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Introduction

Ce polycopié est déstiné aux étudiants de la 1¢¢ année Mathématiques et Informa-
tique, a pour objectif de présenter les différents aspects du calcul d’intégrale : intégrale
de Riemann, différentes techniques de calcul des primitives, 'initiation & la résolution
des équations différentielles. Il est recommandé d’avoir des connaissances préalables en
analyse 1. Ce cours est assez détaillé et contient des compléments qui vont parfois au
dela du programme prévu. Il comporte quatre chapitres :

1 Intégrales indéfinies

2 Intégrales définies

3 Equations différentielles du premier ordre

4 Equations différentielles lineaires a coefficients constants du second ordre

Chaque chapitre contient des exemples explicatifs. Il est conseillé de s’exercer a ré-
soudre par soi-méme ces exercices sans avoir une solution a coté : c’est grace a ce travail
personnel indispensable que 1’on peut aller plus loin dans la compréhension et 1’assimila-

tion des notions mathématiques introduites.



Chapitre 1

Intégrales indéfinies

1.1 Introduction

Il existe un lien remarquable entre intégration et dérivation : pour les fonctions conti-
nues, la notion d’intégrale permet en effet de construire I'inverse de 'opération f — f’ de
dérivation. Précisément étant donnée une fonction g continue, nous pourrons exprimer

L, ) , . L ,
par une intégrale une fonction G telle que G’ = g. Les intervalles envisagés sont supposés

non vides et non réduits & un point.

Définition 1.1.1 Soit f: I — R, on dit que F : I — R est une primitive de f sur I, si

F' est une fonction dérivable sur I et vérifie
F'(z) = f(x) pour tout x € I.
On note une primitive de f par :
Fa) = [ 1(0) .

Cette fonction est appelée 'intégrale indéfinie de f.

Remarque 1.1.1 1. [ est le signe d’intégration, f(x) est Uintégrant, et dx est la no-
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tation  différentielle.
2. Puisque F' est dérivable sur I , il s’ensuit qu’elle est continue sur cet intervalle
3. Comme la dérivée de toute constante C' est nulle alors : si F'(x) = f(x) on a encore
(F(z) +C) = f(z). Par conséquent, si f admet une primitive Falors toute fonction de
la forme F + C', ot C est une constante quelconqueest encore une primitive de f.

4. L’ensemble des primitives d’une fonction f est noté : / f(z) dx et aussi appelé inte-

grale indéfinie de f et on écrit simplement : /f(x) dx = F(x), en incluant la constante.

5. La variable x est dite variable muette, c’est-a-dire qu’on peut écrire :

/f(t) dt = F(t), /f(u) du = F(u) ou encore /f(x) dx = F(x).

Exemple 1 La dérivée de p(x) = 2™, n > 0, est p'(x) = na™ L.
Par conséquent,
1

n+1
xr
n+1

P(z) =

est une primitive de p.

Par ailleurs, si F' est une primitive quelconque de p, alors, il existe une constante C' € R
telle que,
F=P+c, i.e.F(x) = P(z) + C pour tout x € R.

En terme d’intégrale généralisée ceci devient

xn+1
dv = C, CeR
[ro) =T ve ce

Proposition 1 Soit f et g deux fonctions continues
1. /(f(x) +g(x)) do = /f(x) dx + [ g(x) dx.
2. /)\f(:r) dx:A/fx ) dx, X eR.

/f ()4 C. ou(/f da:) = f(x).

4/f )+C:>/fax+b)d F(ax—i—b)—l—C.



Les propriétés 1 et 2 donnent la linéarité de 'opérateur intégral. Ainsi, pour beaucoup
de fonctions usuelles on connait les primitives. Voici quelques exemples (utiles a savoir!).
Le tableau suivant résume quelques primitives usuelles, en donnant une primitive F' de
la fonction f (penser & ajouter une constante si on demande toutes les primitives, ou si

on utilise le symbole d’intégrale indéfinie).

Fonction f Une primitive F' de f Domaine de définition de F'
k (k =const) kux R
R sia e N
% a+#0 gttt ]—00,0[U]0,00[ sia=—2,-3,..
10, 00] pour tout autre a € R\ {—1}

1
- In |z| sur |—o0,0[ U0, 00|
a®,a#leta>0 og(a) Ja>0a#1 R
e’ e’ R
sin () — cos (z) R
cos () sin () R

1 T

¢ R\ {2k +1) 2}

o (2) an () AN (k+1)2 keZ

1

5 — cot (x) R\Akr}, ke Z
sm1 (x)
] +1x2 arctan () R
—_ arcsin (x —-1,1
Vi (@) =11
sinh () cosh () R
cosh (z) sinh (z) R

1 N o/
1 — 12 5111(1_1:) ]_17 1[

Table 1. Un "petit" tableau de quelques primitives usuelles




Par exemple, on déduit de la deuxiéme ligne du tableau que

1 1 1

sur des intervalles appropriés. On remarque également qu’il est important de connaitre les
dérivées des fonctions usuelles, en particulier des fonctions trigonométriques réciproques.
Plus tard nous allons voir des techniques d’intégration qui permettent, a partir de pri-
mitives connues comme celles du tableau, de trouver des primitives de fonctions plus
élaborées. Il s’ensuit donc que si une fonction admet une primitive alors on peut détermi-
ner toutes ses primitives. Mais on peut se poser la question préalable de savoir d’abord si
toute fonction admet une primitive ? La réponse est négative comme le montre I’exemple

suivant :

Exemple 2 Soit f une fonction définie sur |0,2[ par :

Fa) = 0 sizel0,1[U]L,2]

1 six=1

Si f admettait une primitive F, alors F serait dérivable et donc continue sur ]0,2[. En

particulier, ' serait continue au point 1, mais

pour tout © # 1, impliquerait que F serait constante sur chacun des intervalles ]0,1[ et

11,2[. Par continuité, F serait constante sur |0,2[ avec

ce qui contredit I’hypothése f(1) = 1.



Exemple 3 Soit f la fonction définie sur R par :

f(0)=0 et f(x) =2z Sin(é) - Cos(é),

f admet une primitive sur tout intervalle contenant 0.
Soit

F(r)=2* sin(é),

on a

F'(z) = f(x) et f(0) =0,

bien qu’elle ne soit pas continue en 0.

1.2 Quelques régles de recherche de primitives

1.2.1 Meéthode directe d’intégration

Cette méthode consiste grace aux propriétés des intégrales et aux transformations sur

la fonction a intégrer.

Exemple 4

3 3
. 2 : 2
/(smx—Qx +\/E+1+x2)dx = /smxdw—2/x dm—l—/\/fdx—l—S/l_i_xQ dx

2., 2
= —cosa:—gas +§9§2 + 3arctanz + C.

1.2.2 Intégration par parties

Elle repose sur la formule simple : (uv) (z) = o' (z) v (z) +u () v (v)

Théoréme 1.2.1 Soient u,v deux fonctions dérivables sur I, telle que la fonction u'v



admet une primitive sur 1. Alors la fonction uv' admet une primitive sur I et on a :

/ w'(z) dz = u(z)v(z) — / wo(z) da.

Exemple 5 1. [xe® dv = xe® — [e* dr = ze® —e” + C.
$n+1 " xn-ﬁ-l xn+1
2. "Inx dr = Inz — dxr = Iny — —+C.
[a"Inx dx e fn—i—l e (n+1)2+

3. [arcsin (z) dr = warcsin (z) — [ \/% dx = xarcsin (x) + V1 — 22 + C.
—x

4. [xarctan (z) dx, on pose

1
= t ! =
u(z) arctan () — u'(x) T 22
1
V() = z—ou(r) = §x2,
alors
1 1 2?
varctan () dr = —a?arctan(z)— [ = Y dx
2 21+ 22

1 1 2+1-1
= §x2 arctan () — _/xl—i_T dx

1 1 1

1 1
= §SB2 arctan () — 5 (x — arctan (x)) + C.

1.2.3 Changement de variables

En posant z = ¢(t), en utilisant le fait que dx = ¢'(t) dt et en remplagant dans
/ fle ) dt, on obtient : / fle ) dt = / f(z) dx

1
Exemple 6 1. Pour calculer [ ﬁ dx, on pose \/x =1, on a alors x = y* et do = 2y
x
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dy et l'intégrale indéfinie devient :

2 1-1 1 1
y+1 y+1 y+1 y+1
1
=2/ (1-— =2y —1 1 .
/( y—i—l) dy [y—In(y+1)]+C

= 2[Voz—In(vz+1)] +C.

2. Pour chercher
/ 622 + 4
—— dx,
3+ 2z +4

on pose y = x3 + 2x + 4, alors dy = (3z* + 2) dz, donc

622 + 4 2
——dz = | - dy=21 C =21 349 4|+ C.
/x3+2x+4 v /y y og |yl + og’m+ T |+

3. Pour calculer

/(aa: +0)" dx,

avecm # —1, a etb € R, on fait le changement de variable y = ax+b, on a alors dy = a

dx et [intégral devient :

m 1 1 ymtt 1 (az +b)"™"!
b)" dr = — ™ dy = — C=—-———"-"—+C.
/(a$+) o a/y 4 am—irljL a m-+1 +

1
4. Calculer /m dx

E—i_l

1 1 1 1
oy = [ == g
/:c2+a2 ! /ag(ﬂc2 ) ! a/(y2+1> /

1 1
= —arctany + C = — arctan (E) +C.
a a a

11



5. Pour tout réel a strictement positif,

= arcsin(z) +C.

