

|a|) + C.

6. On a ∫
1√

a2 + x2
dx =

∫
1√

1 + (
x

a
)2

d(
x

a
) = arsh(

x

|a|) + C.

1.2.4 Intégration des fractions rationnelles

On s’intéresse dans ce paragraphe à la recherche des primitives des fractions ration-

nelles c’est-à-dire d’expression de la forme
P (x)

Q(x)
où P (x) et Q(x) sont deux polynômes.

On sait que la fonction fraction rationnelle est continue sur tout intervalle ne conten-

nant pas de pôle (i.e. de nombre réel qui annule le dénominateur) de la fraction. Dans

le cours d’algèbre, on montre que toute fraction rationnelle peut s’écrire comme somme

d’un polynôme et de termes de la forme

a

(x− b)p , p ∈ N
∗

(élément de 1ère espèce) et

αx+ β

(x2 + ax+ b)q
, q ∈ N∗ et a2 − 4b < 0,

(élément de 2ème espèce), avec α, β, a, b ∈ R et (α, β) 6= 0.

On dit alors qu’on a décomposé la fraction rationnelle en éléments simples. Ainsi,

pour déterminer une primitive de la fonction
P (x)

Q(x)
, il suffi t de savoir calculer

• Une primitive d’un plynôme (ce qui est trivial).

• Une primitive de la fonction a

(x− b)p , p ∈ N
∗.
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• Une primitive de la fonction αx+ β

(x2 + ax+ b)q
, q ∈ N∗.

*Calcul de
∫

a

(x− b)p dx

Cas p = 1 :

∫
a

(x− b) dx = a log |x− b|+ C, C ∈ R.

Cas p > 1 :

∫
a

(x− b)p dx =
a

1− p (x− b)1−p + C, C ∈ R.

Exemple 7 I =

∫
5

(x− 1)3 dx

I =

∫
5

(x− 1)3 dx = − 5

2 (x− 1)2 + C.

Exemple 8 I =

∫
x+ 2

x (x+ 1) (x− 2)
dx (Q(x) admet des racines simples). On décom-

pose f(x) =
x+ 2

x (x+ 1) (x− 2)
en éléments simples

f(x) =
A1

x
+

A2

(x+ 1)
+

A3

(x− 2)

=
−1

x
+

1

3 (x+ 1)
+

2

3 (x− 2)
.

Donc

I =

∫ −1

x
dx+

1

3

∫
1

(x+ 1)
dx+

2

3

∫
1

(x− 2)
dx

= − log |x|+ 1

3
log |x+ 1|+ 2

3
log |x− 2|+ C.

Exemple 9 Calculer I =

∫
1

x2 (x+ 1)2 dx (Q(x) admet des racines réelles multiples)

f(x) =
A1

x
+
A2

x2
+

A3

(x+ 1)
+

A4

(x+ 1)2

=
−2

x
+

1

x2
+

2

(x+ 1)
+

1

(x+ 1)2 .
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Donc

I = −2

∫
1

x
dx+

∫
1

x2
dx+ 2

∫
1

(x+ 1)
dx+

∫
1

(x+ 1)2 dx

= −2 log |x| − 1

x
+ 2 log |x+ 1| − 1

x+ 1
+ C.

Exemple 10 Calculer I =

∫
1

x5 + x4 − 2x3 − 2x2 + x+ 1
dx.

I =

∫
1

x5 + x4 − 2x3 − 2x2 + x+ 1
dx

=

∫
1

(x− 1)2 (x+ 1)3 dx

=

∫ (
−3

16 (x− 1)
+

1

8 (x− 1)2 +
3

16 (x+ 1)
+

1

4 (x+ 1)2 +
1

4 (x+ 1)3

)
dx

=
−3

16
log |x− 1| − 1

8 (x− 1)
+

3

16
log |x+ 1| − 1

4 (x+ 1)
− 1

8 (x+ 1)2 + C

=
3

16
log

∣∣∣∣x+ 1

x− 1

∣∣∣∣− 1

8 (x− 1)
− 1

4 (x+ 1)
− 1

8 (x+ 1)2 + C.

Exemple 11

I =

∫
x5

x3 − x2 − x+ 1
dx (degQ(x) ≤ degP (x)).

On commence par décomposer la fraction rationnelle
P (x)

Q(x)
, en éléments simples :

x5

x3 − x2 − x+ 1
= x2 + x+ 2 +

1

2 (x− 1)2 +
9

4 (x− 1)
− 1

4 (x+ 1)
,

puis en intégrant, cela donne :

I =
x3

3
+
x2

2
+ 2x− 1

2 (x− 1)
+

9

4
log |x− 1| − 1

4
log |x+ 1|+ C, ∀ x ∈ R� {−1, 1}
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*Calcul de
∫

αx+ β

(x2 + ax+ b)q
dx

On a :

αx+ β =
α

2

(
x2 + ax+ b

)′
+ β − aα

2
.

D’où

∫
αx+ β

(x2 + ax+ b)q
dx =

α

2

∫
(x2 + ax+ b)

′

(x2 + ax+ b)q
dx+

(
β − aα

2

)∫ 1

(x2 + ax+ b)q
dx.

Montrons comment calculer chacune des intégrales du second membre, si

q = 1,

∫
(x2 + ax+ b)

′

(x2 + ax+ b)
dx = log

(
x2 + ax+ b

)
+ C car

[
[log u(x) ]′ =

u′(x

u(x

]
,

si

q > 1,

∫
(x2 + ax+ b)

′

(x2 + ax+ b)q
dx =

1

(1− q) (x2 + ax+ b)q−1 + C.

Il nous reste à montrer comment calculer
∫

1

(x2 + ax+ b)q
dx.

On a :

(
x2 + ax+ b

)
=
(
x+

a

2

)2

+ b− a2

4
= ∆2

[(
x+

a

2

)2

�∆2 + 1

]
,

avec ∆ =

(
b− a2

4

) 1
2

(on rappelle que nous avons ici a2 − 4b < 0).

D’où ∫
1

(x2 + ax+ b)q
dx = ∆−2q

∫ [(
x+

a

2

)2

�∆2 + 1

]−q
dx.

On calcule l’intégrale du second membre en utilisant le changement de variable

y =
(
x+

a

2

)
�∆,
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il vient alors : ∫
1

(x2 + ax+ b)q
dx = ∆1−2q

∫ (
y2 + 1

)−q
dy.

L’intégrale indéfinie
∫

(y2 + 1)
−q
dy se calcule par récurrence pour q > 1.

• Pour q = 1, on a :
∫

1

y2 + 1
dy = arctan y + C.

• Pour q > 1, on pose u(y) = (y2 + 1)
−q, v′(y) = 1 et on intègre par partie.

Iq =

∫ (
y2 + 1

)−q
dy = y

(
y2 + 1

)−q
+ 2q

∫
y2
(
y2 + 1

)−q−1
dy

= y
(
y2 + 1

)−q
+ 2q

∫ (
y2 + 1

)−q
dy − 2q

∫ (
y2 + 1

)−q−1
dy.

D’où

Iq = y
(
y2 + 1

)−q
+ 2qIq − 2qIq+1.

Finalement, on obtient

Iq+1 = [(2q − 1)�2q] Iq +
[
y
(
y2 + 1

)−q]�2q, q > 1,

I1 = arctan y + C.

Ces deux relations permettent de calculer de proche en proche les intégrales Iq.

Exemple 12 Calculer ∫
1

x3 + 1
dx.

On décompose
1

x3 + 1
en éléments simples, on trouve :

1

x3 + 1
=

1

3

(
1

x+ 1
+

2− x
x2 − x+ 1

)
=

1

3

1

x+ 1
− 1

6

2x− 1

x2 − x+ 1
+

1

2

1

x2 − x+ 1
,
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alors,

∫
1

x3 + 1
dx =

1

3
log |x+ 1| − 1

6
log
∣∣x2 − x+ 1

∣∣+

√
3

3
arctan

√
3

3
(2x− 1) + C

=
1

3
log |x+ 1| − 1

6
log
(
x2 − x+ 1

)
+

√
3

3
arctan

√
3

3
(2x− 1) + C

Exemple 13 Calcul de I =

∫
x− 1

(x2 − x+ 1)2 dx.

I =

∫
(x− 1)

(x2 − x+ 1)2 dx =
1

2

∫
(2x− 1)− 1

(x2 − x+ 1)2 dx.

=
−1

2 (x2 − x+ 1)
− 1

2

∫
1

(x2 − x+ 1)2 dx.

=
−1

2 (x2 − x+ 1)
− 8

9

∫
dx[(

2x− 1√
3

)2

+ 1

]2 .

=
−1

2 (x2 − x+ 1)
− 4
√

3

9

∫
dy

[y2 + 1]2
où y =

2x− 1√
3

.

Or d’après la formule de récurrence, on a :

∫
dy

[y2 + 1]2
= I2 =

y

2 (y + 1)
+

1

2
arctan y + c.

Par conséquent, en revenant à la variable x, il vient :

I =
−1

2 (x2 − x+ 1)
− 2x− 1

6 (x2 − x+ 1)
− 2
√

3

9
arctan

(
2x− 1√

3

)
+ C
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1.2.5 Calcul des intégrales de la forme
∫
f (cosx, sinx) dx où f

est un polynôme ou une fonction rationnelle.

Cas où f est un polynôme

Ici f (cosx, sinx) est une combinaison linéaire de termes de la forme : cosp x sinq x,

(p, q) ∈ N2. Il suffi t alors de montrer comment on calcule l’intégrale
∫

cosp x sinq x dx.

1 Si p est impair, soit p = 2n+ 1,on a :

∫
cosp x sinq x dx =

∫
cos2n+1 x sinq x dx =

∫ (
1− sin2 x

)n
x sinq x cosx dx.

Le changement de variable x = arcsin y (⇒ y = sinx) ramène le calcul de la

dernière intégrale au calcul de :

∫ (
1− y2

)n
yq dy,

c’est-à-dire à la détermination de la primitive d’un polynôme.

Exemple 14 Calculer

I =

∫
cos5 x sin2 x dx.

En posant y = sinx, on obtient : I =

∫
(1− y2)

2
y2 dy

I =

∫ (
y6 − 2y4 + y2

)
dy =

1

7
y7 − 2

5
y5 +

1

3
y3 + C

=
1

7
sinx7 − 2

5
sinx5 +

1

3
sinx3 + C.

2 Si q est impair, le changement de variable y = cosx permet de ramener le calcul de∫
cosp x sinq x dx, à la recherche de la primitive d’un polynôme.
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Exemple 15 Calculer l’intégrale

∫
cos2 x sin3 x dx.

En posant y = cosx (⇒ dy = − sinx), on obtient : I = −
∫
y2 (1− y2) dy

I =

∫ (
y4 − y2

)
dy =

1

5
y5 − 1

3
y3 + C

=
1

5
cosx5 − 1

3
cosx3 + C.

3 Si p et q sont tous deux pairs.

(a) le changement de variable y = tan
x

2
(x = 2 arctan y)

⇒



dx =
2

1 + y2
dt

sinx =
2y

1 + y2

cosx =
1− y2

1 + y2

tanx =
2y

1− y2

,

ramène le calcul de l’intégrale à celui de la recherche de la primitive d’une

fraction rationnelle.

(b) Ici les puissances de sin et cos sont paires, on doit linéariser cosp x sinq x

cosp x sinq x =

(
eix + e−ix

2

)p(
eix − e−ix

2i

)q

Exemple 16 Calculer ∫
cos2 x sin2 xdx
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a. Le changement de variable t = tan
x

2
ramène le calcul de l’intégrale

∫
cos2 x sin2 xdx,

à celui de :

∫ (
1− t2
1 + t2

)2(
2t

1 + t2

)2
2

1 + t2
dt =

∫ (
1− t2
1 + t2

)2(
2t

1 + t2

)2
2

1 + t2
dt

= 8

∫
t2 (1− t2)

2

(1 + t2)5 dt

b. Ici les puissances de sin et cos sont paires (respectivement 2 et 2) on doit linéariser

cos2 x sin2 x.

cos2 x sin2 x =

(
eix + e−2ix

2

)2(
eix − e−ix

2i

)2

=

(
e2ix + 2 + e−2ix

4

)(
e2ix − 2 + e−2ix

−e2ix

)
=

e4ix − 2e2ix + 1 + 2e2ix − 4 + 2e−2ix + 1− 2e−2ix + e−4ix

−16

=
e4ix + e−4ix − 2

−16
=

2 cos 4x− 2

−16
= −1

8
cos 4x+

1

8∫
cos2 x sin2 x dx =

∫ (
−1

8
cos 4x+

1

8

)
dx = − 1

32
sin 4x+

1

8
x+ C.

Exemple 17 Calculer ∫
sin4 x dx

Ici les puissances de sin et cos sont paires (respectivement 4 et 0) on doit linéariser sin4 x.

sin4 x =

(
eix − e−ix

2i

)4

=
e4ix + e−4ix − 4 (e2ix + e−2ix) + 6

16

=
2 cos 4x− 8 cos 2x+ 6

16
=

1

8
cos 4x− 1

2
cos 2x+

3

8
.

20



Alors,

∫
sin4 x dx =

1

8

∫
cos 4x dx− 1

2

∫
cos 2x dx+

3

8

∫
dx

=
1

32
sin 4x− 1

4
sin 2x+

3

8
x+ C.

Cas où f est une fonction rationnelle

Le changement de variable y = tan
x

2
permet de ramener le calcul de l’intégrale

∫
f (cosx, sinx) dx

à celui de l’intégrale d’une fraction rationnelle en y.

Exemple 18 Calculer

I =

∫
sin2 x

1 + cos x
dx,

le changement de variable indiqué précédemment donne :

I =

∫ (
2y

1 + y2

)2(
1 +

1− y2

1 + y2

)−1
2

1 + y2
dy = 4

∫
y2

(1 + y2)2 dy

= 4

∫
y2 + 1− 1

(1 + y2)2 dy = 4

∫
dy

1 + y2
− 4

∫
dy

(1 + y2)2 = 4 (I1 − I2)

On a :

I1 =

∫
dy

1 + y2
= arctan y + C, C ∈ R.