/V?L?dx/Qféz;d€> :

x
Si a est quelconque on aboutit arcsin(’—|) +C.
a
6. On a

= arsh(%) + C.

/7?%?dx/95%§;d€>

1.2.4 Intégration des fractions rationnelles

On g’intéresse dans ce paragraphe a la recherche des primitives des fractions ration-
P(z)
Q(z)

On sait que la fonction fraction rationnelle est continue sur tout intervalle ne conten-

nelles c’est-a-dire d’expression de la forme ou P(z) et Q(z) sont deux polyndomes.
nant pas de pole (i.e. de nombre réel qui annule le dénominateur) de la fraction. Dans
le cours d’algebre, on montre que toute fraction rationnelle peut s’écrire comme somme

d’un polynome et de termes de la forme

5,0 € N

(z —b)

(élément de 1ére espéce) et

%,QEN* et a2—4b<0,

(élément de 2éme espéce), avec «, 3,a,b € R et («, 5) # 0.

On dit alors qu’on a décomposé la fraction rationnelle en éléments simples. Ainsi,
P(x)
Q(x)

e Une primitive d’'un plynome (ce qui est trivial).

pour déterminer une primitive de la fonction , il suffit de savoir calculer

e Une primitive de la fonction 5,0 € N*.

( —b)
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ar +
(22 + ax + b))V’

q € N*.

e Une primitive de la fonction

*Calcul de / ﬁ dr

Causp—l:/L dr =alog|x — b+ C, C e R.
(z —b)

a a 1—
1: | ——— dr = —b) P R.
Cas p > /(:B—b)p x 1_p(a: ) P+ C, C e

5
Exemple 7 [ = / — dv
(z—1)

5 5)
]:/(;p_l)?’ dl’:—m—FC

T+ 2

d nes simples). On décomm.
(1) (z—2) z (Q(x) admet des racines simples). On décom

Exemple 8 | = /

2
pose f(x) = P +x1—;_(x 5 en éléments simples
A Ay Az
@) = T st eoy
I S B
oz 3(@+1) 3(x-2)
Donc

1 1/ 1 2 [ 1
I = [ det: dz + 2 d
/a; I+3/(x+1) x+3/(:v—2) v

1 2
= —log|m|—|—§log|m+1|+§10g|x—2|+0.

1
Exemple 9 Calculer I = / —— dx (Q(x) admet des racines réelles multiples)
22 (x4 1)
A A As Ay
= 242y +
—2 1 2 1

+ =+ + .
22 (z41) (z41)°

13



Donc

1 1 1 1
I = —2/—dx+/—2dm+2/—dm+/—2
x T (x+1) (x+1)

1 1
= —210g|x|——+210g|x+1|—?—|—0

Exemple 10 Calculer I = /x5 PR v s v e dx.

1
I = d
/x5+x4—2x3—2x2+x+1 .
dx

/(a: — 1)21(1: +1)°

ety it e o )
- 16(x—1) 8(z—1)° 16(x+1) 4(z+1)7° 4(x+1)° !

-3 1 3 1 1

= Cloglr—1] - ————+ Zloglz + 1| - - +C
3 r+1 1 1 1

= 2] — — - C.
16 ng—1’ Sx—1) 4(z+1) 8(x+1)2+

Exemple 11

5
[:/a:?’—:cf—x—i—l dr (deg Q(x) < deg P(x)).

en éléments simples :

P(x)
Q(z)’
x® 1 9 1

2
— 2 _
P gy Y P S LAY oy Ry pea

On commence par décomposer la fraction rationnelle

puis en intégrant, cela donne :

R L e — 1= tlogle+ 1]+ C, Vo e RR{=1,1}
=—+—+2r— — + -loglr — 1| — - log |z x —
3 "2 2(z—1) 4% 1 %8 ’ ’

14



ar +

*Calcul de /(a:2+a:1:+b)q dx
On a:
a:v+ﬁ=%( 2+ax+b)/+6—?.
D’ou

ar + f3 a [ (2?2 +ar+0b) ax / 1
dp = & [ rarto) _ o dz.
/(m2—|—ax+b)q v 2/($2—1—am—|—b)q x—i_(ﬁ 2) (22 + ax + b)* v

Montrons comment calculer chacune des intégrales du second membre, si

(22 + ax +b)’ 9 ;o u(x
g=1, /m dz =log (2> + ax + b) + C car |[logu(z) ] = (x|
si
2 b 1
q>1’/(x2+ax+ >qd.7c: — +C.
(22 4+ ax +b) (1—¢q) (22 +azx +b)*
1
Il nous reste & montrer comment calculer / VN me—— dz.
(22 + ax + b)

On a:

(22 + az + D) = (:c+g)2+b—a—:A2[<x+g)2/A2+1},

N

2
avec A = (b — %) (on rappelle que nous avons ici a? — 4b < 0).

D’ou
q

/m da:zA_Qq/ {<x+g>2/A2+l} dr.

On calcule I'intégrale du second membre en utilisant le changement de variable

= (ev2) s

15



il vient alors :

1 ) _
/(x2+ax+b)q dr=a 2q/ W41 dy.

L’intégrale indéfinie / (y* + 1) ? dy se calcule par récurrence pour ¢ > 1.
1
y*+1
e Pour ¢ > 1, on pose u(y) = (y> +1) %, v'(y) = 1 et on intégre par partie.

e Pourg=1,0na :/ dy = arctany + C.

I, = /(y2+1)"1 dy:y(y2+1)_q+2q/y2 (2 +1)""" dy

_ y(y2+1)q+2q/ (y*+1)° dy—Zq/ (2 +1)""" dy.

D’ou

L=y’ +1)"+2qI, — 2q11.

Finalement, on obtient

I = [(2¢—1) 21, + [y (v* + 1)7q} S2q,  q>1,

I; = arctany+ C.

Ces deux relations permettent de calculer de proche en proche les intégrales /.

1
dx.
/:c3—|—1 v

en éléments simples, on trouve :

Exemple 12 Calculer

On décompose

ZL‘3
Lo _ 11 2-u
»+1 3\z+1 22—x+1
B 1 1 1 2z—1 +1 1
- 3z4+1 6a2—zxz+1 222—2x+1



alors,

1 1 1 3 3
/x3—|—1 der = glog|:1c—|—1|—élog{xQ—x—l—ll+garctang(2x—l)+0

1 1
= —10g]91;+1]—élog(xZ—x—kl)+\/—§arctan\/?§(2x—1)+0

3 3
Exemple 13 Calcul de I = / x;12 dx.
(22 —z+1)
-1 1 20 —1)—1
- /%dxz_/%dx_
(22 —x+1) 2) (2 —2+1)

—1 1/ 1
2@ —z+1) 2 (a2—z+1)

- 2(16%;1)_%/ [(21;6?)2“]2'

V3
-1 44/3 / dy X 2z —1
= 5 — 5 Ol Yy = :
222 —z+1) 9 J [2+1] V3
Or d’aprés la formule de récurrence, on a :
dy Y 1
———— =[, = —— + —arctany + c.
/[y2+1]2 T o(y+1) 2 Y

Par conséquent, en revenant a la variable x, il vient :

-1 2r — 1 23 20 — 1
I= — — t C
22 —2+1) 6(2—a+1) 9 arcan( )+
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1.2.5 Calcul des intégrales de la forme / f (cosz,sinx) dxr ou f
est un polyndéme ou une fonction rationnelle.
Cas ou f est un polynéme

Ici f(cosx,sinx) est une combinaison linéaire de termes de la forme : cos? x sin? x,

(p,q) € N2. 1l suffit alors de montrer comment on calcule I'intégrale / cosP xsin? z dx.

1 Si p est impair, soit p = 2n + 1l,on a :

/ cosP rsin? xz dor = / cos?™ g sintx da = / (1 — sin? x) zsin? x cosz dx.

Le changement de variable # = arcsiny (= y = sinz) rameéne le calcul de la

derniére intégrale au calcul de :
‘/(1—y5”yqﬂh
c’est-a-dire a la détermination de la primitive d’un polynome.

Exemple 14 Calculer
I = /cos5xsin2x dx.

En posant y = sinx, on obtient : [ = / (1—1y2)*y2 dy

1 2 1
1= /@“¢¢+¢)@=—%——$+—f+C
77 757 73
1 9

1
= ?sina;7 — gsina:E’ + gsinx?’—{—(}’.

2 Si q est impair, le changement de variable y = cos z permet de ramener le calcul de

/ cos? xsin? x dx, a la recherche de la primitive d’un polynome.

18



Exemple 15 Calculer l’intégrale
/ cos® xsin® x dx.

En posant y = cosx (= dy = —sinx), on obtient : [ = —/y2 (1—19?) dy

1, 1
I = /(y4—y2) dy = -y° — 2y° +C
57 73
1 1

5 3
= —cosx’ — —cosx’ + C.
5 3

3 Si p et ¢ sont tous deux pairs.

(a) le changement de variable y = tang (x = 2arctany)

( 2
dr = 5 dt
1+g
. . Yy
sin 1+y2
: 1_y2 ;
CcCoST =
1+ 92
2y
tanx = 3
\ 1_y

raméne le calcul de l'intégrale & celui de la recherche de la primitive d’une

fraction rationnelle.

(b) Ici les puissances de sin et cos sont paires, on doit linéariser cos? x sin? x
i —1 p i —ix\ 4
) el +e iT e _ e
cos? rsin?x = ,
2 21

/ cos? z sin? zdx

Exemple 16 Calculer
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a. Le changement de variable t = tang rameéne le calcul de [’intégrale
/ cos® x sin® zdzx,
a celui de :
/1—1522 2t \* 2 dt_/1—t22 2 \' 2
1+¢2 1+12) 142 B 1+ 2 1+12) 14¢2
2
8/M dt
(14 12)°

b. Ici les puissances de sin et cos sont paires (respectivement 2 et 2) on doit linéariser

cos? rsin® z.

sy it 4 o—2ix 2 pit _ p—iz 2
cos“xrsin“xr = -
2 21
_ 627jx + 2 + 6—22':(3 62729: ) + 6—2ix
o 4 —e2ix

e4i:c _ 262ix + 1 + 262iz —4 + 26—272:5 + 1— 26—21'35 + 6—41'1:

—16
iz 4 e~4iz _ 9 2cosdx — 2 1
= = = ——cos4dr + -
—16 —16 8 8
/coszxsinzx dx —/ —lcosélﬁ—l—1 dx——isin4x+1$+0
B 8 8 32 8 '

Exemple 17 Calculer

/ sin*z dx

Ici les puissances de sin et cos sont paires (respectivement 4 et 0) on doit linéariser sin* .

» pie _ p—ix 4 gliz | p—diz _ 4 (e2m + 672195) +6
sin“x = . =
21 16
2cosdr — 8cos2x+6 1 4 1 9 +3
= = —cosdxr — —cos2x + —.
16 8 2 8

20



Alors,

1 1 3
/sin4x dr = g/cosélm dm—ﬁ/COSZ’E dx+§/da:

1 1 3
= 3—zsin4a:— Zsin2$+§x~|—0.

Cas ou f est une fonction rationnelle

x
Le changement de variable y = tan 5 permet de ramener le calcul de 'intégrale

/f (cosz,sinz) dx
a celui de l'intégrale d’une fraction rationnelle en y.

Exemple 18 Calculer
.2
- / B,
1+ cosz
le changement de variable indiqué précédemment donne :
2\’ 1—y2\ 7" 2 2
() ) e e
1+ y? IL+y2) 1492 (1+y2)

241-1 d d
: 4/y—2dy:4/ y2—4/—y2:4(11—12)
(1+9?) L4y (1+9?)

Ona:

dy
I, = = arct C, CelR.
1 /1 P arctany + C, S

dy 1 Yy
I = [—~ -~ +-—2
2 /(1+y2)2 271 T 2(1+?)
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D’ou

I = 4arctany —4 %arctanquﬁ +C, CelR
= 2arctany—1+y2+C’:x—sinx+C’.
Autre méthode : On a :
sin® x 71—0082‘@

— =1—cosz.
1+ coszx 1-+cosx

D’ou
L2
I:/& dx:/(l—cosx) dr =z —sinz + C.

1+cosx

Dans cet exemple, comme on le remarque, la deuxiéme méthode est plus rapide que
x
la premiere c’est-a-dire le changement de variable y = tan 3 n’est pas toujours le plus

simple.
Cas particuliers : Pour calculer
* ] = / f (cosz)sinx dz, on utilise le changement de variable : y = cos z.
* 1= / f (sinx) cosx dx, on utilise le changement de variable : y = sin .
1 . .
* I = [ f(tanz) —— dx, on utilise le changement de variable : y = tanz.

cos? x

* I—/sinaxsinbx dx, (a # +b),on a:
sinaxsinbr = 1,2 [cos (a — b) x — cos (a + b) x] .

Exemple 19 Calculer les primitives suivantes :

.5
]1:/& dr, [2:/8m * dx etlgz/sinxsin?)x dz.

sinx —sinz CcoS T
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1) On pose : y = sinx = dy = cosz dx, donc

cosT 1 1 1
b [ [ [l [
sin“x —sinx ye —y Y y—1

-1 inr—1
y—‘—l—Czlog %'—FC
Y

= —logly| +logly — 1|+ C =log o

2)

COS T COS T COS T

.5 . 4 2 2
1 —
]2:/8111 x dx:/sm xsin:zc dx:/ﬂsinx dx,

Oon pose :

y=cosr = dy = —sinz dz,

donc

1—42)? fo22 41 *
y y 4
4
= —COZ T 4 cos?a — log |cos x| + C.

3)

sinzsin3x = 1,2]cos (—2) z — cos4z] .

D’ou

I; = /sin:csin&’v dx—l/?/ [cos (—2) x — cos4x] dx

sin2z  sin4dx

c
1 s '

23



1.2.6 Calcul des intégrales de la forme / f (e*,coshx,sinhx) dz

ou f est une fraction rationnelle.

1. Pour déterminer I'intégrale de type I = / f (e*,coshz,sinh x) dz, en général, en

utilise le changement de variable y = e*, on obtient alors :
€x+e—$_y2+1 et — e T y2_1

. Y
hx = = t dr = —.
5 % , sinhx 5 2 et dx »

coshx =

Et par conséquent :

241 ¢y2—-1\ d
I:/f(ex,coshx,sinhx) da::/f <y’y2—iy_ ’y2y ) _y:/F(y) dy,

ou F est une fraction rationnelle réelle.
2dy
-y

2. On peut utiliser le changement de variable y = tanhg = dr =

Exemple 20 Calculer

h h
I, = /—COS * dx et Iy = / C‘OS 533 dzx.
2+ coshz sinh’ z

1) On fait le changement de variable

1+ y?
— 2 2d 2% + 2
yztanh£:>]1:/ 1 yz Y :/L
2 1+y*1—1y? yt —4y? +3
2+
1— 2

On a :

yt =4yt +3= (v - 1) (y2—3):(y—1)(y+1)<y—\/§> <y+\/§)-
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2% + 2

m en éléments simples :

Normalement, il faudrait encore décomposer

2y2+2_1+1+21 2 1
Vo423 y-1 y+l VBy—v3  VBy+ VB

par conséquent :

I—/1d+1d+2/1d2/1d
1 y—1 Y Sy sy =Y T B s
y + 2 y— V3
log|=——| + —=log |—/——=| + C.
i —1‘ V3 s

2) La « méthode normale » voudrait que l’on pose y = e* mais ici cela s’arrange plus

simplement. On pose y = sinhx = dy = coshx dx.

dy 1 1
L=—==-—4+C=—-——75—+C+
2 /y5 49t 4sinh? x

Cas particuliers :

Pour calculer

*

I = / f (cosh z) sinh x dz, on utilise le changement de variable : y = cosh z.

*

I= / f (sinh x) cosh z dz, on utilise le changement de variable : y = sinh z.
1

cosh?

* ]:/f(tanhx)

dx, on utilise le changement de variable : y = tanh z.

*

I= /sinhaxsinhbx dx, (a # +b),on a:

sinh azx sinh bx = 1,2 [cosh (a + b) x — cosh (a — b) z] .

1.2.7 Intégrales des fonctions contenant des radicaux
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1) Fonction de la forme f (x, /(ax +b) / (cx + d)) ou f est un plyndéme ou une

fonction rationnelle.

On suppose que ad—cb # 0 et (ax +b) / (cx +d) > 0 (sinon {/(ax +b) / (cx +d) =

constante). Dans ce cas le changement de variable y = {/(ax 4+ b) / (cx + d) permet de
ramener le calcul de l'intégrale a celui de l'intégrale d’'un plynéme ou d’une fraction

rationnelle. Expliquons cela par un exemple.

I:/ 1 \/1_$d:z:.
l—zV1+=z

Exemple 21 Calculer

On pose
1=z
YTV T
ce qui donne
yQ:l_m & Y(l+r)=1-2z
1+
s Y+ri=1-z
s sty =1—9°
1— 2
& = y2,
1+y
donc
-2y (1 +9%) —2y (1 —? —4
g — —2 (A +y7) @;( y)dy: Yy,
(1+y?) (1+y)
D’autre part
1—y? 14y2—(1—92 29/
| 1y 14y (1-y%) 2y

1+y2_ 1+y2 _1+y2
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Par conséquent

1 /1- 1 —4
1 = / xdx:/ Y dey
l—zV1+=x 2y (1+ y?)

1492

d 1 —
= —2/ Y _ 9 arctany 4+ ¢ = —2 arctan *
1+ y? 1+2

+C, CeR

2) Fonction de la forme f (ac, \/ax2+bm+c) ou f est un plynéme ou une

fonction rationnelle.

On a:

ar’+br+c=a

AR
o 2a 4q2

On va distinguer trois cas.

lercas : A<0Oeta>0.
On a alors :
ar® +br +c>0,Vr € R,

En faisant le changement de variable

b vV=A
r=—""+
2a 2a

sinh ¥,

[—A
on trouve vax? +bxr +c = e cosh y
a

Exemple 22 calculer

[:/\/a:2+x—|—1dx.
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1 3
Le changement de variable indiqué donne : x = —3 + g sinh y.

h2 1
I = /\/a:2+x+1dxz%/cosh%;dyz?l/% dy

3 3 3
— Esmh2y+§y+0: g(sinhy coshy +y) + C

— 2 Vi3 + 12 cosh (argsinh T3 (o 4+ 1,/2)) + avgsinh T73 (@ + 1/2)] + C.

Or
cosh (argsinhy) = /1 + y2.

D’ou

I= ?(w—l— 1,/2) \/1 +4,/3(x+1,2)7+ gargsinh\/él/?) (z+1,2)+C.