I2 =

∫
dy

(1 + y2)2 =
1

2
I1 +

y

2 (1 + y2)
.
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D’où

I = 4 arctan y − 4

[
1

2
arctan y +

y

2 (1 + y2)

]
+ C, C ∈ R.

= 2 arctan y − 2y

1 + y2
+ C = x− sinx+ C.

Autre méthode : On a :

sin2 x

1 + cos x
=

1− cos2 x

1 + cos x
= 1− cosx.

D’où

I =

∫
sin2 x

1 + cos x
dx =

∫
(1− cosx) dx = x− sinx+ C.

Dans cet exemple, comme on le remarque, la deuxième méthode est plus rapide que

la première c’est-à-dire le changement de variable y = tan
x

2
n’est pas toujours le plus

simple.

Cas particuliers : Pour calculer

* I =

∫
f (cosx) sinx dx, on utilise le changement de variable : y = cosx.

* I =

∫
f (sinx) cosx dx, on utilise le changement de variable : y = sinx.

* I =

∫
f (tanx)

1

cos2 x
dx, on utilise le changement de variable : y = tanx.

* I =

∫
sin ax sin bx dx, (a 6= +̄b) , on a :

sin ax sin bx = 1�2 [cos (a− b)x− cos (a+ b)x] .

Exemple 19 Calculer les primitives suivantes :

I1 =

∫
cosx

sin2 x− sinx
dx, I2 =

∫
sin5 x

cosx
dx et I3 =

∫
sinx sin 3x dx.
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1) On pose : y = sinx⇒ dy = cosx dx, donc

I1 =

∫
cosx

sin2 x− sinx
dx =

∫
1

y2 − y dy =

∫
− 1

y
dy +

∫
1

y − 1
dy

= − log |y|+ log |y − 1|+ C = log

∣∣∣∣y − 1

y

∣∣∣∣+ C = log

∣∣∣∣sinx− 1

sinx

∣∣∣∣+ C

2)

I2 =

∫
sin5 x

cosx
dx =

∫
sin4 x

cosx
sinx dx =

∫
(1− cos2 x)

2

cosx
sinx dx,

on pose :

y = cosx⇒ dy = − sinx dx,

donc

I2 =

∫
− (1− y2)

2

y
dy =

∫
− y4 − 2y2 + 1

y
dy = −y

4

4
+ y2 − log |y|+ C

= −cos4 x

4
+ cos2 x− log |cosx|+ C.

3)

sinx sin 3x = 1�2 [cos (−2)x− cos 4x] .

D’où

I3 =

∫
sinx sin 3x dx = 1�2

∫
[cos (−2)x− cos 4x] dx

=
sin 2x

4
− sin 4x

8
+ C
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1.2.6 Calcul des intégrales de la forme
∫
f (ex, coshx, sinhx) dx

où f est une fraction rationnelle.

1. Pour déterminer l’intégrale de type I =

∫
f (ex, coshx, sinhx) dx, en général, en

utilise le changement de variable y = ex, on obtient alors :

coshx =
ex + e−x

2
=
y2 + 1

2y
, sinhx =

ex − e−x
2

=
y2 − 1

2y
et dx =

dy

y
.

Et par conséquent :

I =

∫
f (ex, coshx, sinhx) dx =

∫
f

(
y,
y2 + 1

2y
,
y2 − 1

2y

)
dy

y
=

∫
F (y) dy,

où F est une fraction rationnelle réelle.

2. On peut utiliser le changement de variable y = tanh
x

2
⇒ dx =

2dy

1− y2
.

Exemple 20 Calculer

I1 =

∫
coshx

2 + cosh x
dx et I2 =

∫
coshx

sinh5 x
dx.

1) On fait le changement de variable

y = tanh
x

2
⇒ I1 =

∫ 1 + y2

1− y2

2 +
1 + y2

1− y2

2dy

1− y2
=

∫
2y2 + 2

y4 − 4y2 + 3
dy.

On a :

y4 − 4y2 + 3 =
(
y2 − 1

) (
y2 − 3

)
= (y − 1) (y + 1)

(
y −
√

3
)(

y +
√

3
)
.
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Normalement, il faudrait encore décomposer
2y2 + 2

y4 − 4y2 + 3
en éléments simples :

2y2 + 2

y4 − 4y2 + 3
= − 1

y − 1
+

1

y + 1
+

2√
3

1

y −
√

3
− 2√

3

1

y +
√

3
,

par conséquent :

I1 = −
∫

1

y − 1
dy +

∫
1

y + 1
dy +

2√
3

∫
1

y −
√

3
dy − 2√

3

∫
1

y +
√

3
dy

= log

∣∣∣∣y + 1

y − 1

∣∣∣∣+
2√
3

log

∣∣∣∣∣y −
√

3

y +
√

3

∣∣∣∣∣+ C.

2) La « méthode normale » voudrait que l’on pose y = ex mais ici cela s’arrange plus

simplement. On pose y = sinhx⇒ dy = coshx dx.

I2 =

∫
dy

y5
= − 1

4y4
+ C = − 1

4 sinh4 x
+ C+

Cas particuliers :

Pour calculer

* I =

∫
f (coshx) sinhx dx, on utilise le changement de variable : y = coshx.

* I =

∫
f (sinhx) coshx dx, on utilise le changement de variable : y = sinhx.

* I =

∫
f (tanhx)

1

cosh2 x
dx, on utilise le changement de variable : y = tanhx.

* I =

∫
sinh ax sinh bx dx, (a 6= +̄b) , on a :

sinh ax sinh bx = 1�2 [cosh (a+ b)x− cosh (a− b)x] .

1.2.7 Intégrales des fonctions contenant des radicaux
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1) Fonction de la forme f
(
x, n
√

(ax+ b)� (cx+ d)
)
où f est un plynôme ou une

fonction rationnelle.

On suppose que ad−cb 6= 0 et (ax+ b)� (cx+ d) > 0 (sinon n
√

(ax+ b)� (cx+ d) =

constante). Dans ce cas le changement de variable y = n
√

(ax+ b)� (cx+ d) permet de

ramener le calcul de l’intégrale à celui de l’intégrale d’un plynôme où d’une fraction

rationnelle. Expliquons cela par un exemple.

Exemple 21 Calculer

I =

∫
1

1− x

√
1− x
1 + x

dx.

On pose

y =

√
1− x
1 + x

,

ce qui donne

(
y2 =

1− x
1 + x

)
⇔ y2 (1 + x) = 1− x

⇔ y2 + xy2 = 1− x

⇔ x+ xy2 = 1− y2

⇔ x =
1− y2

1 + y2
,

donc

dx =
−2y (1 + y2)− 2y (1− y2)

(1 + y2)2 dy =
−4y

(1 + y2)2 dy.

D’autre part

1− x = 1− 1− y2

1 + y2
=

1 + y2 − (1− y2)

1 + y2
=

2y2

1 + y2
.
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Par conséquent

I =

∫
1

1− x

√
1− x
1 + x

dx =

∫
1

2y2

1 + y2

y
−4y

(1 + y2)2 dy

= −2

∫
dy

1 + y2
= −2 arctan y + c = −2 arctan

√
1− x
1 + x

+ C, C ∈ R.

2) Fonction de la forme f
(
x,
√
ax2 + bx+ c

)
où f est un plynôme ou une

fonction rationnelle.

On a :

ax2 + bx+ c = a

[(
x+

b

2a

)2

− ∆

4a2

]
, ∆ = b2 − 4ac.

On va distinguer trois cas.

1er cas : ∆ < 0 et a > 0.

On a alors :

ax2 + bx+ c > 0, ∀x ∈ R.

En faisant le changement de variable

x = − b

2a
+

√
−∆

2a
sinh y,

on trouve
√
ax2 + bx+ c =

√
−∆

4a
cosh y

Exemple 22 calculer

I =

∫ √
x2 + x+ 1 dx.
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Le changement de variable indiqué donne : x = −1

2
+

√
3

2
sinh y.

I =

∫ √
x2 + x+ 1 dx =

3

4

∫
cosh2 y dy =

3

4

∫
cosh 2y + 1

2
dy

=
3

16
sinh 2y +

3

8
y + C =

3

8
(sinh y cosh y + y) + C

=
3

8

[√
4�3 (x+ 1�2) cosh

(
arg sinh

√
4�3 (x+ 1�2)

)
+ arg sinh

√
4�3 (x+ 1�2)

]
+ C.

Or

cosh (arg sinh y) =
√

1 + y2.

D’où

I =

√
3

4
(x+ 1�2)

√
1 + 4�3 (x+ 1�2)2 +

3

8
arg sinh

√
4�3 (x+ 1�2) + C.

2ème cas : ∆ > 0 et a < 0.

On a alors :

ax2 + bx+ c > 0,

pour x compris entre les racines de l’équation ax2 + bx+ c = 0.

D’autre part, on a :

ax2 + bx+ c =
∆

−4a

[
1−

(
(x+ b�2a)�

√
∆�4a2

)2
]
.

En posant :

x = − b

2a
+
√

∆�4a2 cos y, |y| < π

2
,

il vient
√
ax2 + bx+ c =

√
∆�− 4a sin y.

Exemple 23 Calculer

I =

∫ √
4− 3x2dx.
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Soit x =
√

4�3 cos y, alors

I =

∫ √
4− 4 cos2 y

√
4�3 (− sin y) dy = −4�

√
3

∫
sin2 y dy

= −2�
√

3

∫
(1− cos 2y) dy = −2�

√
3 (y − sin 2y�2) + C

= −2�
√

3
[
arccos

(√
3�4x

)
−
√

3�4x sin
(

arccos
(√

3�4 x
))]

+ C

= −2�
√

3
[
arccos

(√
3�4x

)
−
√

3�4x
√

1− 3x2�4
]

+ C

= −2�
√

3 arccos
(√

3�4x
)

+ x
√

1− 3x2�4 + C.

3ème cas : ∆ > 0 et a > 0.

Le trinôme ax2 + bx + c est positif pour x /∈ ]x′ , x′′[, où x′ et x′′sont les racines de

l’équation ax2 + bx+ c avec x′ < x′′.

On a :

ax2 + bx+ c =
∆

4a

[(
x+ b�2a√

∆�2a

)2

− 1

]
.

En posant :

x+ b�2a =


√

∆�2a cosh y pour x ∈ ]x′′ , +∞[

−
√

∆�2a cosh y pour x ∈ ]−∞ , x′[
,

on obtient :

ax2 + bx+ c =
√

∆�4a sinh y.

La fonction à intégrer devient alors une fonction rationnelle.

Exemple 24 Calculer

I =

∫
x+ 1√

x2 + x− 2
dx.
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On a :

I =

∫
(x2 + x− 2)

′

2
√
x2 + x− 2

dx+

∫
dx

2
√
x2 + x− 2

= I1 + I2

où 
I1 =

√
x2 + x− 2 + C

I2 =

∫
dx

2
√
x2 + x− 2

.

Calculons I2, en posant conformément à ce qui précède :

x+
1

2
=

 (3�2) cosh y pour x ∈ ]1,+∞[

−(3�2) cosh y pour x ∈ ]−∞,−2[
,

(−2 et 1 sont les racines de l’équation x2 + x− 2 = 0). Pour x ∈ ]1,+∞[ ,on obtient

∫
dx

2
√
x2 + x− 2

=
1

2

∫
dy =

y

2
+ C =

1

2
arg cosh

(
2x+ 1

3

)
+ C,

d’où

I =
√
x2 + x− 2 +

1

2
arg cosh

(
2x+ 1

3

)
+ C.

En procédant de la même manière pour x ∈ ]−∞,−2[, on obtient

I =
√
x2 + x− 2− 1

2
arg cosh

(
−2x+ 1

3

)
+ C.

1.2.8 Calcul de
∫
Pn(x)eαxdx, où Pn(x) un polynôme d’ordre n et

α ∈ C∗

On pose :

I =

∫
Pn(x)eαx dx = Qn(x)eαx,
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avec Qn un polynôme d’ordre n ( même ordre que Pn ). Pour calculer Qn, on utilise la

dérivation et l’identification.

Remarque 1.2.1 On peut utiliser l’intégration par parties dans les cas où deg de P est

petit.

Exemple 25 Calculer

I =

∫ (
x2 + 1

)
e3x dx.

On pose

I =

∫ (
x2 + 1

)
e3x dx =

(
ax2 + bx+ c

)
e3x,

par dérivation on trouve :

(
x2 + 1

)
e3x =

[
3ax2 + (2a+ 3b)x+ b+ 3c

]
e3x,

donc

x2 + 1 = 3ax2 + (2a+ 3b)x+ b+ 3c,

par identification on trouve :


3a = 1

2a+ 3b = 0

b+ 3c = 1

⇔


a =

1

3

b = −2

9

c =
11

27

,

et par la suite

I =

∫ (
x2 + 1

)
e3x dx =

(
1

3
x2 +−2

9
x+

11

27

)
e3x + C,
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1.2.9 Calcul de
∫
Pn(x) cos βx dx et

∫
Pn(x) sin βx dx, où Pn(x) un

polynôme d’ordre n et β ∈ R∗

1ère méthode

Les deux intégrales se traitent de façon analogue. En utilisant l’intégration par partie

pour abaisser le degré du polynôme.

Exemple 26 Calculer I(x) =

∫
(x2 + 1) sinx dx

I(x) = −
(
x2 + 1

)
cosx+

∫
2x cosx dx

= −
(
x2 + 1

)
cosx+

(
2x sinx−

∫
2 sinx dx

)
=

(
1− x2

)
cosx+ 2x sinx+ C.

2ème méthode

D’après la 1ère méthode, il existe deux polynômesA(x) etB(x), de degrés≤ deg (Pn(x)) ,

tels que : ∫
Pn(x) sin βx dx = A(x) cos βx+B(x) sin βx+ C, C ∈ R.

On écrit A(x), B(x) avec des coeffi cients indéterminés, on dérive le second membre ci-

dessus, et on identifie avec Pn(x) sin βx.

Exemple 27 Calculer I(x) =

∫
(x2 + 1) sinx dx.

I(x) =
(
ax2 + bx+ c

)
cosx+

(
αx2 + βx+ γ

)
sinx+ C, C ∈ R.

où a, ..., γ sont des réels à calculer.

En dérivant : ∀x ∈ R,

(
αx2 + (β + 2a)x+ b+ γ

)
cosx+

(
−ax2 + (2α− b)x+ β − c

)
sinx =

(
x2 + 1

)
sinx.
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Une condition nécessaire et suffi sante est :
α = 0

β + 2a = 0

b+ γ = 0

et


−a = 1

2α− b = 0

β − c = 1

,

la résolution de ce sytème linéaire donne :

α = b = γ = 0, a = −1, β = 2, c = 1.

D’où :

I(x) =
(
1− x2

)
cosx+ 2x sinx+ C.

3ème méthode

Il se peut que l’on désire calculer simultanément

I(x) =

∫
Pn(x) cos βx dx et J(x) =

∫
Pn(x) sin βx dx.

Aux deux méthodes précédentes, on préférera alors l’utilisation de l’exponentielle

complexe.

Exemple 28 Calculer I(x) =

∫
x2 cosx dx et J(x) =

∫
x2 sinx dx.

I(x) + iJ(x) =

∫
x2 (cosx+ i sinx) dx =

∫
x2eix dx =

(
ax2 + bx+ c

)
eix + C.

(a, b, c) ∈ R3 à trouver, C ∈ R.

En dérivant :

∀x ∈ R, i
(
ax2 + bx+ c

)
+ (2ax+ b) = x2,
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c’est-à-dire : 
ia = 1

ib+ 2a = 0

ic+ b = 0

et donc


a = −i

b = 2

c = 2i

.

Ainsi,

I(x) + iJ(x) =
(
−ix2 + 2x+ 2i

)
(cosx+ i sinx) + C,

d’où, en prenant les parties réelles et imaginaires : I(x) = (x2 − 2) sinx+ 2x cosx+ C1

J(x) = (−x2 + 2) cosx+ 2x sinx+ C2

, (C1, C2) ∈ R2.
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Chapitre 2

Intégrales définies

Dans ce chapitre, on donne une introduction à l’intégrale de Riemann et quelques

définitions et propriétés fondamentales. Ensuite, on établit le lien entre cette intégrale

et les primitives, pour enfin se dédier à la pratique du calcul intégral. Soit a et b des

nombres réels tels que a < b et I = [a, b] compact ( c’est-à-dire fermé, borné)

2.1 Intégrale des fonctions en escalier

Commençons par les définitions qui sont à la base de la notion d’intégrale.

2.1.1 Subdivision d’un intervalle compact

Définition 2.1.1 1- On appelle subdivision de [a, b] , les nombres réels x0, x1, ..., xn tels

que

a = x0 < x1 < ... < xn = b

Les points xi sont quelconques dans [a, b], les intervalles [xi−1 , xi ] ont des longueurs, en

général, différentes.
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FIG.1- Subdivision de [a, b].

2- On appelle pas de la subdivision s = (x0, x1, ..., xn) et on note p(s) la longueur du

plus grand de ces intervalles.

p(s) = sup
1≤i≤n

(xi − xi−1) .

3)- On appelle subdivision régulière (ou uniforme) toute subdivision avec des points

équidistants. Pour une telle subdivision on a donc

hk = xk − xk−1 = h =
b− a
n

, ∀k = 1, ..., n

et par conséquent :

xk = xk−1 + h = x0 + kh = a+ kh = a+ k
b− a
n

Exemple 29 (introductif ) Soit f la fonction définie sur [0, 1] par f(x) = x. Sachant

calculer l’aire d’un rectangle, on désire évaluer l’aire A(f) délimitée par le graphe de la

courbe f , l’axe des x et les deux ordonnées x = 0 et x = 1. Considérons une subdivision

uniforme de [0, 1] en n sous intervalles :

0 = x0 < x1 < ... < xn = 1,

avec :

xk − xk−1 = h =
1

n
,∀k = 0, ..., n− 1.

Il s’ensuit que :

xk+1 = xk + h = kh =
k

n
, et [xk, xk + 1] =

[
k

n
,
k + 1

n

]
, ∀k = 0, ..., n− 1.
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D’où

∀x ∈ [xk, xk + 1] =

[
k

n
,
k + 1

n

]
,

on a :
k

n
≤ f(x) = x ≤ k + 1

n

Soit In−(f) la somme des aires des rectangles inférieurs :

In−(f) =

n−1∑
k=0

(xk+1 − xk)×
k

n
,

et In+ la somme des aires des rectangles supérieurs :

In+ =
n−1∑
k=0

(xk+1 − xk)×
k + 1

n
.

Il est clair que :

In−(f) ≤ A(f) ≤ In+(f).

Etudions cette inégalité quand le nombre de points de la subdivision devient assez grand.

En remplaçant xk+1 − xk par h =
1

n
on obtient :

In−(f) =
1

n2

n−1∑
k=0

k =
n(n− 1)

2n2

In+(f) =
1

n2

n−1∑
k=0

(k + 1) =
1

n2

n∑
k=1

k =
n(n+ 1)

2n2
,

comme

lim
n→+∞

In−(f) = lim
n→+∞

In+(f) =
1

2
,

on en déduit que

A(f) = lim
n→+∞

In−(f) = lim
n→+∞

In+(f) =
1

2
.
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2.1.2 Fonctions en escalier

Définition 2.1.2 Une fonction f : [a, b]→ R est dite en escalier ( étagée ) s’il existe une

subdivision s = (x0, x1, ..., xn) de [a, b] telle que pour tout i = 1, 2, ..., n, f est constante

sur l’intervalle ouvert ]xi−1, xi[ définie par s. Une telle subdivision est dite adapté ( associé

) à f.

Remarque 2.1.1 I) Si f est en escalier et si s = (x0, x1, ..., xn) est une subdivision

de [a, b] adapté à f , il existe donc des nombres m1, ...,mn tels que f(x) = mi pour tout

x ∈ ]xi−1, xi[ .

II) Les valeurs prises par f aux extrémités des intervalles ]xi−1, xi[ peuvent être quel-

conques.

III) Si f est en escalier sur [a, b], elle l’est sur tout sous-intervalle de [a, b].

IV) Une fonction constante est évidemment en escalier.

V) Une fonction f est dite en escalier sur R s’il existe un intervalle [a, b]

tel que f = 0 sur R� [a, b] et en escalier sur [a, b]

Exemple 30 Soit f : [0, 2]→ R la fonction définie par

f(x) =


3 si 0 ≤ x < 1

1 si x = 1

2 si 1 < x ≤ 2

Cette fonction est en escalier puisque elle est constante sur chacun des intervalles ouverts

]0, 1[ et ]1, 2[ . La subdivision (x0 = 0, x1 = 1, x2 = 2) est adaptée. Et il existe bien d’autres

subdivisions adaptées à f , comme par exemple

(
x0 = 0, x1 =

1

2
, x2 = 1, x3 = 2

)
.

Lemme 2.1.1 Soit f : [a, b] → R une fonction en escalier. Si (x0, x1, ..., xn) est une

subdivision de I adaptée à f et si l’on pose f(x) = mi pour tout x ∈ ]xi−1, xi[ , alors le
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nombre

(x1 − x0)m1 + (x2 − x1)m2 + ...+ (xn − xn−1)mn

ne dépend pas de la subdivision (x0, x1, ..., xn) .

Le lemme permet de formuler la définition suivante.

Définition 2.1.3 Soit f : [a, b]→ R une fonction en escalier. Si (x0, x1, ..., xn) est une

subdivision de [a, b] adaptée à f avec f(x) = mi si x ∈ ]xi−1, xi[ , la somme

(x1 − x0)m1 + (x2 − x1)m2 + ...+ (xn − xn−1)mn,

qui ne dépend que de f , s’appelle l’intégrale de f sur [a, b] et se note I(f) ou
∫ b

a

f(t)dt.

Remarque 2.1.2 I Soit c ∈ [a, b] et soit f : [a, b]→ R une fonction telle que f(x) = 0

si x 6= 0. Si l’on a c ∈ ]a, b[ , la subdivision (x0 = a, x1 = c, x2 = b) est adaptée à f, donc

la fonction f est en escalier et on a par définition

∫ b

a

f(x) dx = (c− a)× 0 + (b− c)× 0 = 0.

De même, si c = a ou c = b, l’intégrale de f est 0.

I L’intégrale d’une fonction nulle sauf en un nombre fini de points est nulle.

I Si f est une fonction constante de valeur m, alors
∫ b

a

f(x) dx = m (b− a) .

Propriétés de l’intégrale des fonctions en escalier

Proposition 2 Soient f et g deux fonctions en escalier sur [a, b]

1. La fonction f + g est en escalier et l’on a

∫ b

a

(f + g) (x) dt =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.
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2. Pour tout nombre réel λ, la fonction λf est en escalier et l’on a

∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx.

3. Si f ≥ g, alors
∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.

4. On a

∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

5. Les fonctions en escalier qui diffèrent en un nombre fini de points ont la même

intégrale.

6. ∀c ∈ [a, b], on a
∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

Preuve 1 1. Soient (x0, x1, ..., xn) une subdivision adaptée à f et (y0, y1, ..., yn) une sub-

division adaptée à g.

Comme

{x0, x1, ..., xn} ∪ {y0, y1, ..., yn} = {z0, z1, ..., zl} ,

où l’on a

z0 < z1 < ... < zl avec z0 = a et zl = b,

on obtient une subdivision adaptée à f et g, donc à la fonction f + g.

Utilisons cette subdivision pour calculer les integrales de f , g et f + g.

On a pour tout x ∈ ]zi−1, zi[

∀i ∈ N, 1 ≤ i ≤ l,∃ (mi, pi) ∈ R2 tels que f (x) = mi et g (x) = pi

Il vient donc∫ b

a

f(x) dx = (z1 − z0)m1 + (z2 − z1)m2 + ...+ (zl − zl−1)ml.∫ b

a

g(x) dx = (z1 − z0) p1 + (z2 − z1) p2 + ...+ (zl − zl−1) pl.∫ b

a

(f + g) (x) dx = (z1 − z0) (m1 + p1) + (z2 − z1) (m2 + p2) + ...+ (zl − zl−1) (ml + pl) .
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D’où le résultat.

2. La démonstration est semblable à la précédente et plus simple.

3. Si f ≥ g, alors la fonction étagée f − g ≥ 0, donc
∫ b

a

(f − g) (x) dx ≥ 0.

En utilisant (1) et (2), on en déduit
∫ b

a

f(x)dx−
∫ b

a

g(x)dx =

∫ b

a

(f − g) (x) dx ≥ 0.

4. Pour tout t ∈ [a, b] on a

− |f(x)| ≤ f(x) ≤ |f(x)| .

Donc on a

−
∫ b

a

|f(x)| dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)| dx.

D’où ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

5. Soient f et g des fonctions en escalier qui diffèrent en un nombre fini de points,

alors f −g est nulle sauf en ces points.

D’après la remarque, on en déduit
∫ b

a

(f − g) (x) dx = 0

donc ∫ b

a

f(x) dx =

∫ b

a

g(x) dx.

6. Posons

f1(x) =

 f(x) si a ≤ x ≤ c

0 si c ≤ x ≤ b
et f2(x) =

 0 si a ≤ x ≤ c

f(x) si c ≤ x ≤ b
,

on a f1(x) + f2(x) = f(x) pour tout x ∈ [a, b] et par définition de l’intégrale

∫ b

a

f1(x) dx =

∫ c

a

f(x) dx et
∫ b

a

f2(x) dx =

∫ b

c

f(x) dx.

On déduit le résultat en appliquant (1).
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Sommes de Darboux

Considérons une subdivision finie de l’intervalle [a, b] en n sous intervalles :

[xk−1, xk], k = 1, ..., n, avec x0 = a et xn = b.

Soit mk(resp Mk) la borne inférieure (resp la borne supérieure) de la restriction de f à

[xk−1, xk[, pour 1 ≤ k ≤ n− 1 et à [xn−1, b] pour k = n.

Définition 2.1.4 On appelle somme de Darboux inférieure la quantité s(f ;x0, x1, ..., xn)

définie par :

s(f ;x0, x1, ..., xn) =
n−1∑
k=0

(xk+1 − xk)mk.

On appelle somme de Darboux supérieure la quantité S(f ;x0, x1, ..., xn) définie par :

S(f ;x0, x1, ..., xn) =
n−1∑
k=0

(xk+1 − xk)Mk.

On obtient alors :

I−(f) = sup s(f ;x0, x1, ..., xn), I+(f) = inf S(f ;x0, x1, ..., xn) et I−(f) ≤ I(f) ≤ I+(f)

Remarque 2.1.3 Etudier l’interprétation géométrique des sommes de Darboux comme

aire des rectangles de base [xi−1, xi], encadrant l’épigraphe de f de en-dessous resp. au-

dessus.
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FIG.2-Somme de Darboux inférieure (hachurée) et supérieure (hachurée plus blanc)

de f(x) pour une subdivision équidistante d’ordre 4 de [a, b].

2.2 Fonctions Intégrables

Nous allons maintenant définir la notion d’intégrale pour des fonctions plus générales.

L’outil théorique permettant cette généralisation est la notion de la borne supérieure et

la borne inférieure.

2.2.1 Intégrale de Riemann

Définition 2.2.1 Une fonction f : [a, b] → R est intégrable si pour tout nombre ε > 0,

il existe des fonctions en escalier u et U définies sur [a, b], telles que

u ≤ f ≤ U et
∫ b

a

(U − u) (x) dx ≤ ε.

Remarque 2.2.1 I Si r est un nombre réel et si −ε ≤ r ≤ ε, alors r = 0.

I Une fonction en escalier est intégrable ( il suffi t de poser u = U = f ).
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I Une fonction intégrable est bornée. En effet, une fonction en escalier est majorée

et minorée.

Définition 2.2.2 On appelle intégrale inférieure de f et on note I−(f), la borne supé-

rieure des intégrales des fonctions en escalier inférieures ou égales à f , c’est-à-dire :

I−(f) = sup

{∫ b

a

φ(x) dx \ φ en escalier et φ ≤ f

}

Définition 2.2.3 On appelle intégrale supérieure de f et on note I+(f), la borne infé-

rieure des intégrales des fonctions en escalier supérieures ou égales à f , c’est-à-dire :

I+(f) = inf

{∫ b

a

φ(x) dx \ φ en escalier et φ ≥ f

}

Définition 2.2.4 Si f : [a, b]→ R est une fonction intégrable (au sens de Riemann), le

nombre I−(f) = I+(f) s’appelle l’intégrale de f et se note I(f) ou
∫ b

c

f(x) dx.