2éme cas : A >0et a <0.
On a alors :
az® 4+ bx +c¢ >0,

pour x compris entre les racines de 1’équation az?® + bz + ¢ = 0.

D’autre part, on a :

ar? +bxr +c = % [1 — ((a:+b/2a)/\/A/4a2>2] :

En posant :
b s
r=——+4+ VA da?cosy, |yl <=,
2a 2

il vient vax? + bx + ¢ = /A — 4dasiny.

Exemple 23 Calculer

1= /\/4—3m2dx.
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Soit v = /4,3 cosy, alors

I = /\/4 —4dcos? y\/4,/3 (—siny) dy = —4/\/5/ sin®y dy
= —2/\/§/ (1 —cos2y) dy=—2,/V3(y—sin2y,/2)+C
= 2,3 [arceos (V3 7Ar) — V3 wsin (arceos (V373 2))] +©
— 23 [arccos <\/3/_4x> — /341 - 3:(;2/4} +C
= —2,/V/3arccos (\/3/_4x> +a2y/1-322/4+4C.

3éme cas : A >0 et a> 0.

Le trinéme az? + bz + ¢ est positif pour z ¢ |2/, 2”[, ot 2’ et z”sont les racines de

I’équation ax? + bx + c avec 2’ < z".

On a: )
A b,/ 2
ar? +br +c=— (L/a) —-1].
da VA 2a
En posant :
VA /2a coshy pour z € ]2, + oo
x+b,/2a = / yp ] [ ,
—V/A /24 coshy pour x € |—o00 , 2/
on obtient :

az? 4+ bz + ¢ = /A /4dasinhy.

La fonction a intégrer devient alors une fonction rationnelle.

Exemple 24 Calculer
r+1

= | —— dz.
vz +ax—2
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I = /(:U2+37—2)/ dm—i—/ dx
2va? +x—2 2vVa? +x—2

= L+

ol

[1:\/1'2+x—2+0
I _/ dx .
2T 2V 4+ —2

Calculons Iy, en posant conformément a ce qui précéde :

1 (3,2) coshy pour x € ]1, 400
2 —(3,2) coshy pour x € |—o0, —2[ 7

(=2 et 1 sont les racines de l'équation z* +x — 2 =0). Pour x € |1,+00[,on obtient

dx 1 Y 1 2z +1
= —Zfdy=Z2+C == h C
/2\/9c2+$—2 2/y g TE T gEes ( 3 )+ ’

d’ot

1 2 1
]:\/x2+x—2+§argcosh< x; >+C.

En procédant de la méme maniére pour x € |—oo, —2|, on obtient

1 2 1
[:\/x2+:c—2—§argcosh <— x;— )—l—C.

1.2.8 Calcul de /Pn(:c)eo‘xd:z:, ol P,(z) un polyndéme d’ordre n et

o€ C*

On pose :
I= /Pn(:c)ea”” dr = Qn(x)e™,
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avec (), un polynoéme d’ordre n ( méme ordre que P, ). Pour calculer @, on utilise la

dérivation et 'identification.

Remarque 1.2.1 On peut utiliser l’intégration par parties dans les cas ot deg de P est

petit.

Exemple 25 Calculer
I = / (1‘24- 1) e dx.
On pose
I = / (:U2 + 1) e dr = (aa:Q + bx + c) e,

par dérivation on trouve :
(2® +1) €% = [3az® + (2a + 3b) z + b+ 3c] €,

done

v* +1=3ax* + (2a + 3b) v + b+ 3c,

par identification on trouve :

1

— a = —

3a=1 32
20+3b=0 < b:—§ ,

b+3c=1 -

27

et par la suite

1 2 11
I= +1) e de = (2P + -+ )
/(x—i— ) € da <3x+ 9x+27>6 +C,
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1.2.9 Calcul de /Pn(ac) cos fx dx et /Pn(l') sin Sz dx, ou P,(r) un
polynéme d’ordre n et 5 € R*
1°¢ méthode

Les deux intégrales se traitent de fagcon analogue. En utilisant I'intégration par partie

pour abaisser le degré du polynome.

Exemple 26 Calculer I(x) = / (z? + 1) sinz dz

I(x) = —(a:2—|—1)cosw+/23:cosa: dx

= — (1172 + 1) cos T + <2msinx— /2Sinx dm)

— (1 —a:2) cosx +2xsinz + C.

2¢me méthode

D’apres la 1¢7¢ méthode, il existe deux polynomes A(z) et B(x), de degrés < deg (P, (z)),
tels que :

/Pn(a:) sin fx dx = A(x) cos fz + B(x)sinfz + C, C €R.

On écrit A(x), B(x) avec des coefficients indéterminés, on dérive le second membre ci-

dessus, et on identifie avec P, (z)sin .

Exemple 27 Calculer I(x) = / (22 + 1) sinz dz.
I(z) = (az® + ba + ¢) cosz + (az® + Bz + ) sinz + C, C R

ol a,...,7y sont des réels a calculer.

En dérivant : Vo € R,
(az?+ (B+2a)z+b+7)cosz + (—az® + (2o —b)x + B — ¢) sinz = (2° + 1) sinz.
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Une condition nécessaire et suffisante est :

B+2a=0 e ¢ 2aa—b=0 ,
b+~v=0 B—c=

la résolution de ce sytéme linéaire donne :

D’ou :
I(z) = (1 —2*) cosz + 2zsinz + C.

3¢me méthode

Il se peut que 'on désire calculer simultanément
I(x) = /Pn(:z:) cos fx dz et J(x) = /Pn(:c) sin Sz dz.

Aux deux méthodes précédentes, on préférera alors 'utilisation de ’exponentielle

complexe.

Exemple 28 Calculer I(x) = /x2 cosx dz et J(x) = /x2 sinx dx.

I(x) +iJ(x) = /x2 (cosz +isinz) dr = /ﬁeiw dr = (ax2 +bx—|—c) ot L O
(a,b,c) € R a trouver, C' € R.

En dérivant :

Vz € R,i (az® + bx + ¢) + (2az + b) = 22,
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c’est-a-dire :
a0 =1 a=—1

ib+2a=0 etdonc q b=2
wc+b=0 c=2
Ainsi,

I(z) 4+ iJ(x) = (—iz® + 2z + 2i) (cosz + isinz) + C,

d’ou, en prenant les parties réelles et imaginaires :

I(x) = (2% — 2)sinz + 2z cosz + C
() = ) 1 ,(Ch, Cy) € R,
J(z) = (—2* 4+ 2) cosz + 2z sinz + Cy
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Chapitre 2

Intégrales définies

Dans ce chapitre, on donne une introduction a l'intégrale de Riemann et quelques
définitions et propriétés fondamentales. Ensuite, on établit le lien entre cette intégrale
et les primitives, pour enfin se dédier a la pratique du calcul intégral. Soit a et b des

nombres réels tels que a < b et I = [a,b] compact ( c¢’est-a-dire fermé, borné)

2.1 Intégrale des fonctions en escalier

Commencons par les définitions qui sont & la base de la notion d’intégrale.

2.1.1 Subdivision d’un intervalle compact

Définition 2.1.1 - On appelle subdivision de [a,b], les nombres réels xg, 1, ..., T, tels
que

a=Tg <11 <..<xp,=0

Les points x; sont quelconques dans |a, b], les intervalles [x;_1 ,x; | ont des longueurs, en

général, différentes.
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=}
=2

]
Xy Xy Xy X, X

L
=

M4
L

FIG.1- Subdivision de |a, b].
2- On appelle pas de la subdivision s = (vg, 71, ...,x,) et on note p(s) la longueur du

plus grand de ces intervalles.

p(s) = sup (z; —xi1).
1<i<n

3)- On appelle subdivision réguliére (ou uniforme) toute subdivision avec des points

équidistants. Pour une telle subdivision on a donc

b—a

hk:l'k—l'kflzh: ,szl,...,n

et par conséquent :

b—a

n

Ty =%k 1+h=2g+kh=a+kh=0a+k

Exemple 29 (introductif ) Soit f la fonction définie sur [0,1] par f(x) = x. Sachant
calculer Uaire d’un rectangle, on désire évaluer U'aire A(f) délimitée par le graphe de la
courbe f, l'axe des x et les deux ordonnées x = 0 et x = 1. Considérons une subdivision

uniforme de [0,1] en n sous intervalles :
O=xo<m1 < ... <z, =1,
avec :
1
T — 1 =h=—-Vk=0,...n—1
1l s’ensuit que :

k kE kE+1
Tpp1 =ap +h=kh=—, et [xk,:ck—l—l]—[—, + ],Vk—o,...,n—l.
n n n
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D’ou

k k+1
Vo € [xg, xp + 1] = {—, + ],
n n
on a .
k k+1
—<flr)=2< -
n n

Soit I"(f) la somme des aires des rectangles inférieurs :

[aary

R k
) = 3 (anen =) % 3

e
i

et I'! la somme des aires des rectangles supérieurs :

7
L

n k+1
I+ = (ifkﬂ —xk) X o
0

i

1l est clair que :

1°(f) < A(f) < TE(S).-

Etudions cette inégalité quand le nombre de points de la subdivision devient assez grand.

1
En remplag¢ant xp1 — xx par h = — on obtient :
n

. 1 n(n—1)
) = a2 h="ga
k=0
n—1 n
. 1 1 n(n+1)
Ii(f) = ) (k+1):ﬁ k:T’
k=0 k=1
comme
Jim I%(f) = lm I3(f) =,
on en déduit que
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2.1.2 Fonctions en escalier

Définition 2.1.2 Une fonction f : [a,b] — R est dite en escalier ( étagée ) s’il existe une
subdivision s = (xg, 1, ...,x,) de |a,b] telle que pour tout i = 1,2,....,n, [ est constante
sur lintervalle ouvert |x;_1, z;[ définie par s. Une telle subdivision est dite adapté ( associé
)af.