FIG.3-L’intégrale de f au sens de Riemann

Exemple 31 Soit f : [0, 1]→ R, f(x) = x2. Montrons qu’elle est intégrable et calculons
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∫ 1

0

f (t) dt.

FIG.4-L’intégrale de f(x) = x2 sur [0, 1]

Soit n ≥ 1 et considérons la subdivision régulière de [0, 1] suivante

s =

(
0,

1

n
,

2

n
, ...,

i

n
, ...,

n− 1

n
, 1

)
.

Sur l’intervalle
[
i− 1

n
,
i

n

]
nous avons

∀x ∈
[
i− 1

n
,
i

n

] (
i− 1

n

)2

≤ x2 ≤
(
i

n

)2

.

Nous construisons une fonction en escalier φ− en-dessous de f par φ−(x) =

(
i− 1

n

)2

si x ∈
[
i− 1

n
,
i

n

]
(pour chaque i = 1, ..., n ) et φ−(1) = 1. De même nous construisons

une fonction en escalier φ+ au-dessus de f définie par φ+(x) =

(
i

n

)2

si x ∈
[
i− 1

n
,
i

n

]
(pour chaque i = 1, ..., n ) et φ+(1) = 1. φ− et φ+ sont des fonctions en escalier et l’on a

φ− ≤ f ≤ φ+.
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L’intégrale de la fonction en escalier φ+ est par définition

∫ 1

0

φ+ (x) dx =

n∑
i=1

i2

n2

(
i

n
,
i− 1

n

)
=

n∑
i=1

i2

n2

1

n
=

1

n3

n∑
i=1

i2.

On se souvient de la formule
∑n

i=1
i2 =

n(n+ 1)(2n+ 1)

6
, et donc

∫ 1

0

φ+ (x) dx =
n(n+ 1)(2n+ 1)

6n3
=

(n+ 1)(2n+ 1)

6n2
.

De même pour la fonction φ− :

∫ 1

0

φ− (x) dx =
n∑
i=1

(i− 1)2

n2

1

n
=

1

n3

n−1∑
i=1

j2 =
(n− 1)n(2n− 1)

6n3
=

(n− 1)(2n− 1)

6n2
.

Maintenant I−(f) est la borne supérieure sur toutes les fonctions en escalier inférieures

à f donc en particulier

I−(f) ≥
∫ 1

0

φ− (x) dx.

De même

I+(f) ≤
∫ 1

0

φ+ (x) dx.

En résumé :

(n− 1)(2n− 1)

6n2
=

∫ 1

0

φ− (x) dx ≤ I−(f) ≤ I+(f) ≤
∫ 1

0

φ+ (x) dx =
(n+ 1)(2n+ 1)

6n2
.

Lorsque l’on fait tendre n vers +∞ alors les deux extrémités tendent vers
1

3
. On en déduit

que I−(f) = I+(f) =
1

3
.

Ainsi f est intégrable et
∫ 1

0

x2 dx =
1

3
.

Convention :

i)
∫ a

a

f(x) dx = 0
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ii)
∫ a

b

f(x) dx = −
∫ b

a

f(x) dx (a ≤ b)

2.2.2 Propriétés de l’intégrale

Ce sont les mêmes propriétés que pour les fonctions en escaliers.

Proposition 3 Soient f et g des fonctions définies sur [a, b] et intégrables.

1. La fonction f + g est intégrable et l’on a

∫ b

a

(f + g) (x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

2. Pour tout nombre réel λ, la fonction λf est intégrable et l’on a

∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx.

3. Si f ≥ g, alors
∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.

4. Des fonctions intégrables qui diffèrent en un nombre fini de points ont le même

intégrale .

5. Quelque soit c ∈ [a, b], f est intégrable sur [a, c] et sur [c, b] et l’on a

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx (Formule de Chasles)

Preuve 2 1. Puisque les fonctions f et g sont intégrables, ∀ε > 0, il existe des fonctions

en escalier u, v, U et V telles que

u ≤ f ≤ U , v ≤ g ≤ V ,
∫ b

a

(U − u) (x) dx ≤ ε

2
et
∫ b

a

(V − v) (x) dx ≤ ε

2

Posons w = u+ v et W = U + V . Les fonctions w et W sont en escalier. De plus, nous
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avons

w ≤ f + g ≤ W et
∫ b

a

(W − w) (x) dx =

∫ b

a

(U − u) (x) dx+

∫ b

a

(V − v) (x) dx ≤ ε

La fonction f est donc intégrable. L’encadrement w ≤ f + g ≤ W implique

∫ b

a

u(x) dx+

∫ b

a

v(x) dx ≤
∫ b

a

(f + g) (x) dx ≤
∫ b

a

U(x) dx+

∫ b

a

V (x) dx.

D’autre part, en ajoutant membre à membre les inégalités

∫ b

a

u(x) dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

U(x) dx et
∫ b

a

v(x) dx ≤
∫ b

a

g(x) dx ≤
∫ b

a

V (x) dx,

nous obtenons

∫ b

a

u(x) dx+

∫ b

a

v(x) dx ≤
∫ b

a

f(x) dx+

∫ b

a

g(x) dx ≤
∫ b

a

U(x) dx+

∫ b

a

V (x) dx.

On déduit les deux inégalités

∫ b

a

u(x)dx+

∫ b

a

v(x)dx−
(∫ b

a

U(x)dx+

∫ b

a

V (x)dx

)
≤
∫ b

a

(f + g) (x)dx−
(∫ b

a

f(x)dx+

∫ b

a

g(x)dx

)

et

∫ b

a

(f + g) (x)dx−
(∫ b

a

f(x)dx+

∫ b

a

g(x)dx

)
≤
∫ b

a

U(x)dx+

∫ b

a

V (x)dx−
(∫ b

a

u(x)dx+

∫ b

a

v(x)dx

)

Dans ces encadrements, le membre droit de la deuxième inégalité vaut

∫ b

a

(U − u) (x) dx+

∫ b

a

(V − v) (x) dx ≤ ε

2
+
ε

2
= ε,

de même, le membre gauche de la première inégalité est supérieur ou égal à ε, il vient
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donc

ε ≤
∫ b

a

(f + g) (x) dx−
(∫ b

a

f(x) dx+

∫ b

a

g(x) dx

)
≤ ε

comme ces inégalités sont vraies pour tout ε > 0, nous concluons

∫ b

a

(f + g) (x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx

d’où le premier résultat.

2. Ce résultat se démontre exactement comme le précédent.

3. La fonction f − g est intégrable d’après (1) et (2). Si l’on a f − g ≥ 0, donc par

définition de l’intégrale

∫ b

a

(f − g) (x) dx ≥
∫ b

a

0 dx = 0.

D’après (1), nous avons

∫ b

a

(f − g) (x) dx =

∫ b

a

f(x) dx−
∫ b

a

g(x) dx,

d’où l’inégalité ∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.

Les propriétés (4) et (5) se démontrent comme pour les fonctions en escaliers.

Remarque 2.2.2 Noter que même si f .g est intégrable on a en général

∫ b

a

(f.g) (x) dx 6=
(∫ b

a

f(x) dx

)
.

(∫ b

a

g(x) dx

)
.

Par exemple, soit f : [0, 1]→ R la fonction définie par

f (x) =

 1 si x ∈
[
0,

1

2

]
0 ailleure

,
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et soit g : [0, 1]→ R la fonction définie par

g (x) =

 1 si x ∈
[

1

2
, 1

]
0 ailleure

,

alors f (x).g(x) = 0 pour tout x ∈ [0, 1] et donc
∫ 1

0

f (x).g(x) dx = 0.

Alors que
∫ 1

0

f(x) dx =
1

2
et
∫ 1

0

g(x) dx =
1

2
.

Proposition 4 (Inégalité de Cauchy-Schwarz.) Soient f , g : [a, b] → R deux fonc-

tions Riemann-intégrables sur [a, b], alors, on a l’inégalité dite de Cauchy-schwarz :

∣∣∣∣∫ b

a

f(x).g(x) dx

∣∣∣∣ ≤ (∫ b

a

f 2(x) dx

)1

2
.

(∫ b

a

g2(x) dx

)1

2
.

Preuve 3 Posons

P (λ) =

∫ b

a

(f(x) + λg(x))2 dx = λ2

∫ b

a

g2(x) dx+ 2λ

∫ b

a

f(x).g(x) dx+

∫ b

a

f 2(x) dx.

On a P (λ) ≥ 0 ∀λ ∈ R, alors

∆′ =

(∫ b

a

f(x).g(x) dx

)2

−
∫ b

a

f 2(x) dx.

∫ b

a

g2(x) dx ≤ 0

d’où le résultat.

Proposition 5 (Inégalité de Minkowski) Soient f , g : [a, b] → R deux fonctions

Riemann-intégrables sur [a, b], alors, on a l’inégalité suivante :

[∫ b

a

(f(x) + g(x))2 dx

]1

2 ≤
(∫ b

a

f 2(x) dx

)1

2
+

(∫ b

a

g2(x) dx

)1

2
.
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Preuve 4

∫ b

a

(f(x) + g(x))2 dx =

∫ b

a

f 2(x) dx+ 2

∫ b

a

f(x).g(x) dx+

∫ b

a

g2(x) dx

≤
∫ b

a

f 2(x) dx+ 2

(∫ b

a

f 2(x) dx

)1

2
.

(∫ b

a

g2(x) dx

)1

2
+

∫ b

a

g2(x) dx

=

(∫ b

a

f 2(x) dx

)1

2
+

(∫ b

a

g2(x) dx

)1

2


2

D’où [∫ b

a

(f(x) + g(x))2 dx

]1

2
=

(∫ b

a

f 2(x) dx

)1

2
+

(∫ b

a

g2(x) dx

)1

2
.

Corollaire 2.2.1 Soit f : [a, b]→ R une fonction intégrable. Sim etM sont des nombres

réels tels que m ≤ f (x) ≤M quelque soit x ∈ [a, b], alors on a

m ≤ 1

b− a

∫ b

a

f(x) dx ≤M.

Preuve 5 D’après la propriété (3) de la proposition 3, on a

m(b− a) =

∫ b

a

m dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

M dx = M(b− a).

⇔ m ≤ 1

b− a

∫ b

a

f(x) dx ≤M.

Théorème 2.2.1 (Formule de la moyenne). Soit f une fonction continue sur [a, b] et g

intégrable sur [a, b] avec g de signe constant, alors il existe un nombre c ∈ [a, b] tel que

∫ b

a

f (x) g(x) dx = f(c)

∫ b

a

g(x) dx.
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En particulier si g = 1 on a

f(c) =
1

b− a

∫ b

a

f(x) dx.

Preuve 6 Nous supposerons ici que g est positive. L’autre cas se traite de manière ana-

logue.

Puisque la fonction f est continue, elle admet un maximum M et un minimum m . On

a

mg(x) ≤ f (x) g(x) ≤Mg(x) ∀x ∈ [a, b] ,

donc

m

∫ b

a

g(x) dx ≤
∫ b

a

f (x) g(x) dx ≤M

∫ b

a

g(x) dx (*)

1ercas : Si
∫ b

a

g(x) dx = 0, alors
∫ b

a

f(x)g(x) dx = 0 et le théorème est évidement vérifié.

2èmecas : Si
∫ b

a

g(x) dx 6= 0, les inégalités (* ) impliquent que

m ≤

∫ b

a

f (x) g(x) dx∫ b

a

g(x) dx

≤M

alors on a, d’après le corollaire précédent, le nombre

∫ b

a

f (x) g(x) dx∫ b

a

g(x) dx

∈ [m,M ] ,

donc il existe c ∈ [a, b] tel que

∫ b

a

f (x) g(x) dx∫ b

a

g(x) dx

= f(c).
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Théorème 2.2.2 Si f : I = [a, b]→ R est une fonction continue, alors

- f est bornée et intégrable sur tout segment contenu dans I.

- Pour tout c ∈ I, la fonction F (x) =

∫ x

c

f(t) dt est la primitive de f qui s’annule en c.

- Pour tout x ∈ ]a, b[, F ′(x) = f(x), F ′d(a) = f(a), F ′g(b) = f(b).

Preuve 7 Il suffi t de montrer que F est dérivable en tout point x0 ∈ I et que

F ′(x0) = f(x0).

Soit x0 ∈ I, alors on a :

1

h
(F (x0 + h)− F (x0)) =

1

h

∫ x0+h

c

f(x) dx− 1

h

∫ x0

c

f(x) dx =
1

h

∫ x0+h

x0

f(x) dx.

En utilisant la continuité de f sur [x0, x0 + h] et la formule de la moyenne, on obtient

∃ηh ∈ [x0, x0 + h] tel que :

f(ηh) =
1

h

∫ x0+h

x0

f(x) dx

D’où

lim
h→0

F (x0 + h)− F (x0)

h
= lim

h→0
f(ηh) = f(lim(

h→0

ηh)) = f(x0).

Donc on a : F ′(x0) = f(x0).

Si x0 = a, on considère lim
h→0+

F (x0 + h)− F (x0)

h
= F ′d(a).

Si x0 = b, on considère lim
h→0−

F (x0 + h)− F (x0)

h
= F ′g(b).

Remarque 2.2.3 1) Si les hypothèses du théorème précédent sont vérifiées et si on consi-

dère la fonction F (x) =

∫ c

x

f(t) dt (a ≤ x ≤ b), alors

- Pour tout x ∈ ]a, b[, F ′(x) = −f(x).

- Si a ∈ I alors F ′d(a) = −f(a) et si b ∈ I alors F ′g(b) = −f(b)

2) Pour toute primitive F de f on a :
∫ b

a

f(x) dx = [F (x)]ba = F (b)− F (a).
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3) En reprenant l’intégration par parties, vue lors de l’étude des primitives, on obtient :

∫ b

a

f(x)g′(x) dx = [f(x)g(x)]ba −
∫ b

a

f ′(x)g(x) dx.