Remarque 2.1.1 1) Si f est en escalier et si s = (xg,x1,...,T,) est une subdivision

de [a,b] adapté a f, il existe donc des nombres my,...,m, tels que f(x) = m; pour tout
x € |miq, x;].

II) Les valeurs prises par [ auz extrémités des intervalles |x;_y, x;| peuvent étre quel-
conques.

II1) Si f est en escalier sur [a,b], elle I'est sur tout sous-intervalle de [a,b].

IV) Une fonction constante est évidemment en escalier.

V) Une fonction f est dite en escalier sur R s’il existe un intervalle [a, D]

tel que f =0 sur R\ [a,b] et en escalier sur [a, b

Exemple 30 Soit f :[0,2] — R la fonction définie par

3 s 0<z<l1
flz) = 1 st x=1

2 s l<x<?2

Cette fonction est en escalier puisque elle est constante sur chacun des intervalles ouverts
10,1] et ]1,2[ . La subdivision (xg = 0,21 = 1, x5 = 2) est adaptée. Et il existe bien d’autres

subdivisions adaptées a f, comme par exemple

1
(ZEOZO,Il:i,IQZ]_,ZE:g:Q) .

Lemme 2.1.1 Soit f : [a,b] — R une fonction en escalier. Si (xg,x1,...,x,) est une

subdivision de I adaptée & f et si l’on pose f(x) = m; pour tout x € |x;_q1,x;[, alors le
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nombre

(1 —zo) My + (2 — x1) Mo + oo + (Ty, — Tpo1) My,

ne dépend pas de la subdivision (xq, 1, ..., Ty) .
Le lemme permet de formuler la définition suivante.

Définition 2.1.3 Soit f : [a,b] — R une fonction en escalier. Si (zo, x1,...,2,) est une

subdivision de [a,b] adaptée o [ avec f(x) =m; six € |x; 1,24, la somme
(x1 — xo) My + (T3 — 1) Mo + ... + (T — Tp—1) M,

b
qui ne dépend que de f, s’appelle lintégrale de f sur [a,b] et se note I(f) ou / f(t)dt.

Remarque 2.1.2 » Soit ¢ € [a,b] et soit f : [a,b] — R une fonction telle que f(z) =0
sixz #0.Sil’on ac € la,b], la subdivision (xg = a, ©1 = ¢, o =b) est adaptée a f, donc

la fonction f est en escalier et on a par définition

/f(a:) dr=(c—a)x0+(b—c)x0=0.

De méme, si c = a ou c =Db, l'intégrale de f est 0.
» L’intégrale d’une fonction nulle sauf en un nombre fini de points est nulle.

b
» Si f est une fonction constante de valeur m, alors / f(x) de =m((b—a).

Propriétés de ’intégrale des fonctions en escalier

Proposition 2 Soient f et g deux fonctions en escalier sur [a, b]

1. La fonction f + g est en escalier et 'on a

[urowa=[rwas o a
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2. Pour tout nombre réel X\, la fonction \f est en escalier et l'on a

/ab/\f(:):) dm:)\/abf(x) dx

3.5t f>g, alors / f(z) doz > /bg(:c) dz.

/f ) da /\f )| do.

5. Les fonctions en escalier qui différent en un nombre fini de points ont la méme

4. On a

intégrale.

6. Ve € [a,b], on a/abf(a:) dr = /acf(x) daz+/cbf(3:) dx

Preuve 1 1. Soient (xg,x1, ..., ) une subdivision adaptée o f et (yo, Y1, .., Yn) une sub-
division adaptée a g.

Comme

{zo, 21, ., 20} U{Y0, Y1, -, Un} = {20, 21, -, 21},

ot l'on a

o<z <..<z avec zg=a et z; = b,

on obtient une subdivision adaptée o f et g, donc a la fonction f + g.
Utilisons cette subdivision pour calculer les integrales de f, g et f + g.

On a pour tout © € |z;_1, 2|
Vie N, 1<i<I,3(myp;) € R? tels que f(x) =m; et g(x) = p;
Il vient donc

/ flz) de = (21— z0) m1 + (22 — 21) Mo+ ... + (21 — z-1) M.
/ g(@)de = (2 —20)p1+ (22 —21) D2+ ... + (21— 221) 1

b
/ (f +9) (x) dv = (21 — 20) (M1 +p1) + (22 — 21) (M2 +p2) + ... + (21— 21-1) (M + 1) -
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D’ou le résultat.

2. La démonstration est semblable a la précédente et plus simple.
b

3. Si f > g, alors la fonction étagée f — g > 0, donc / (f —g)(z) de > 0.

b b b
En utilisant (1) et (2), on en déduit / f(z)dz — / g(x)dx = / (f—g)(z) dx > 0.
4. Pour tout t € [a,b] on a ’ ’ ’

—[f(@)] < flx) < [f(2)].

Donc on a

—l%@ﬂmsl%mwsAW@nm

/a ’ f(z) do

5. Soient f et g des fonctions en escalier qui différent en un nombre fini de points,

D’ou ,
g/vmwm

alors f —g est nulle sauf en ces points.

b
D’aprés la remarque, on en déduit / (f—g)(x)de =0

donc
b b
/f(x) dx—/g(ac) dx.
6. Posons
flz) s a<z<c 0 si a<zxz<c
fi(z) = et fo(x) = ,
0 si c<xz<b f(z) si c<x<b

on a f1(x) + fa(z) = f(x) pour tout x € [a,b] et par définition de l'intégrale

[ ar= 1w w a [pea= 10w

On déduit le résultat en appliquant (1).
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Sommes de Darboux

Considérons une subdivision finie de l'intervalle [a, b] en n sous intervalles :

[Tr_1,2], k=1,...,n, avec zg = a et x,, = b.

Soit my(resp My) la borne inférieure (resp la borne supérieure) de la restriction de f a

[z 1, zi[, pour 1 <k <n—1etalz,,b] pour k =n.

Définition 2.1.4 On appelle somme de Darboux inférieure la quantité s(f;zo, 1, ..., Ty)

définie par :

i
L

S(f;ﬂfo,xl;---ylfn) = ($k+1 —l‘k)mk-
0

i

On appelle somme de Darbouz supérieure la quantité S(f;xo, 1, ..., x,) définie par :

i
L

S(f;xmxla"-axn) = ($k+1 —xk) M.

>
Il
<)

On obtient alors :

I (f) =sups(f;zo,®1,.s 1), IT(f) =1inf S(f;xo, 21, ... 2,) et I_(f) < I(f) < IT(f)

Remarque 2.1.3 FEtudier l'interprétation géométrique des sommes de Darboux comme
aire des rectangles de base [x;_1,x;], encadrant I’épigraphe de f de en-dessous resp. au-

dessus.
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by sup f(11)

inf f(lI3)

fiz)

sup f(I)

a = iy T Iz o 13 Tra ry = b a

FIG.2-Somme de Darboux inférieure (hachurée) et supérieure (hachurée plus blanc)

de f(x) pour une subdivision équidistante d’ordre 4 de [a, b].

2.2 Fonctions Intégrables

Nous allons maintenant définir la notion d’intégrale pour des fonctions plus générales.
L’outil théorique permettant cette généralisation est la notion de la borne supérieure et

la borne inférieure.

2.2.1 Intégrale de Riemann

Définition 2.2.1 Une fonction f : [a,b] — R est intégrable si pour tout nombre € > 0,

il existe des fonctions en escalier u et U définies sur [a,b], telles que
b
ul f<U et / (U—u)(z) dr <e.

Remarque 2.2.1 » Sir est un nombre réel et si —e < r < g, alors r = 0.

» Une fonction en escalier est intégrable (il suffit de poser u=U = f ).
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» Une fonction intégrable est bornée. En effet, une fonction en escalier est majorée

et minorée.

Définition 2.2.2 On appelle intégrale inférieure de f et on note I_(f), la borne supé-

rieure des intégrales des fonctions en escalier inférieures ou égales a f, c’est-a-dire :

b
I (f)=sup {/ ¢(x) dx \ ¢ en escalier et ¢ < f}

Définition 2.2.3 On appelle intégrale supérieure de f et on note I.(f), la borne infé-

rieure des intégrales des fonctions en escalier supérieures ou égales o f, c’est-a-dire :

b
I.(f) = inf{/ ¢(x) dx \ ¢ en escalier et ¢ > f}

Définition 2.2.4 Si f : [a,b] — R est une fonction intégrable (au sens de Riemann), le

b
nombre 1_(f) = 1.(f) s’appelle l'intégrale de f et se note I(f) ou/ f(z) dx.

=

rd 0 b=
\}'=J’{r}

I

a b

FIG.3-Lintégrale de f au sens de Riemann

Exemple 31 Soit f:[0,1] — R, f(z) = x2. Montrons qu’elle est intégrable et calculons
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FIG.4-Lintégrale de f(x) = 2* sur [0,1]

Soit n > 1 et considérons la subdivision réguliére de [0,1] suivante

. i—1 i
Sur 'intervalle {—, —] nous avons
n o'n

[1—1 z} <i—1)2 ) <z)2
Vo € ,— <z<|(-—-]) .
n n n n

, 2
1—1
Nous construisons une fonction en escalier ¢_ en-dessous de f par ¢_(x) = ( )
n

1—1 1
six € {—, —] (pour chaque i = 1,....m ) et ¢_(1) = 1. De méme nous construisons
n 'n

. 2 . .

1 1—1 1
une fonction en escalier ¢ au-dessus de f définie par ¢ (x) = (—> st x € [ ,—}

n n 'n

(pour chaquei=1,...n ) et ¢, (1) =1. ¢_ et ¢, sont des fonctions en escalier et l'on a

¢_ < f< 9,
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L’intégrale de la fonction en escalier ¢ est par définition

"2 (i i—1 ”i
[o@a-y 5 (L) - L ngz

=1 =1

n 1)(2 1
On se souvient de la formule Z;l i? = n(n+ 13( nt >, et donc

! _nn+1)@2n+1)  (n+1)(2n+1)
/ b (z) do = 6n3 B 6n? '

De méme pour la fonction ¢_

/0¢(x) dxzz(i %: Z (n—1n (32”—1):(71—1()57(12277,—1).

Maintenant 1_(f) est la borne supérieure sur toutes les fonctions en escalier inférieures

> /01¢_ (x) dx.

1
< / ¢, (z) de.
0
En résumé :

—1)(2n—1) +1)(2n+1
U 6n2n /¢ ) dv < I_(f) < L.(f /¢+ - U éiﬁn )

a f donc en particulier

De méme

1
Lorsque l'on fait tendre n vers 400 alors les deux extrémités tendent vers 3 On en déduit

1

que I-(f) = I (f) = 5.

1

1

Ainsi f est intégrable et / 2? dr = 3
0

Convention :

) /:f(a;) dz = 0
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i) /baf(x) iz = —/abf(x) iz (a<b)

2.2.2 Propriétés de l’intégrale

Ce sont les mémes propriétés que pour les fonctions en escaliers.

Proposition 3 Soient f et g des fonctions définies sur [a,b] et intégrables.

1. La fonction f + g est intégrable et l'on a

/ab(erg) (2) da::/abf(a:) da:—l—/abg(a:) dz.

2. Pour tout nombre réel \, la fonction Af est intégrable et l'on a

/ab)\f(a:) dr = )\/abf(x) dx.

b b
3. 81 f> g, alors / f(x) doe > / g(x) dx.

4. Des fonctions intégrables qui différent en un nombre fini de points ont le méme

intégrale .

5. Quelque soit ¢ € [a,b], [ est intégrable sur [a,c] et sur [c,b] et l'on a

b c b
/ f(z) dx :/ f(z) dz +/ f(z) dz (Formule de Chasles)

Preuve 2 1. Puisque les fonctions [ et g sont intégrables, Ve > 0, il existe des fonctions

en escalier u,v,U etV telles que

b b
uﬁfﬁU,vﬁgSV,/ (U—u)(x)c&ﬁ%et/ (V —v)(z) dx <

DN ™

Posons w=u+v et W =U + V. Les fonctions w et W sont en escalier. De plus, nous
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avons

b b b
w< f+g<W et/ (W—w)(w)dmz/ (U—u)(x)dx+/ (V—v)(x)dx<e

La fonction f est donc intégrable. L’encadrement w < f + g < W implique

/abu(m) dx—i—/abv(m) dmg/ab(erg) (z) dxg/abU(x) dm+/abV(x) da.

D’autre part, en ajoutant membre a membre les inéqgalités

L[a@dmslvuwms[ﬁﬂmit“L[R@dxglzmwmgfﬁdwd%

nous obtenons

é%ﬂ“+Lu”“§l%@“+lhﬂmgl%@M%Lw@dn

On déduit les deux inégalités

/abu(x)dx+/abv(x)dx— (/:U(x)dm + /jV(m)dm) < /ab (f+9) (v)dz— (/abf(x)dx + /abg(x)dx)

et

/a b (f +9) (x)dz— ( / bf (z)dx + / bg(x)dx) < / bU(m)der / bV(:zc)dx— ( / bu(z)dm + / bv(:p)dx)

Dans ces encadrements, le membre droit de la deuxiéme inégalité vaut

b b -
/a (U —u)(x) dm+/a (V —0) (2) dx§§+

de méme, le membre gauche de la premiére inégalité est supérieur ou égal a €, il vient
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donc

c< [Urow - ([ 1w ars [o0 ) <

comme ces inégalités sont vraies pour tout € > 0, nous concluons

/ () () di = / e do / o) da

d’ou le premier résultat.
2. Ce résultat se démontre exactement comme le précédent.
3. La fonction f — g est intégrable d’aprés (1) et (2). Si l'on a f — g > 0, donc par

définition de ["intégrale

/ab(f—g)(x) de/abdezo.

D’aprés (1), nous avons

[u-oww= [ w- [owa

/a f(a) do > / o) .

Les propriétés (4) et (5) se démontrent comme pour les fonctions en escaliers.

d’otu l"inégalité

Remarque 2.2.2 Noter que méme si f .g est intégrable on a en général

/ (1) (&) da (/ @) w).(f o) ).

Par exemple, soit f : [0,1] — R la fonction définie par

1
1 st x € O,—]
oo &

0 atlleure
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et soit g : [0,1] — R la fonction définie par

1
1 St T e {—,1]
g(z) = 21,

0 atlleure

1
alors f (x).g(x) =0 pour tout x € [0,1] et donc/ f (x).9(z) dx =0.
0

! 1 ! 1
Alors que/ f(z) de = = et/ g(z) do = =.
0 2 0 2

Proposition 4 (Inégalité de Cauchy-Schwarz.) Soient f, g : [a,b] — R deux fonc-

tions Riemann-intégrables sur [a,b], alors, on a linégalité dite de Cauchy-schwarz :

< (/abe(a;) dx> | (/:gﬂ(a;) dx)

N | —
N | —

[ 109 @

Preuve 3 Posons

PO\ = /ab (F(x) + Ag(2))? do — )\2/abg2(a:) d + ZA/abf(x).g(a:) d + /abe(x) da.

On a P(\) >0 VX €R, alors

A= </abf(x).g(:r) da:)2 - /abe(x) dx./abg2(x) dz < 0

d’ot le résultat.

Proposition 5 (Inégalité de Minkowski) Soient f, g : [a,b] — R deux fonctions

Riemann-intégrables sur |a,b|, alors, on a l'inégalité suivante :

; 1
[oresraft ([ )t ([

N | —
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Preuve 4

j£b<f<a» +g@)dr = ]be2<x> dx-+-2]£bf<a».g<m> dx.+»]{bg2<x> do
1
(lvawcw+2([fﬂm)m)i.(ll%mcu)
1 172
= (/abfz(a:) dac)§ + (/ang(x) m)i

AN
N |

+ /abQQ(x) dx

D’ou
1

[ ssora]f = ([ ([ )

Corollaire 2.2.1 Soit f : [a,b] — R une fonction intégrable. Sim et M sont des nombres

réels tels que m < f (x) < M quelque soit x € [a,b], alors on a

Preuve 5 D’aprés la propriété (3) de la proposition 3, on a

m(b— a) /md:c</f d;c</Md;e— (b—a).

/ f(@) do < M.

—aQa a

=

Théoréme 2.2.1 (Formule de la moyenne). Soit f une fonction continue sur [a,b] et g

intégrable sur [a,b] avec g de signe constant, alors il existe un nombre ¢ € [a, b] tel que

[ r@ ot ar= s [ o) a
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En particulier si g =1 on a

b
10 = = [ @) do.

Preuve 6 Nous supposerons ici que g est positive. L’autre cas se traite de maniére ana-
logue.
Puisque la fonction f est continue, elle admet un mazimum M et un minimum m . On

a

mg(x) < f(z)g(x) < Mg(z) V€ la,b],
donc
b b b
m [Cgta) o< [ fia)gta) dn <M [ gla) ds )
b b
1*"cas : Si / g(x) dx =0, alors / f(z)g(z) dz = 0 et le théoréme est évidement vérifié.

b
Fmecas : Si / g(x) dx # 0, les inégalités (* ) impliquent que

/f@w@dx
mgab <M

/a g(x) dx

alors on a, d’apreés le corollaire précédent, le nombre

[ 1@ @

/a g(x) dx

€ [m, M],

donc il existe ¢ € [a,b] tel que

Lvummdg:

/a g(x) dx
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Théoréme 2.2.2 Si f: I = [a,b] — R est une fonction continue, alors
- f est bornée et intégrable sur tout segment contenu dans I.

- Pour tout ¢ € I, la fonction F(z) = / f(t) dt est la primitive de f qui s’annule en c.
- Pour tout x € |a,b[, F'(z) = f(x), Fc’l(ca) = f(a), F;(b) = f(b).

Preuve 7 Il suffit de montrer que F est dérivable en tout point xq € I et que

Soit xog € I, alors on a :

Fen - re) =1 [ e [ /mMﬂmdm

En utilisant la continuité de f sur [xo,xo + h| et la formule de la moyenne, on obtient
3y, € [xo,x0+ h] tel que :
1 zo+h
fo =3[ @) do

o

D’ou

i T I IO iy 3, = i) = (o).

h—0 - h—0

Donc on a : F'(zg) = f(x0).

, - . F(zo+h) — F(xo)
Si xg = a, on considére hli)lrél+ - = F)(a).
F h)—F
Si xg = b, on considére hlixgli (o + f)L (@) _ Fy (D).