4) En utilisant le changement de variables x = ψ(t), on obtient :

∫ ψ(b)

ψ(a)

f(x) dx =

∫ b

a

f(ψ(t))ψ′(t) dt

Théorème 2.2.3 Si f : I = [a, b]→ R est une fonction monotone, alors f est intégrable

sur I

2.2.3 Sommes de Riemann

L’intégrale est définie à partir des limites des sommes. Mais maintenant que nous

savons calculer des intégrales sans utiliser ces sommes on peut faire le cheminement

inverse : calculer des limites de sommes à partir d’intégrales.

Théorème 2.2.4 Soit f : [a, b]→ R une fonction intégrable, alors

Sn =
b− a
n

n∑
k=1

f(a+ k
b− a
n

) →
n→+∞

∫ b

a

f(x) dx

Sn s’appelle la somme de Riemann associée à l’intégrale et correspond à une subdivision

régulière de l’intervalle [a, b] en n petits intervalles. La hauteur de chaque rectangle est

évaluée à son extrémité droite. Le cas le plus utile est celui où a = 0 et b = 1, alors

b− a
n

=
1

n
et f(a+ k

b− a
n

) = f(
k

n
),

ainsi

Sn =
1

n

n∑
k=1

f(
k

n
) →
n→+∞

∫ 1

0

f(x)dx
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FIG.5-Somme de Riemann

Exemple 32 Calculer la limite de la somme Sn =

n∑
k=1

1

n+ k
.

On a

S1 =
1

2
, S2 =

1

3
+

1

4
, S3 =

1

4
+

1

5
+

1

6
, S4 =

1

5
+

1

6
+

1

7
+

1

8
, ...

La somme Sn s’écrit aussi Sn =
1

n

n∑
k=1

1

1 +
k

n

. En posant f(x) =
1

1 + x
, a = 0 et b = 1,

on reconnaît que Sn est une somme de Riemann.

Donc

Sn =
1

n

n∑
k=1

1

1 +
k

n

=
1

n

n∑
k=1

f(
k

n
) →
n→+∞

∫ 1

0

f(x) dx =

∫ 1

0

1

1 + x
dx = [log |1 + x|]10 = log 2.

Ainsi, Sn → log 2 ( lorsque n→ +∞ ).

Proposition 6 Si f ∈ C1 ([0, 1]) ( f ′ existe et continue )

et si on pose

Rn =
1

n

n−1∑
k=0

f

(
k

n

)
on a ∣∣∣∣∫ 1

0

f(x)dx−Rn

∣∣∣∣ ≤ M1

2n

où M1 = sup {|f ′(x)| ; x ∈ [0, 1]} .
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Preuve 8 Sur l’intervalle [xk, xk+1], en utilisant l’inégalité des accroissements finis, l’er-

reur est ∣∣∣∣∫ xk+1

xk

(f(x)− f (xk)) dx

∣∣∣∣ ≤ ∫ xk+1

xk

|f(x)− f(xk)| dx

≤ M1

∫ xk+1

xk

|x− xk| dx

= M1

[
(x− xk)2

2

]xk+1
xk

=
M1

2n2
.

Cette erreur étant obtenue sur n intervalles, on a le résultat annoncé.

Théorème 2.2.5 Soit f une fonction intégrable et positive sur [a, b], alors
∫ b

a

f(x)dx est

l’aire du domaine

D =
{

(x, y) ∈ R2; a ≤ x ≤ b, 0 ≤ y ≤ f(x)
}
.

Pour f de signe quelconque alors
∫ b

a

f(x) dx =

∫ b

a

f+(x) dx−
∫ b

a

f−(x) dx est la différence

des surfaces des domaines D+ et D− associés à f+ et à f−.

Preuve 9 Les sommes de Darboux sont des sommes de surfaces de rectangles qui en-

cadrent le domaine D comme précisé ci-dessus. Si f est intégrable, on a vu que ces

sommes convergent vers l’intégrale de f .

Exemple 33 Déterminer les sommes de Darboux inférieures et supérieures et étudier

l’intégrabilité au sens de Riemann des fonctions f suivantes :

a) f constante sur [a, b] et σ une subdivision quelconque de [a, b].

b) f en escalier sur [a, b] et σ une subdivision adaptée.

c) f monotone sur [a, b], σ une subdivision quelconque et σn une subdivision uniforme

de pas
b− a
n

.
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d) f définie sur [a, b] par

f(x) =

 0; x ∈ Q ∩ [a, b]

1; x ∈ (R−Q) ∩ [a, b]

e) f définie sur [0, 1] par

f(x) =

 x; x ∈ Q ∩ [0, 1]

0; x ∈ (R−Q) ∩ [0, 1]

Preuve 10 a) On pose f(x) = C, soit σ = {x0, ..., xn} alors : Mi = mi = C ,∀i ∈

[0;n− 1], donc Iσ+(f) =
n−1∑
i=0

Mi (xi+1 − xi) = C (b− a) et Iσ−(f) =
n−1∑
i=0

mi (xi+1 − xi) =

C (b− a) d’où I+(f) = I−(f) = C (b− a) , f est intégrable avec
∫ b

a

f(x)dx = C (b− a) .

b) Soit σ0 = {x0, ..., xn} une subdivision adaptée à f , on pose

f(x) = Ci∀x ∈ ]xi, xi+1[ ,∀i ∈ [0, n− 1] ,

donc

Iσ0+ (f) =
n−1∑
i=0

Mi (xi+1 − xi) =
n−1∑
i=0

Ci (xi+1 − xi) =
n−1∑
i=0

mi (xi+1 − xi) = Iσ0− (f),

d’où

Iσ0+ (f) = Iσ0− (f).

Intégrabilité : Soit σ une subdivision quelconque, on prend σ1 = σ ∪ σ0 où σ1 est une

subdivision adaptée à f et on a :

Iσ−(f) ≤ Iσ1− (f) = Iσ1+ (f) ≤ Iσ+(f)
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donc

sup
σ
Iσ−(f) = inf

σ
Iσ+(f),

alors f est intégrable et
∫ b

a

f(x)dx =

n−1∑
i=0

Ci (xi+1 − xi) .

c) Soit σ = {x0, ..., xn} une subdivision quelconque, alors,

Mi = sup
[xi,xi+1]

f = f(xi+1)( ou f(xi) )

mi = inf
[xi,xi+1]

f = f(xi)( ou f(xi+1) ).

( f est croissante ou décroissante). On suppose par exemple que f est croissante,

Iσ+(f) =
n−1∑
i=0

f(xi+1) (xi+1 − xi)

Iσ−(f) =
n−1∑
i=0

f(xi) (xi+1 − xi)

Intégrabilité : On a ∀σ subdivision de [a, b]

Iσ+(f)− Iσ−(f) =
n−1∑
i=0

(f(xi+1)− f(xi)) (xi+1 − xi)

≤ max
i

(xi+1 − xi)
n−1∑
i=0

(f(xi+1)− f(xi))

≤ max
i

(xi+1 − xi) (f(b)− f(a)) .

Soit ε > 0 telle que

hσ = max
i

(xi+1 − xi) <
ε

f(b)− f(a) + 1
,

alors

Iσ+(f)− Iσ−(f) ≤ ε (f(b)− f(a))

f(b)− f(a) + 1

≤ ε
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ce qui montre l’intégrabilité.

Si σn = {x0, ..., xn} est la subdivision régulière à n intervalles, alors

Iσn+ (f) =
b− a
n

n−1∑
i=0

f(xi+1)

Iσn− (f) =
b− a
n

n−1∑
i=0

f(xi)

d)

f(x) =

 0; x ∈ Q ∩ [a, b]

1; x ∈ R/Q ∩ [a, b]

On sait que ∀ [c, d] ∈ R, alors

[c, d] ∩Q 6= ∅ et [c, d] ∩ R/Q 6= ∅

Q et R/Q sont denses dans R, d’où ∀σ = {x0, ..., xn} une subdivision de [a, b] alors :

Mi = sup
[xi,xi+1]

f = 1, mi = inf
[xi,xi+1]

f = 0,

d’où

Iσ+(f) =
n−1∑
i=0

(xi+1 − xi) = b− a et Iσ−(f) = 0

alors

inf
σ
Iσ+(f) = b− a et sup

σ
Iσ+(f) = 0

donc f est non intégrable au sens de Riemann.

e)

f(x) =

 x; x ∈ Q ∩ [0, 1]

0; x ∈ (R−Q) ∩ [0, 1]
.

Soit σ = {x0, ..., xn} une subdivision de [0, 1] et Mi = sup
[xi,xi+1]

f = xi+1 car ∃ (rk) est une
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suite de rationnels dans [xi, xi+1] telle que lim
k→+∞

rk = xi+1.

Comme f (rk) = rk donc lim
k→+∞

f (rk) = xi+1, d’où

 ∀x ∈ [xi, xi+1] , f(x) ≤ xi+1

∃ (rk) ∈ [xi, xi+1] / lim
k→+∞

f (rk) = xi+1

⇒


Mi = sup

[xi,xi+1]

f = xi+1

mi = inf
[xi,xi+1]

f = 0
,

d’où 
Iσ+(f) =

n−1∑
i=0

xi+1 (xi+1 − xi)

Iσ−(f) = 0

.

Prenons la fonction continue sur [0, 1], g(x) = x, g est intégrable et Iσ+(g) = Iσ+(f).

Or on sait que

inf
σ
Iσ+(g) = lim

n→+∞
Iσn+ (g)

où σn est la subdivision régulière de [0, 1], donc

inf
σ
Iσ+(g) = lim

n→+∞

n∑
k=1

k

n

= lim
n→+∞

1

n2

n(n+ 1)

2
=

1

2
.

Ainsi 
inf
σ
Iσ+(f) =

1

2

sup
σ
Iσ−(f) = 0

,

donc f n’est pas intégrable.

Exemple 34 Considérons la fonction définie sur [a, b] par f(x) = x3 et σn la subdivision

uniforme de pas
b− a
n
.

a) Calculer les sommes de Darboux inférieures In−(f) et supérieures In+(f) de f as-

sosiées à la subdivision σn (On rapelle que :
n∑
k=1

k2 =
n (n+ 1) (2n+ 1)

6
et

n∑
k=1

k3 =
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n2

(
n+ 1

2

)2

).

b) Montrer que lim In−(f)
n→+∞

= lim
n→+∞

In+(f) =
b4 − a4

4
.

Preuve 11 a) On a

xk = a+
k

n
(b− a) , k ∈ [0, n] ,

Mk = sup
[xk,xk+1]

f = f (xk+1) =

(
a+

k + 1

n
(b− a)

)3

mk = inf
[xk,xk+1]

f = f (xk) =

(
a+

k

n
(b− a)

)3

In+(f) =
n−1∑
k=0

b− a
n

(
a+

k + 1

n
(b− a)

)3

=
n−1∑
k=0

b− a
n

(
a3 +

3a2

n
(b− a) (k + 1) +

3a

n2
(b− a)2 (k + 1)2 +

(
b− a
n

)3

(k + 1)3

)

=
b− a
n

(
na3
)

+
3a2 (b− a)2

n2

n(n+ 1)

2
+

3a

n3
(b− a)3 n (n+ 1) (2n+ 1)

6

+

(
b− a
n

)4
n2 (n+ 1)2

4
.

b) lim
n→+∞

In+(f) =
b4 − a4

4
.

De la même manière on trouve

In−(f) =
n−1∑
k=0

b− a
n

(
a+

k

n
(b− a)

)3

et lim
n→+∞

In−(f) =
b4 − a4

4
.

Exemple 35 Soit α, β ∈ R∗+, calculer la limite des suites suivantes :

1.
n∑
k=0

1

nα + kβ
2.

n∑
k=0

n

n2 + k2
3.

n∑
k=0

k2

n3 + 8k3
4.

n∑
k=0

kp

np+1
, p ∈ R∗+

5.
n∑
k=0

1√
n2 + 2kn

6.
1

n

n∑
k=0

cos2 kπ

n
7.

n∑
k=0

1√
4n2 − k2

8.
1

n

n∑
k=0

n
√
ak, (a > 1)
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Preuve 12 1.On a
n∑
k=0

1

nα + kβ
=

1

n

n∑
k=0

1

α + β
k

n

la somme de Riemann associée à la fonction f(x) =
1

α + βx
, définie et continue sur

[0, 1] . Pour la subdivision σ = {x0, ..., xn}, définie par xk =
k

n
, k ∈ {0, ..., n}, on obtient

lim
n→+∞

n∑
k=0

1

nα + kβ
=

∫ 1

0

dx

α + βx
=

1

β
log

(
α + β

α

)
.

2. On a
n∑
k=0

n

n2 + k2
=

1

n

n∑
k=0

1

1 +

(
k

n

)2

la somme de Riemann associée à la fonction f(x) =
1

1 + x2
, définie et continue sur [0, 1].

Pour la subdivision σ = {x0, ..., xn}, définie par xk =
k

n
, k ∈ {0, ..., n}, on obtient

lim
n→+∞

n∑
k=0

n

n2 + k2
=

∫ 1

0

dx

1 + x2
= [arctanx]10 =

π

4
.

3. On a

n∑
k=0

k2

n3 + 8k3
=

1

n

n∑
k=0

(
k

n

)2

1 + 8

(
k

n

)3

la somme de Riemann associée à la fonction f(x) =
x2

1 + 8x2
, définie et continue sur

[0, 1]. Pour la subdivision σ = {x0, ..., xn}, définie par xk =
k

n
, k ∈ {0, ..., n}, on obtient

lim
n→+∞

n∑
k=0

k2

n3 + 8k3
=

∫ 1

0

x2dx

1 + 8x3
=

[
1

24
log
(
1 + 8x3

)]1

0

=
1

12
log 3.
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4. On a
n∑
k=0

kp

np+1
=

1

n

n∑
k=0

(
k

n

)p
la somme de Riemann associée à la fonction f(x) = xp, définie et continue sur [0, 1] (car

p > 0). Pour la subdivision σ = {x0, ..., xn}, définie par xk =
k

n
, k ∈ {0, ..., n}, on obtient

lim
n→+∞

n∑
k=0

kp

np+1
=

∫ 1

0

xpdx =
1

p+ 1
.

5. On a
n∑
k=0

1√
n2 + 2kn

=
1

n

n∑
k=0

1√
1 + 2

(
k

n

)

la somme de Riemann associée à la fonction f(x) =
1√

1 + 2x
, définie et continue sur

[0, 1]. Pour la subdivision σ = {x0, ..., xn}, définie par xk =
k

n
, k ∈ {0, ..., n}, on obtient

lim
n→+∞

n∑
k=0

1√
n2 + 2kn

=

∫ 1

0

dx√
1 + 2x

=
[√

1 + 2x
]1

0
=
√

3− 1.