Remarque 2.2.3 1) Siles hypothéses du théoréme précédent sont vérifiées et si on consi-
dere la fonction F(x) = /Cf(t) dt (a <x <b), alors

- Pour tout x € Ja,b], F'(z) = —f(x).

- Sia €I alors Fj(a) = —f(a) et sibe I alors Fy(b) = —f(b)
2) Pour toute primitive F' de f on a : /bf(:c) dz = [F(x))" = F(b) — F(a).
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3) En reprenant l'intégration par parties, vue lors de l’étude des primitives, on obtient :

b b
/ f(@)d (@) de = [f(@)g(@)]’ — / @)g(x) d

4) En utilisant le changement de variables x = 1(t), on obtient :

P(b) b
/ f(x) de = / F()(8) dt
P(a) a

Théoréme 2.2.3 Si f : [ = [a,b] — R est une fonction monotone, alors f est intégrable

sur I

2.2.3 Sommes de Riemann

L’intégrale est définie & partir des limites des sommes. Mais maintenant que nous
savons calculer des intégrales sans utiliser ces sommes on peut faire le cheminement

inverse : calculer des limites de sommes a partir d’intégrales.

Théoréme 2.2.4 Soit f : [a,b] — R une fonction intégrable, alors

JENEC

Sy s’appelle la somme de Riemann associée a lintégrale et correspond a une subdivision

b—a

Sh,

réquliére de lintervalle [a,b] en n petits intervalles. La hauteur de chaque rectangle est

évaluée a son extrémité droite. Le cas le plus utile est celui o a =0 et b =1, alors

b—a 1 b—a k
= — et k = f(—
- et fla+k"—") = J(>),
anst
1~ .k !
S, = — — d
”kzlf(n>":°° ; (z)d
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flzl-

FIG.5-Somme de Riemann
"1

E le 32 Calculer la limite de | Sp = .
xemple alculer la limite de la somme ;n—i—k
On a
1 1 1 1 1 1
S == Sy==+4> S4=- S S =iz
R R 4+5+6 tT5T6 T
La somme S,, s’écrit aussi S,, = Z ———. En posant f(z) =
k 11 —|— -
n
on reconnait que S, est une somme de Riemann.
Donc
1~ 1 1 < k: 1
Sn = — — r f(= / f(x / dr =
n — 14 = n 1 n n—>+oo X
n
Ainsi, S, —log2 (lorsque n — 400 ).

Proposition 6 Si f € C'([0,1]) ( f' ewiste et continue )

et si on pose X
I, (kK
Ry = Ekz_;f(ﬁ>
on a
1f(x)dx—Rn < My
0 n
xz € [0,1]}

ot My = sup {| f'(z)| ;

1
3
—,a=0etb=1,
I1+zx
log |1 + z]]; = log 2.



Preuve 8 Sur l'intervalle [z, x11], en utilisant l'inégalité des accroissements finis, l’er-

reur est

/ @) — f () da

< / @) - fa) de

Tk T
Tp+1
< Ml/ |z — x| dx
Tk
- M, [(1’ - Ik)TM
2
Tk
20

Cette erreur étant obtenue sur n intervalles, on a le résultat annoncé.

b
Théoréme 2.2.5 Soit f une fonction intégrable et positive sur [a,b], alors / f(x)dx est

Uaire du domaine
D:{(:U,y)ERQ; a<x<b, Ogygf(:c)}.

b b b
Pour f de signe quelconque alors/ f(z) dx = / fi(2) d:c—/ f-(z) dz est la différence

des surfaces des domaines Dy et D_ associés o f et a f_.

Preuve 9 Les sommes de Darboux sont des sommes de surfaces de rectangles qui en-
cadrent le domaine D comme précisé ci-dessus. Si f est intégrable, on a vu que ces

sommes convergent vers l’intégrale de f.

Exemple 33 Déterminer les sommes de Darboux inférieures et supérieures et étudier
I'intégrabilité au sens de Riemann des fonctions f suivantes :

a) f constante sur [a,b] et o une subdivision quelconque de [a, b)].

b) [ en escalier sur [a,b] et o une subdivision adaptée.

c¢) f monotone sur [a,b], o une subdivision quelconque et o, une subdivision uniforme

b—a
de pas .
n
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d) f définie sur [a,b] par

f(m){ 0; z€Qnla,b
I; € (R—Q)NJa,b]

r; r€QN[0,1]
0; e (R-Q)NJ[0,1]

Preuve 10 a) On pose f(z) = C, soit 0 = {xo,...,x,} alors : M,- =m; = C Vi €
n—1

[0;n — 1], donc I7(f) = ZMZ (i1 — ;) = C(b—a) et 17(f Zml i1 — =

Cb—a)doul (f)=I1(f)=C(b—a), [ estintégrable avec / f(x)de=C(b—a).

b) Soit oo = {xo, ..., v, } une subdivision adaptée a f, on pose
f(l’) = CVr € ]$i,ﬂfi+1[,Vi € [0,77, — 1] ,

donc

=

I7°(f) = M; (i1 — ;) =

%

n

Cz xz+1_‘flj Zml szrl_:Uz _[Jo(f)

-1
=0

Il
o

d’on
I9°(f) = I7°(f).

Intégrabilité : Soit o une subdivision quelconque, on prend o1 = o U 0y ot 01 est une

subdivision adaptée o f et on a :

17(f) < 17(f) = 17 (f) < 15(f)
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donc
SupI” (f) = i I7(f),

n—1

b
alors [ est intégrable et / f(x)dx = Z Ci (wip1 — x;) .
@ i=0

c¢) Soit 0 = {xy, ..., x,} une subdivision quelconque, alors,

M; = sup f= f(zi1)( ou f(z;) )

[@4,2441]

m; = inf f=f(z;)( ou f(zi1) ).

[, 1]

( [ est croissante ou décroissante). On suppose par exemple que f est croissante,

[i(f) = Zf(xiJrl)(xiJrl_xi)

I7(f) = Zf(zm (Tip1 — 27)

)~ 120) = 3 (i) ~ ) (s — )
< max (41 :UZ-)Z(JC(%H) f(x:))
< max (zi41 — ;) (f(0) — f(a))
Soit € > 0 telle que
9

alors

17(f) = 12(f) <



ce qui montre l’intégrabilité.

Si 0, = {x0, ..., xn} est la subdivision réguliére a n intervalles, alors

b n—1
I7(f) = aZf(ﬂfiH)
=0

n

() = Y fw)

n

9
0; z€Qnla,b

flz) =
I; zeR/QnNJa,d]
On sait que ¥ [c,d] € R, alors
dNQ£D et [od NR/Q# 2

Q et R/Q sont denses dans R, d’ou Vo = {xy, ..., x,} une subdivision de |a,b] alors :

M;= sup f=1, my= inf f=0,

[1‘7;,:27;+1] xivzi+1]

d’ot

\
—

n

I9(f) =) (wipi—xi)=b—a et I7(f)=0

ﬁ
Il
=)

alors

infl7(f)=b—a et supl{(f)=0

donc [ est non intégrable au sens de Riemann.
e)
r; r€QN(0,1]

flz) =
0; ze(R-Q)N[0,1]

Soit 0 = {xyg, ..., } une subdivision de [0,1] et M; = sup f = ;41 car I(ry) est une
[©i,2i41]
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suite de rationnels dans [x;, x;y1] telle que lim ryp = x;,1.
k—+o0

Comme f (1) = 11, donc klim f(ry) =z, dou
— 400

M; =supf = x4

Vo € [xi, Ti], f(x) <44 s ]
3(r) € [, zipa] / khff f (k) = zip m; =inff =0 7
e [zi,2iq1]

d’ou )
I9(f) = Y i (wi01 — 32
=0
I7(f) =0
Prenons la fonction continue sur [0,1], g(z) =z, g est intégrable et 17(g) = I7(f).

Or on sait que

iI;fIi(g) = lim I7"(g)

n—-+00

ot oy, est la subdivision réguliére de [0,1], donc

o ) "k
Wit = Jm 32
1 1 1
— tm 1 n(n+ )__
n—>+oon2 2 2
Ainsi ]
infl7(f) = 5
supl?(f) =0

donc f n’est pas intégrable.

Exemple 34 Considérons la fonction définie sur [a,b] par f(x) = 2® et o, la subdivision

b—a
uniforme de pas

a) Calculer les sommes de Darboux inférieures 1" (f) et supérieures I (f) de f as-

1) (2n+1 a
sosiées a la subdivision o, (On rapelle que : ZkQ = n(n+ )6( n+l) et Zk3 =
k=1 k=1
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2
5 (n+1

bt — a*

b)MontrerquelimIﬁ(f):Emfﬁ(f): B

n—-+o00

Preuve 11 a) On a

T, = a—i—%(b—a),ké[(],n],
3
M, = [sup ]f:f(f’?ml):(a*‘k;—l(b—a))
— inf f= = an 3
me =t J=iE) = et b
" b—a kE+1 3
I'(f) = 2.y (a+ - (b—a))
n—1, 2 _ 3
— ana<a3+3%(b—a)(k:+1)+%(b—a)z(k+1)2+(bTa) (k:+1)3)
k=0
b— 3a2 (b — a)® 1) 3 1)(2n+1
_ “ (na®) + > (n2 a) n(n2+ )+n_z(b_a)3n(n+ )6( n+1)

lim I7(f) =
b) lim I3(f) 1

De la méme maniére on trouve

n—1 —a 3 4—CL4
If(f)zzb (a—k%(b—a)) et lim If(f):b T

n n—-+4oo
k=0

Exemple 35 Soit o, € RY, calculer la limite des suites suivantes :
n n

1 ~ n ~ K kP
1. _— 2. —_ 3. —_ 4. — € R?
kzzona—l—k:ﬁ ZOnQ—i—kQ kgn3+8k‘3 ;npﬂ’p +

T 1

- 1 1 — k " 1
55— 6.=) cos2— 7Y ——— 8= Vb, (a>1
%vnz—i—le ng n ;\/4712—]{?2 ng ( )
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Preuve 12 1.0n a

. . . 1 . .
la somme de Riemann associée & la fonction f(x) = T Bz définie et continue sur
! x

k
[0,1]. Pour la subdivision o = {xy, ..., x, }, définie par x;, = —, k € {0,...,n}, on obtient
n

lim / ——1 atp
n—-o0 4 noH—kB a+ fx " a '

2. On a

la somme de Riemann associée a la fonction f(x) = définie et continue sur [0, 1].