6. On a
1

n

n∑
k=0

cos2 kπ

n

la somme de Riemann associée à la fonction f(x) = cos2 πx, définie et continue sur [0, 1].

Pour la subdivision σ = {x0, ..., xn}, définie par xk =
k

n
, k ∈ {0, ..., n}, on obtient

lim
n→+∞

1

n

n∑
k=0

cos2 kπ

n
=

∫ 1

0

cos2 πxdx =
1

2

∫ 1

0

(1 + cos 2πx) dx =
1

2
.

7. On a
n∑
k=0

1√
4n2 − k2

=
1

n

n∑
k=0

1√
4−

(
k

n

)2
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la somme de Riemann associée à la fonction f(x) =
1√

4− x2
, définie et continue sur

[0, 1]. Pour la subdivision σ = {x0, ..., xn}, définie par xk =
k

n
, k ∈ {0, ..., n}, on obtient

lim
n→+∞

n∑
k=0

1√
4n2 − k2

=

∫ 1

0

dx√
4− x2

=
[
arcsin

x

2

]1

0
=
π

6
.

8. On a

1

n

n∑
k=0

n
√
ak =

1

n

n∑
k=0

(a)

k

n

la somme de Riemann associée à la fonction f(x) = ax, définie et continue sur [0, 1].

Pour la subdivision σ = {x0, ..., xn}, définie par xk =
k

n
, k ∈ {0, ..., n}, on obtient

lim
n→+∞

1

n

n∑
k=0

n
√
ak =

∫ 1

0

axdx =

∫ 1

0

ex log adx =
a− 1

log a
.
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Chapitre 3

Équations différentielles du premier

ordre

3.1 Introduction (définitions générales)

De nombreux problèmes issus de la physique sont modélisés à l’aide d’une équation

différentielle (ID), dans laquelle interviennent la fonction inconnue et ses dérivées suc-

cessives. Cette équation relie la fonction inconnue y à sa dérivée, éventuellement à des

dérivées supérieures (y′, y′′,y′′′, . ) et à d’autres fonctions. Par exemple :

y′′(x)− 2y′(x) + y(x) = sinx

y′(x) + a(x)y(x) = b(x)

(y′(x))2 + exp (y(x)) = cos x

.

Un exemple que vous connaissez bien sans doute, l’équation du mouvement d’un objet

physique ponctuel lancé avec une vitesse initiale et soumis au champ de la pesanteur :

mx′′(t) = −mg.
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Ou encore un ressort soumis à la gravité et à la force de rappel

mx′′(t) = −kx(t)−mg

En toute généralité la résolution d’une équation différentielle vraiment quelconque est un

problème qui peut être extrêmement diffi cile, parfois même au niveau de la recherche.

L’objectif de ce chapitre est de donner les techniques nécessaires pour la résolution

de certaines classes d’équations différentielles.

Définition 3.1.1 • Une équation différentielle d’ordre n est une équation de la forme

F (x, y, y′, ..., y(n)) = 0 (ED)

où Fest une fonction de (n+ 2) variables.

• Une solution d’une telle équation différentielle sur l’intervalle I ⊂ R est une fonction

y ∈ Cn(I;R) (une fonction y : I → R qui est n fois continûment dérivable) qui vérifie

l’équation (ED). (∀ x ∈ I, on a F (x, y(x), y′(x), ..., y(n)(x)) = 0).

Exemple 36 • y′+xy = sinx (l’équation est du 1erordre, dont y est la fonction inconue

et x est la variable).

• y′′′ + y = 0 (l’équation est du 3èmeordre, dont y est la fonction inconue).

Remarque 3.1.1 • Par abréviation, on note y au lieu de y(x), y′ au lieu y′(x),...,. On

note donc « y′ = x+ 1 » ce qui signifie « y′(x) = x+ 1 » .

• Résoudre (ou intégrer) une équation différentielle, c’est trouver toutes les solutions

de cette équation.

• La notion d’intervalle dans la résolution d’une équation différentielle est fondamen-

tale. Si on change d’intervalle, on peut très bien obtenir d’autres solutions. Par exemple,
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si on se place sur l’intervalle I1 =]0,+∞[, l’équation différentielle y′ = 1

x
a pour solutions

les fonctions y(x) = log(x) +k. Alors que sur l’intervalle I2 =]−∞, 0[, les solutions sont

les fonctions y(x) = log(−x) + k, ( k est une constante).

Définition 3.1.2 - L’équation différentielle F (x, y, y′, ..., y(n)) = 0 est une équation dif-

férentielle implicite.

- L’équation différentielle F (x, y, y′, ..., y(n−1)) = y(n) est une équation différentielle

explicite.

Exemple 37 y′ log x− y = 0 est la forme implicite.

y′ = y

log x
est la forme explicite.

Définition 3.1.3 On parle de problème (ou équation différentielle) aux conditions (ou

valeurs) initiales lorsqu’on considère une équation différentielle :



F (x, y, y′, ..., y(n)) = 0

y(x0) = y0

y′(x0) = y1

y′′(x0) = y2

...

y(n−1)(x0) = yn−1

.

Exemple 38 La solution de l’équation différentielle suivante : y′ = y avec y(0) = 1 est

y = ex.

3.1.1 Équations différentielles linéaires

Définition 3.1.4 • Une équation différentielle d’ordre n est linéaire si elle est de la

forme

a0(x)y + a1(x)y′+ ...+ an(x)y(n) = g(x) (E)
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où les ai et g sont des fonctions réelles continues sur un intervalle I ⊂ R.

Le terme linéaire signifie qu’il n’y a pas d’exposant pour les termes y, y′, y′′, . . .

• Une équation différentielle linéaire est homogène ou sans second membre, si la

fonction g ci-dessus est la fonction nulle :

a0(x)y + a1(x)y′+ ...+ an(x)y(n) = 0. (E0)

• Une équation différentielle linéaire est à coeffi cients constants si les fonctions ai
ci-dessus sont constantes :

a0y + a1y′+ ...+ any
(n) = g(x)

où les ai sont des constantes réelles et g une fonction continue.

Exemple 39 • y′ + x2y = sinx est une équation différentielle linéaire du premier ordre

avec second membre.

• y′ + x2y = 0 est l’équation différentielle homogène associée à la précédente.

• 3y(4) + y′+ y = x2 + 1 est une équation différentielle linéaire d’ordre 4 à coeffi cients

constants, avec second membre.

•y′′y + y′ = ex et (y′)3 + y = 0 ne sont pas des équations différentielles linéaires.

Proposition 7 (Principe de linéarité).

Si y1et y2 sont des solutions de l’équation différentielle linéaire homogène

a0(x)y + a1(x)y′+ ...+ an(x)y(n) = 0,

alors, quelque soient λ, µ ∈ R, λy1 + µy2 est aussi solution de cette équation.

Remarque 3.1.2 • L’ensemble des solutions forme un espace vectoriel.

• (E0) est l’équation différentielle linéaire homogène associée à (E)
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Proposition 8 (Principe de superposition).

L’ensemble des solutions S de (E) est formé de

y0 + y avec y ∈ Sh

où

- Sh est l’ensemble des solutions y de l’équation homogène (E0) .

- y0 est une solution particulière de l’équation (E).

Exemple 40 Chercher la solution de l’équation

y′′ = cos 2x.

On a : y0 = −1

4
cos 2x une solution particulière de l’équation avec second membre et

y = kx+ c (k, c ∈ R) la solutions de l’équation homogène. Donc la solution générale est

y = −1

4
cos 2x+ kx+ c, k, c ∈ R.

3.2 Les équations différetielles du premier ordre

Définition 3.2.1 Une équation différentielle du premier ordre est une expression qui

décrit une relation entre une fonction à une variable et sa dérivée première

F (x, y, y′) = 0,

lorsque cette équation est résoluble en y′, on peut la mettre sous la forme

y′ = f(x, y).
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L’ensemble des solutions de l’équation différentielle est appelé solution générale.

Si on ajoute à l’équation une condition initiale y(x0) = y0, on dit que le système y′ = f(x, y)

y(x0) = y0

,

admet une solution particulière.

3.2.1 Types d’équations différentielles du premier ordre

Équations différentielles à variables séparables

Définition 3.2.2 On dit qu’une équation différentielle du 1erordre est à variable sépa-

rable si elle s’écrit

y′ = f(x)g(y),

où f ∈ C0(I,R) et g ∈ C0(I,R).

En pratique, on écrit y′ = f(x)g(y) de la façon suivante

dy

g(y)
= f(x)dx

ce qui donne, en intégrant des deux cotés

∫
dy

g(y)
=

∫
f(x)dx⇔ G(y) = F (x) + k,

où G est une primitive de
1

g
, F est une primitive de f et k est une constante arbitraire.

Exemple 41 Soit y′ = eysin(x).

• Tout d’abord, vérifions qu’il s’agit bien d’une équation différentielle à variable sé-

parable : f(x) = sin(x) et g(y) = ey où f et g sont bien continues sur R.
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• y′ = eysin(x)⇔ e−ydy = sinxdx, ce qui donne en intégrant

∫
e−ydy =

∫
sinxdx ⇒ e−y = cosx+ k

⇒ y = − log |cosx+ k| = log
1

|cosx+ k| .

Équations différentielles homogènes

Définition 3.2.3 On appelle équation différentielle homogène l’équation différentielle du

1erordre de type : y′ = f(
y

x
) où f est continue sur I.

Exemple 42 y′ =
y

x
− x2

y2
est une équation différentielle homogène.

En effet :

y′ =
y

x
− x2

y2
=
x

y
− 1(y

x

)2 = f(
y

x
) où f(t) = t− 1

t2
.

Méthode de résolution On considère l’équation différentielle y′ = f(
y

x
), on pose

u(x) =
y(x)

x
avec x 6= 0 (y(x) = u(x)x).

Si y est une solution de l’équation, alors :

y′(x) = xu′(x) + u(x).

En remplaçant y et y′ par leurs valeurs, on trouve

xu′ + u = f(u).

C’est une équation à variables séparables et s’écrit sous la forme :

u′

f(u)− u =
1

x
où g(u) =

1

f(u)− u et h(x) =
1

x
.

On pose

G(u) =

∫
g(u) du et H(x) =

∫
h(x) dx,
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donc

G(u) = H(x) + k.

Équations différentielles de type y′(x) = f(ax+ by + c)

1. Si b = 0, y′ = f(ax + c) est une équation différentielle du 1erordre est à variables

séparables.

2. Si b 6= 0, il ne s’agit pas d’une équation à variables séparables, mais on peut la

ramener en posant

u(x) = ax+ by(x) + c.

Si y est une solution de l’équation différentielle y′ = f(ax+ by + c), on a :

u′(x) = a+ by′(x)

= a+ bf(ax+ by + c)

= a+ bf(u(x)).

Il s’agit d’une équation de type u′ = g(u) (à variables séparables) qui est résolue.

Exemple 43 y′ = (x+ y + 1)2 = f(x+ y + 1) avec f(t) = t2.

On pose

u(x) = x+ y(x) + 1,

donc

u′(x) = 1 + y′(x) = 1 + (x+ y + 1)2 = 1 + u2(x).

On a donc :

u′(x) = 1 + u2(x) ⇔ u′(x)

1 + u2(x)
= 1

⇔
∫ du

1 + u2
=
∫

1dx

⇔ arctanu = x+ k

⇔ u = tan g (x+ k)

,
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d’où

u(x) = x+ y(x) + 1 = tan g (x+ k)⇒ y(x) = tan g (x+ k)− x− 1.

Équations différentielles linéaires du 1erordre

Définition 3.2.4 On appelle équation différentielle linéaire d’ordre 1, toute équation

différentielle de la forme :

y′ + a(x)y(x) = f(x) (E)

où a et f sont des fonctions continues de I à valeurs dans R (ou K), I étant un intervalle

de R non réduit à un point.

L’équation homogène (ou sans second membre) associée à (E) est :

y′ + a(x)y = 0 (E0)

a) Résolution de l’équation sans second membre

On remarque que y = 0 est une solution de (E0).

Par ailleurs, si y 6= 0 alors

y′ + a(x)y = 0 ⇔ y′

y
= −a(x)

⇔
∫ dy
y

=
∫
−a(x) dx

⇔ log |y| = −A(x) + k

⇔ y = Ce−A(x) (C = ∓ek)

où k ∈ R et A est une primitive de a(x) dans I, puis y = Ce−A(x) où C ∈ R∗.

Cette méthode ne fait pas apparaître la solution nulle que l’on aura le soin de ne pas

oublier en choisissant C dans R (tout entier).
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Exemple 44 Résoudre les équations différentielles suivantes :

a) y′ + exy = 0 b) y′ + y3ex = 0.

Preuve 13 a)

y′ + exy = 0 ⇒ y′

y
= −ex

⇒
∫

y′

y
= −

∫
exdx

⇒ ln |y| = −ex + c

⇒ y = ke−e
x
, k ∈ R

b)

y′ + y3ex = 0 ⇒ y′ = −y3ex

⇒
∫
− y′

y3
=
∫
exdx

⇒ 1
2y2

= ex + c

⇒ y =
−
+

√
1

2ex + k
, k ∈ R

b) Résolution de l’équation avec second membre

i) Les solutions de (E) s’obtiennent en ajoutant à une solution particulière de (E) les

solutions de (E0). Ce qui donne :

Proposition 9 Si y0 est une solution de (E), alors les solutions de (E) sont les fonctions

y : I → R définies par :

y = y0 + ke−A(x) avec k ∈ R

où x→ A(x) est une primitive de x→ a(x).

Preuve 14 Montrons d’abord qu’elles forment des solutions de (E).
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On a

y′(x) = y′0(x)− ka(x)e−A(x)

= − a(x)y0(x) + C(x)− ka(x)e−A(x)

= −a(x)
[
y0(x) + ke−A(x)

]
+ C(x)

= −a(x)y(x) + C(x).

Ce sont bien des solutions de (E).

Il reste a voir qu’on les aura toutes de la même forme.

Soit y une solution quelconque de (E), considérons z(x) = (y(x)− y0(x)) eA(x), on a

z′(x) = (y′(x)− y′0(x)) eA(x) + (y(x)− y0(x)) a(x)eA(x)

= (−a(x)y(x) + C(x) + a(x)y0(x)− C(x)) eA(x) + (y(x)− y0(x)) a(x)eA(x)

= − (y(x)− y0(x)) a(x)eA(x) + (y(x)− y0(x)) a(x)eA(x)

= 0.

Donc z(x) = C et on conclut facilement que y = y0 + Ce−A(x) avec C ∈ R.

La recherche de la solution générale de (E) se réduit donc à la recherche d’une solution

particulière. Parfois ceci se fait en remarquant une solution évidente. Par exemple,

l’équation différentielle y′ = −2xy + 2x a pour solution particulière y0(x) = 1. Donc

l’ensemble des solutions de cette équation sont les y(x) = 1 + ke−x
2

avec k ∈ R.

ii) Dans le cas où l’on ne dispose pas de solution particulière de (E), on recherche les

solutions de (E) à partir d’une solution non nulle de (E0) de la forme y = Ce−A(x)

où C = C(x) est maintenant une fonction à déterminer pour que y0 soit une solution

de (E).

On a

y′ = C ′(x)e−A(x) − a(x)C(x)e−A(x).
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En reportant y et y′dans (E) on obtient

C ′(x) = f(x)eA(x)

que l’on intègre pour obtenir C(x).

Exemple 45 1◦ Résoudre les équations différentielles

a) y′ + 2xy = 2xe−x
2

b)
(
x+ y2

)
dy = ydx

2◦ Trouver la solution particulière de l’équation

y′ + y = cosx+ sinx

qui vérifie la condition y(0) = 1.

Preuve 15 Les équations données sont des équations différentielles linéaires d’ordre 1.

1◦ a) Soit l’équation différentielle avec second membre

y′ + 2xy = 2xe−x
2

, (E)

on considère l’équation différentielle sans second membre associée à (E)

y′ + 2xy = 0 (E0)

(c’est une équation différentielle à variables séparables).

Pour y 6= 0, l’équation (E0) est équivalente à l’équation

dy

y
= −2x dx,
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donc les solutions vérifient

log |y| = −x2 + C1 où C1 ∈ R,

ou bien encore

y = Ce−x
2

où C ∈ R∗.

D’autre part y = 0 est une solution de (E0), donc

y = Ce−x
2

où C ∈ R

est la solution générale de l’équation sans second membre.

Pour la résolution de l’équation (E), on considère deux méthodes :

1èreméthode : On utilise la méthode de variation de la constante. On recherche les solu-

tions de l’équation (E) de la forme

y = C(x)e−x
2

.

On a

y′ = C ′(x)e−x
2 − 2xC(x)e−x

2

et on reportant y et y′ dans l’équation (E), on obtient

C ′(x)e−x
2 − 2xC(x)e−x

2

+ 2xC(x)e−x
2

= 2xe−x
2

d’où

C ′(x) = 2x =⇒ C(x) = x2 + k où k ∈ R.

Ainsi

y = (x2 + k)e−x
2

où k ∈ R

est la solution générale de l’équation (E).
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2èmeméthode : On recherche la solution particulère de l’équation (E).

Puisque le second membre de l’équation (E) est le produit d’un polynôme de degré un

et de e−x
2
, on cherche une solution particulière yp de l’équation (E) sous la forme

yp = (ax2 + bx+ c)e−x
2

où a, b, c sont des nombres réels à déterminer.

On dérive yp et on la remplace dans l’équation (E), ensuite par identification des

coeffi cients, on trouve

a = 1, b = 0 et c quelconque.

Donc

yp = (x2 + c)e−x
2

où c ∈ R

est une solution particulière de (E).

La solution générale de l’équation (E) est donnée par la somme de la solution générale

de l’équation (E0) et la solution particulière yp de l’équation (E). On a donc

y = Ce−x
2

+ (x2 + c)e−x
2

où C, c ∈ R

= (x2 + k)e−x
2

où k ∈ R

b) Si on considère x comme une fonction de y, l’équation donnée s’écrit pour y 6= 0 sous

la forme

x′ − x

y
= y.

On résoud d’abord l’équation sans second membre et on utilise ensuite la méthode de la

variation de la constante ou on cherche une solution particulière sous la forme

xp = ay2 + by + c où a, b, c ∈ R.
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2◦ Considérons l’équation sans second membre

y′ + y = 0 . (E0)

C’est une équation à variables séparables car pour y 6= 0, on a

dy

y
= −dx.

La solution de l’équation différentielle (E0) est

y = Ce−x où C ∈ R.

1èreméthode : Variation de la constante.

On recherche les solutions de l’équation (E) avec second membre de la forme

y = C(x)e−x

où C est une fonction dérivable de x.

En dérivant y et en la remplaçant dans (E) on obtient

C ′(x)e−x = sinx+ cosx

d’où

C(x) =

∫
(sinx+ cosx) exdx.
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En utilisant l’intégration par parties, deux fois, on obtient

C(x) = (sinx+ cosx) ex −
∫

(cosx− sinx) exdx

= (sin x+ cosx) ex −
[
(cosx− sinx) ex −

∫
(− sinx− cosx) exdx

]
= (sin x+ cosx) ex −

[
(cosx− sinx) ex +

∫
(sinx+ cosx) exdx

]
= (sin x+ cosx) ex − (cosx− sinx) ex − C(x).

D’où

C(x) = sin xex + k où k ∈ R.

La solution générale avec second membre est

y = (sinxex + k )e−x

= sin x+ ke−x où k ∈ R.

En utilisant la condition initiale y(0) = 1, alors k = 1 et y = sinx+ e−x.

2èmeméthode : On remarque que yp = sinx est une solution particulière de l’équation avec

second membre, donc

y = Ce−x + sinx, C ∈ R

est la solution générale de l’équation (E) donnée. Puisque y(0) = 1, alors C = 1.

Équation de Bernoulli

Définition 3.2.5 Soient a(x) et b(x) deux fonctions numériques continues dans un in-

tervalle I de R et α un réel différent de 0 et 1. L’équation différentielle

y′ + a(x)y = b(x)yα (E)
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est dite de Bernouli.

Méthode de résolution : On écarte les cas α = 0 et α = 1 pour lesquels l’équation

est linéaire, la fonction inconnue y sera supposée positive si α est non entier et de plus

non nulle si α est négatif.

En divisant l’équation de Bernoulli par yα (éventuellement en écartant la solution

triviale y = 0) on obtient

y−αy′ + a(x)y1−α = b(x). (E ′)

On effectue ensuite, le changement de fonction z(x) = y1−α(x), d’où z′(x) = (1− α) y′(x)y−α(x),

on obtient une équation différentielle en z :

z′

1− α + a(x)z = b(x). (E ′′)

C’est une équation linéaire du 1erordre non homogène. On la résout par la méthode de

la variation de la constante.

Exemple 46 Soit l’équation différentielle de Bernoulli

y′ + xy + xy4 = 0.

Ici, α = 4. En posant z(x) = y−3et en ayant écarter au préalable la solution triviale

y = 0, on a l’équation différentielle linéaire

z′ = 3xz + 3x.

L’équation homogène associée a pour solution générale

z = c exp

(
3x2

2

)
.
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La méthode de la variation de la constante donne

z =
1

y3
= −1 + c exp

(
3x2

2

)

et par la suite

y =
1(

−1 + c exp

(
3x2

2

))1

3

où c constante.

Équation de Riccati

Définition 3.2.6 Une équation différencielle du premier ordre est dite de Riccati si elle

est de la forme

y′ + a(x)y + b(x) = c(x)y2 , (E)

les fonctions a, b et c étant supposées continues dans l’intervalle I.

Méthode de résolution : Ce type d’équations différentielles n’est pas toujours ré-

soluble de façon élémentaire. Mais, si une solution particulière y1 pouvait être trouvée,

on pourrait alors ramener la résolution de l’équation de Riccati à celle d’une équation

différentielle linéaire. En effet, en posant

y = y1 + z

et en la remplaçant dans (E) on obtient

z′ + (a(x)− 2y1c(x)) z = c(x)z2 (E ′)

qui est de Bernoulli, que nous pouvons résoudre.

En posant u =
1

z
, on est ramené à une équation linéaire. La solution générale est donc
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donnée par

y = y1 +
1

u

où u est la solution générale de

−u′ + (a(x)− 2y1c(x))u = c(x) (E ′′)

qui est une équation différentielle linéaire résoluble.

Exemple 47 Soit l’équation différentielle de Riccati

y′ = 1− x3 + xy2.

Il est aisé de vérifier que y1 = x est une solution particulière. La solution générale est

donc

y = x+
1

u

où u est la solution générale de

u′ + 2x2u+ x = 0.

Équation de Lagrange

Définition 3.2.7 Une équation différencielle du premier ordre est dite de Lagrange si

elle est de la forme

y = xf(y′) + g(y′) (E)

les fonctions f et g étant supposées continûment dérivables dans un intervalle I.

Méthode de résolution : Pour la résoudre, on pose

y′ = u, (E1)
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alors

y = xf(u) + g(u) (E2)

et on prend u comme nouvelle variable. x et y sont alors considérées comme fonctions de

u.

En dérivant, par rapport à u, les deux membres de la relation (E2), on obtient

y′u = x′uf(u) + xf ′(u) + g′(u). (E3)

Or d’après le théorème de dérivation des fonctions composées, on a

y′u = y′x′u

et en utilisant (E1), on obtient

y′u = ux′u

Donc en la remplaçant dans (E3), il vient

(u− f(u))
dx

du
= xf ′(u) + g′(u). (E4)

Deux cas sont à distinguer :

Premier cas : u 6= f(u)

On peut mettre l’équation (E4) sous la forme normale. Dans l’ensemble des couples

(x, u) tels que u 6= f(u), elle est équivalente à

x′u = x
f ′(u)

u− f(u)
+

g′(u)

u− f(u)
(E5)

qui est donc une équation différentielle linéaire du premier ordre pour la fonction inconnue

x de la variable u. Une fois x(u) déterminée, en résolvant (E5), on aura

y(u) = x(u)f(u) + g(u).
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Second cas : u = f(u)

Les u0 de I telles que u0 = f(u0) donnent d’après la relation (E2),

y = u0x+ g(u0).

Cette solution est définie dans R tout entier et diffère des solutions obtenues dans le

premier cas.

Exemple 48 Considérons l’équation de Lagrange

y = −x+ (y′ + 1)
2
.

En posant y′ = u, on obtient

(u+ 1)x′u = 2 (u+ 1) .

* Pour u 6= 1, on trouve

x′u = 2 ⇒ x = 2u+ c

⇒ y = −2u− c+ (u+ 1)2

⇒ y = u2 + 1− c, c est une constante.

On peut éliminer le paramètre u entre ces deux dernières équations et trouver

y =
1

4
(x− c)2 + 1− c (les courbes intégrales sont des paraboles).

* Pour u = −1, on trouve la solution y = −x (cette solution ne fait pas partie de la

famille de paraboles).

Équation de Clairaut
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Définition 3.2.8 Une équation différencielle du type

y = xy′ + f(y′). (E)

La fonction f étant supposée dérivable dans l’intervalle I, est dite de Clairaut.

Méthode de résolution : L’équation de Clairaut est un cas particulier de l’équation

de Lagrange. Elle se résout par le même procédé que celui décrit ci-dessus (on pose

y′ = u).

Deux cas sont donc à envisager :

a) u = c ( c constante), on obtient alors une famille de solutions donnée par :

y = cx+ f(c) , (c constante arbitraire),

les courbes intégrales sont des droites.

b) x = −f ′(u), donc

y = −uf ′(u) + f(u)

c’est une équation qui constitue une représentation paramétrique (paramètre u)

d’une solution bien déterminée. C’est une solution de l’équation de Clairaut qui ne

peut être obtenue à partir des solutions de (a) en donnant à c une valeur appropriée.

Exemple 49 Résoudre

y = xy′ − y′2
4
.

On utilise le paramètre u = y′, l’équation s’écrit alors :

y = xu− u2

4
,

donc

dy = udx+ xdu− u

2
du,
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c’est-à-dire

(x− u

2
)du = 0.

* Lorsque du = 0, on trouve les solutions affi nes, qui sont de la forme

y = cx− c2

4
, ( c constante).

* Lorsque x =
u

2
, on trouve la solution x2.
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Chapitre 4

Équations différentielles linéaires à

coeffi cients constants du second

ordre

On aborde dans ce chapitre le cas des équations différentielles linéaires du second

ordre dont les coeffi cients sont constants et qu’on rencontre souvent en pratique. On

peut mettre de telles équations sous la forme

ay′′ + by′ + cy = g(x). (E)

où a, b , c ∈ R, a 6= 0 et g est une fonction continue sur un intervalle ouvert I.

L’équation

ay′′ + by′ + cy = 0 (E0)

est appelée l’équation homogène associée à (E).

Pour commencer, on montrera que l’équation différentielle homogène associée peut être

résolue sans diffi culté.

Théorème 4.0.1 L’ensemble des solutions de l’équation homogène (E0) est un R-espace

vectoriel de dimension 2.
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4.1 Équations linéaires sans second membre

Pour résoudre l’équation différentielle sans second membre (E0), on cherche des solu-

tions sous la forme y = erx avec r constante complexe à déterminer.

On a y′ = rerx et y′′ = r2erx.

Ainsi, la fonction erx est une solution si et seulement si

erx
(
ar2 + br + c

)
= 0⇔ ar2 + br + c = 0.

Définition 4.1.1 L’équation ar2+br+c = 0 est appelée équation caractéristique associée

à (E0).

Soit ∆ = b2 − 4ac, le discriminant de l’équation caractéristique associée à (E0).

Théorème 4.1.1 • Si ∆ > 0, l’équation caractéristique possède deux racines réelles

distinctes r1 6= r2 et les solutions de (E0) sont les

y(x) = λer1x + µer2x où λ, µ ∈ R.

• Si ∆ = 0, l’équation caractéristique possède une racine double r0 et les solutions de

(E0) sont les

y(x) = (λ+ µx) er0x où λ, µ ∈ R.

• Si ∆ < 0, l’équation caractéristique possède deux racines complexes conjuguées

r1 = α + iβ, r2 = α− iβ et les solutions de (E0) sont les

y(x) = eαx (λ cos(βx) + µ sin(βx)) où λ, µ ∈ R.

Preuve 16 La preuve consiste à trouver deux solutions linéairement indépendantes, ce

qui permet d’affi rmer qu’elles forment une base d’après le théorème précédent.
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• Si ∆ > 0, alors l’équation caractéristique a deux racines réelles distinctes r1 6= r2.

On obtient ainsi deux solutions y1 = er1x, y2 = er2x qui sont linéairement indépendantes

car r1 6= r2.

Comme l’espace des solutions est un espace vectoriel de dimension 2, alors une base de

l’espace des solutions de (E0) est {er1x, er2x} .

La solution générale de (E0) s’écrit

y(x) = λer1x + µer2x où λ, µ ∈ R.

• Si ∆ = 0, alors l’équation caractéristique a une racine réelle double r0. On obtient

ainsi une solution y1 = er0x. On vérifie que y2 = xer0x est aussi une solution :

ay′′2 + by′2 + cy2 =
(
2ar0 + ar2

0x
)
er0x + (b+ br0x) er0x + cxer0x

=
(
ar2

0 + br0 + c
)
xer0x + (2ar0 + b) er0x

= 0

car 2ar0 + b = P ′(r0) = 0, où P (r) = ar2 + br + c.

Ces deux solutions sont linéairement indépendantes. Une base de l’espace des solutions

est {er0x, xer0x}, et la solution générale de (E0) s’écrit

y(x) = (λ+ µx) er0x où λ, µ ∈ R.

• Si ∆ < 0, alors l’équation caractéristique a deux racines complexes conjuguées

r1 = α + iβ, r2 = α− iβ. On obtient deux solutions complexes

Y1 = e(α+iβ)x = eαxeiβx = eαx (cos βx+ i sin βx) ,

Y2 = e(α−iβ)x = eαxe−iβx = eαx (cos βx− i sin βx) .
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Les fonctions

Y1 + Y2

2
= eαx cos βx

Y1 − Y2

2i
= eαx sin βx,

sont encore des solutions particulères réelles linéairement indépendantes de (E0) et la

solution générale pourra alors se mettre sous la forme

y(x) = eαx (λ cos(βx) + µ sin(βx)) où λ, µ ∈ R.

Exemple 50 :

• Le polynôme caractéristique associé à

y′′ − 3y′ + 2y = 0

est r2 − 3r + 2 qui a le discriminant ∆ = 1, a deux solutions réelles distinctes

r1 =
3− 1

2
= 1 et r1 =

3 + 1

2
= 2 .

Toutes les solutions sont alors les fonctions

y(x) = λex + µe2x pour tout λ,µ ∈ R.

• Le polynôme caractéristique associé à

y′′ − 4y′ + 4y = 0

est r2 − 4r + 4 qui a le discriminant ∆ = 0, a deux solutions réelles coïncidentes

r1 = r2 = 2.
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Toutes les solutions sont les fonctions

y(x) = (λ+ µx)e2x pour tout λ,µ ∈ R.

• Le polynôme caractéristique associé à

y′′ + y′ + y = 0

est r2 + r + 1 qui a le discriminant ∆ = −3 < 0. Les deux racines sont

r1 =
−1 + i

√
3

2
et r2 =

−1− i
√

3

2
,

et la solution générale est

y(x) = e

−1

2
x

(
λ cos(

√
3

2
x) + µ sin(

√
3

2
x)

)
où λ, µ ∈ R.

4.2 Équations linéaires avec second membre

Nous passons au cas général d’une équation différentielle linéaire d’ordre 2, à coef-

ficients constants, mais avec un second membre g qui est une fonction continue sur un

intervalle ouvert I de R :

ay′′ + by′ + cy = g(x). (E)

Théorème 4.2.1 (Théorème de Cauchy-Lipschitz) Pour chaque x0 ∈ I et chaque

couple (y0, y1) ∈ R2, l’équation (E) admet une unique solution y sur I satisfaisant aux

conditions initiales : y(x0) = y0 et y′(x0) = y1

Dans la pratique, pour résoudre une équation différentielle linéaire avec second membre

(avec ou sans conditions initiales), on cherche d’abord une solution de l’équation homo-

gène, puis une solution particulière de l’équation avec second membre et on applique le

principe de superposition :
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Proposition 10 Les solutions générales de l’équation (E) s’obtiennent en ajoutant les

solutions générales de l’équation homogène (E0) à une solution particulière de (E).

Remarque 4.2.1 Si g(x) = u(x) + v(x) avec y1 une solution particulière de ay′′+ by′+

cy = u(x) et y2 une solution particulière de ay′′ + by′ + cy = v(x), alors y1 + y2 est une

solution particulière de (E).

Considérons maintenant quelques cas de second membre simples qui apparaissent sou-

vent en pratique et pour lesquels la recherche d’une solution particulière est relativement

aisée.

4.2.1 Le second membre est un polynôme de degré n

Lorsque le second membre de (E) est un plynôme en x, on cherche une solution par-

ticulière polynômiale et on procèdera par identification pour déterminer les coeffi cients.

On distingue deux cas :

a) Si c 6= 0, on détermine une solution sous la forme d’un polynôme de degré n (Pn(x)).

b) Si c = 0 ( avec b 6= 0), on cherche une solution sous la forme xPn(x).

Exemple 51 Résoudre les équations différentielles

a) y′′ + y′ − 2y = 2x2 − 3x+ 1

b) y′′ − y′ = x+ 1

a) La solution de l’équation homogène associée est y = λex + µe−2x où λ, µ ∈ R (car

les racines de l’équation caractéristique, sont r1 = 1 et r2 = −2). Comme c 6= 0, on

cherche une solution particulière de l’équation complète de la forme

yp = ax2 + bx+ c où a, b, c ∈ R.
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En dérivant yp deux fois et en reportant yp, y′p et y
′′
p dans l’équation (a), on obtient

2a+ 2ax+ b− 2
(
ax2 + bx+ c

)
= 2x2 − 3x+ 1.

Par identification des coeffi cients, on a :

a = −1, b =
1

2
, c =

−5

4
.

Ainsi

yp = −x2 +
x

2
− 5

4
.

L’intégrale générale est

y = λex + µe−2x − x2 +
x

2
− 5

4
où λ, µ ∈ R

b) L’équation caractéristique de l’équation homogène associée est r2 − r = 0. Elle

admet deux racines ( r = 0 et r = 1). Ainsi, la solution générale de l’équation homogène

est

y(x) = λ+ µex pour tout λ,µ ∈ R.

Comme c = 0, on cherche une solution particulière de l’équation complète de la forme

yp = x (ax+ b) où a, b ∈ R.

En dérivant yp deux fois et en reportant yp, y′p et y′′p dans l’équation (b), on obtient

2a− (2ax+ b) = x+ 1.

Par identification des coeffi cients, on a :

a = −1

2
, b = −2,
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ainsi

yp = −1

2
x2 − 2x.

L’intégrale générale est

y = λ+ µex − 1

2
x2 − 2x où λ, µ ∈ R.

4.2.2 Le second membre est de la forme expmx (m constante)

On distingue trois cas selon les valeurs de m

1. m n’est pas une racine de l’équation caractéristique, on cherche alors une solution

de la forme kemx.

2. m est une racine simple de l’équation caractéristique, on détermine alors une inté-

grale particulière de type kxemx.

3. m est une racine double de l’équation caractéristique, la forme de la solution par-

ticulière sera kx2emx.

Exemple 52 Soit l’équation différencielle

y′′ − 4y′ + 4y = e2x.

Comme solution particulière de l’équation complète, on en cherchera une de type

y1 = kx2e2x.

En prenant k =
1

2
, la solution générale ( d’après l’exemple 50 ) s’écrit

y = e2x

(
λ+ µx+

x2

2

)
.
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Exemple 53 Résoudre l’équation différentielle

y′′ − 5y′ + 6y = 2e3x + e4x.

On a r1 = 2 et r2 = 3 comme racines de l’équation caractéristique r2 − 5r + 6 = 0, alors

la solution générale de l’équation sans second membre est

y = λe2x + µe3x.

En utilisant la Remarque 4.2.1, on cherche la solution particulière pour chacune des

équations différentielles

y′′ − 5y′ + 6y = 2e3x (*)

y′′ − 5y′ + 6y = e4x. (**)

Une solution particulière de l’équation (*) est donnée par 2xe3x. Quant à l’équation dif-

férentielle (**), elle en possède une de la forme
e4x

2
.

Finalement, l’intégrale générale est

y = λe2x + µe3x + 2xe3x +
e4x

2

4.2.3 Le second membre est de la forme f(x) expmx(m constante)

Pour chercher une solution particulière, on fait le changement de fonction inconue

y = uemx. La nouvelle fonction inconnue u étant supposée deux fois dérivables, on trouve

successivement  y′ = (u′ +mu) emx

y′′ = (m2u+ 2mu′ + u′′) emx
.
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Ainsi, l’équation se transforme à une équation différentielle en u de la forme

au′′ + b1u
′ + c1u = f(x)

où  b1 = b+ 2am

c1 = am2 + bm+ c

et le second membre est plus simple.

4.2.4 Le second membre est du type cosmx (ou sinmx,m constante)

Dans cette situation, on distingue deux cas dans la recherche de la solution particulière

1. im n’est pas racine de l’équation caractéristique (cosmx ou sinmx n’est pas solu-

tion de l’équation sans second membre ). On pose y1 = k1 cosmx+ k2 sinmx et on

détermine les constantes k1 et k2 par identification.

2. im est racine de l’équation caractéristique. On cherche alors une solution de la

forme y1 = x (k1 cosmx+ k2 sinmx) et comme au cas précédent, on détermine

les constantes k1 et k2.

Exemple 54 Intégrer l’équation différentielle

y′′ − 4y′ + 4y = xe2x + 25 cosx (E)

La solution de l’équation homogène est y = (λ+ µx) e2x (exemple 50).

Déterminons une solution particulière yp,1 de

y′′ − 4y′ + 4y = xe2x (E1)

r = 2, étant racine double de l’équation caractéristique, on cherchera une solution de la

forme

y = R(x)e2x
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avec R(x) = x2 (ax+ b), on obtient

y′ = (R′(x) + 2R(x)) e2x

y′′ = (R′′(x) + 4R′(x) + 4R(x)) e2x.

En substituant ces valeurs dans (E1) , on obtient :

R′′(x)e2x = xe2x,

puis, après simplification

2b+ 6ax = x,

ce qui donne a =
1

6
et b = 0.

Finalement

yp,1 =
x3

6
e2x.

Déterminons une solution yp,2 de

y′′ − 4y′ + 4y = 25 cos x. (E2)

On pose

yp,2 = k1 cosx+ k2 sinx,

on obtient après substitution

yp,2 = 3 cos x− 4 sinx.

Donc

yp = yp,1 + yp,2 =
x3

6
e2x + 3 cosx− 4 sinx

est une solution particulière de (E).
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Finalement, la solution générale est

y =

(
λ+ µx+

x3

6

)
e2x + 3 cosx− 4 sinx.

4.2.5 Méthode de variation des constantes

Si {y1, y2} est une base de solutions de l’équation homogène (E0), on cherche une

solution particulière sous la forme

yp = λy1 + µy2.

Considérons λ et µ comme des fonctions de x continûment dérivables.

En dérivant, on obtient

y′p = λ′y1 + µ′y2 + λy′1 + µy′2

Comme λ et µ sont des fonctions inconnues, on peut imposer une condition supplémen-

taire qui est de la forme

λ′y1 + µ′y2 = 0.

Il reste alors

y′p = λy′1 + µy′2 et y
′′
p = λ′y′1 + µ′y′2 + y′ + λ′′y1 + µ′′y2.

Pour que λy1 + µy2 soit une solution de l’équation complète, il faut et il suffi t que

λ′y′1 + µ′y′2 =
g(x)

a
.

Ainsi, λ′ et µ′ vérifient le système

(S)

 λ′y1 + µ′y2 = 0

λ′y′1 + µ′y′2 =
g(x)

a
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qui est de Gramer car son déterminant n’est autre que le Wronskien W (λ, µ) 6= 0 pour x

de I. Le système linéaire (S) permet de calculer λ′ et µ′ ; on déduira λ et µ en prenant

des primitives.

Exemple 55 Résoudre l’équation différentielle :

y′′ + 4y = sinx. (E)

L’équation homogène associée est

y′′ + 4y = 0, (E0)

l’équation caractéristique est

r2 + 4 = 0,

donc la solution générale de l’équation homogène est

y = λ sin 2x+ µ cos 2x où λ, µ ∈ R.

1ère méthode : On utilise la méthode de variation des constantes pour trouver la solution

de (E) sous la forme

y = λ(x) sin 2x+ µ(x) cos 2x (*)

où λ et µ sont deux fonctions dérivables vérifiant le système

 λ′ sin 2x+ µ′ cos 2x = 0

λ′ cos 2x− µ′ sin 2x =
sinx

2
.

En multipliant la première équation par sin 2x, la seconde par cos 2x et en additionnant

les deux, on obtient

λ′ =
1

2
sinx cos 2x.
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Ainsi,

λ =
1

2

∫
sinx cos 2x dx =

1

4

∫
2 sinx cos 2x dx

=
1

4

∫
(sin 3x− sinx) dx = − 1

12
cos 3x+

1

4
cosx+ k1 où k1 ∈ R.

Par suite,

µ′ = −1

2
sinx sin 2x = −1

4
(cosx− cos 3x) .

Donc

µ = −1

4

∫
(cosx− cos 3x) dx = −1

4
sinx+

1

12
sin 3x+ k2 où k2 ∈ R.

On reporte ensuite λ et µ dans (*), on aura

y = (− 1

12
cos 3x+

1

4
cosx+ k1 ) sin 2x+ (−1

4
sinx+

1

12
sin 3x+ k2) cos 2x

=
1

3
sinx+ k1 sin 2x+ k2 cos 2x où k1, k2 ∈ R.

2ème méthode : On cherche une solution particulière yp de l’équation donnée sous la forme

yp = a sinx où a ∈ R.

Cette méthode contient moins de calculs.
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