1
14+ 22’

k
Pour la subdivision 0 = {xq, ..., x,}, définie par x, = —, k € {0,...,n}, on obtient
n

n

1
d
lim A / SN [arctan ]y = %

e L I
k 2
"R 1 o (ﬁ)
Zn3+8k3_ﬁz <k’)3
k=0 k:01+8 -
n

iL’Q

1+ 8z2’

k
[0,1]. Pour la subdivision o = {zq, ...,x,}, définie par xp, = —, k € {0,...,n}, on obtient
n

3. Ona

la somme de Riemann associée a la fonction f(r) = définie et continue sur

_ k2 ba?dx 1 |
I [ I | jog (14 82%)| = —log3.
nirfoo;nuw /0 1+ 8% {24 og (1+87 )L 12 %
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4. On a

S A A
k=0

k=0

la somme de Riemann associée a la fonction f(x) = aP, définie et continue sur [0,1] (car

k
p > 0). Pour la subdivision o = {xy, ..., x,}, définie par x;, = —, k € {0,...,n}, on obtient
n

I ! 1
li g = Py = ——.
niToo npt+1 /0 rrax p+ 1

5. 0Ona

1
0 1+2(§>
n

la somme de Riemann associée a la fonction f(x)

1 1
n

— vn2+ 2kn N .

définie et continue sur

1
1+ 27]

k
0,1]. Pour la subdivision 0 = {zq, ...,x,}, définie par xy, = —, k € {0,...,n}, on obtient
n

1

\/W] =V3-1

0

lim

& 1 odx
n%ookz_% V2 + 2kn _/0 Vit [

6. On a

n

1 o km

= E cos” —

n n
k=0

la somme de Riemann associée a la fonction f(z) = cos?

nx, définie et continue sur [0, 1].

k
Pour la subdivision 0 = {xq, ..., x,}, définie par x = —, k € {0,...,n}, on obtient
n

n—-4oon,

1 < k ! 1! 1
lim —%cosQ%:/o COSQWIdI:§/0 (1+C0827T$)dl’:§.

7. On a

1y 1
i VAn? —k? - ni— 1 (E)2
\/ n
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. . . 1 . :
la somme de Riemann associée & la fonction f(r) = ——, définie et continue sur

V4 — x?

k
[0,1]. Pour la subdivision o = {xq, ...,x,}, définie par xy, = —, k € {0,...,n}, on obtient
n

lim i;_/ld—x_ [arcsinf] -
ntoo i\ a2 — k2 Jo VA—a% 210 6
8. On a
1 & 1 & k
_ Vak = = n
- a* =~ (a)

k=

=]

k=

=]

la somme de Riemann associée & la fonction f(x) = a®, définie et continue sur [0, 1].

o

Pour la subdivision 0 = {xq, ..., x,}, définie par x, = —, k € {0,...,n}, on obtient

)
n

1= ! o a—1
lim —ZVGk:/ a’”dx:/ e’y = .
n—-+oon, £ 0 0 log a
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Chapitre 3

Equations différentielles du premier

ordre

3.1 Introduction (définitions générales)

De nombreux problemes issus de la physique sont modélisés a ’aide d’une équation
différentielle (1 D), dans laquelle interviennent la fonction inconnue et ses dérivées suc-
cessives. Cette équation relie la fonction inconnue y & sa dérivée, éventuellement a des

dérivées supérieures (v, y",y", . ) et & d’autres fonctions. Par exemple :

y'(z) =2y (z) + y(z) = sinz
y'(z) + a(z)y(x) = b(z)

(/' (2))* + exp (y(z)) = cos x

Un exemple que vous connaissez bien sans doute, ’équation du mouvement d’un objet

physique ponctuel lancé avec une vitesse initiale et soumis au champ de la pesanteur :

mz"(t) = —myg.
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Ou encore un ressort soumis a la gravité et a la force de rappel
mz"(t) = —kxz(t) — mg

En toute généralité la résolution d’une équation différentielle vraiment quelconque est un
probléme qui peut étre extrémement difficile, parfois méme au niveau de la recherche.
L’objectif de ce chapitre est de donner les techniques nécessaires pour la résolution

de certaines classes d’équations différentielles.

Définition 3.1.1 e Une équation différentielle d’ordre n est une équation de la forme
F(z,y,y,...y™) =0 (ED)

ot Fest une fonction de (n+ 2) variables.

e Une solution d’une telle équation différentielle sur l'intervalle I C R est une fonction
y € C™"(I; R) (une fonction y : I — R qui est n fois continiment dérivable) qui vérifie

l’équation (ED). (Y z € I, on a F(z,y(z),y/(x),...,y"™(z)) =0).
Exemple 36 e ¢ +xy = sinx (I"équation est du 1°"ordre, dont y est la fonction inconue

et x est la variable).

oy +y =0 (I'équation est du 3°™ordre, dont y est la fonction inconue).

Remarque 3.1.1 e Par abréviation, on note y au lieu de y(z), y' au liew y/(z),...,. On
note donc « yl =x+1 » ce qui signifie « y'(z) =x+ 1 ».

e Résoudre (ou intégrer) une équation différentielle, c’est trouver toutes les solutions
de cette équation.

e La notion d’intervalle dans la résolution d’une équation différentielle est fondamen-

tale. Si on change d’intervalle, on peut trés bien obtenir d’autres solutions. Par exemple,
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1

si on se place sur lintervalle I} =0, +oc[, l’équation différentielle yt = — a pour solutions
x

les fonctions y(x) = log(x) + k. Alors que sur lintervalle Iy =] — 00, 0], les solutions sont

les fonctions y(x) = log(—x) + k, ( k est une constante).

Définition 3.1.2 - L’équation différentielle F(x,y,y',...,y"™) = 0 est une équation dif-
férentielle implicite.
- L’équation différentielle F(x,y,y, ...,y(”_l)) = y™ est une équation différentielle

explicite.

Exemple 37 y/logx —y = 0 est la forme implicite.

yl = est la forme explicite.
log

Définition 3.1.3 On parle de probléme (ou équation différentielle) aux conditions (ou

valeurs) initiales lorsqu’on considére une équation différentielle :

;

F(z,y,y,....,y™) =0

y(zo) = o
Y (r0) =

Y (z0) = Yo

\ y(n_1)<*r0> = Yn—1

Exemple 38 La solution de l’équation différentielle suivante : y = y avec y(0) = 1 est

y = e".
3.1.1 Equations différentielles linéaires

Définition 3.1.4 e Une équation différentielle d’ordre n est linéaire si elle est de la

forme

ao(2)y + a1 ()y! + ... + an(2)y™ = g(x) (E)
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ou les a; et g sont des fonctions réelles continues sur un intervalle I C R.

Le terme linéaire signifie qu’il n’y a pas d’exposant pour les termes y, v/, y”, . . .

e Une équation différentielle linéaire est homogéne ou sans second membre, si la

fonction g ci-dessus est la fonction nulle :

ao(z)y + ay(z)y! + ... + an(x)y™ = 0. (Eo)

o Une équation différentielle linéaire est a coefficients constants si les fonctions a;

ci-dessus sont constantes :
(n) —
aoy + ary! + ... + any g9()

ou les a; sont des constantes réelles et g une fonction continue.

Exemple 39 e y/ + 2%y = sinx est une équation différentielle linéaire du premier ordre
avec second membre.

o i + 2%y = 0 est I'équation différenticlle homogéne associée a la précédente.

o 3y 4o/ +y = 2%+ 1 est une équation différentielle linéaire d’ordre 4 & coefficients
constants, avec second membre.

oy +1 =e* et () +y =0 ne sont pas des équations différentielles linéaires.
Proposition 7 (Principe de linéarité).
St yret yo sont des solutions de l’équation différentielle linéaire homogeéne

ao(2)y + a1 (@)y! + ... + an(z)y™ =0,

alors, quelque soient \, n € R, A\yy + pyo est aussi solution de cette équation.

Remarque 3.1.2 e L’ensemble des solutions forme un espace vectoriel.

o (Ey) est l’équation différentielle linéaire homogéne associée o (F)
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Proposition 8 (Principe de superposition).

L’ensemble des solutions S de (E) est formé de
Yo +y avec y € Sy,

o
- Sy, est l'ensemble des solutions y de [’équation homogéne (Ey) .

- Yo est une solution particuliére de l’équation (E).

Exemple 40 Chercher la solution de [’équation
y" = cos 2x.

On a:y = — 4 cos 2z une solution particuliére de l’équation avec second membre et

y =kx+c (k, c € R) la solutions de ’équation homogéne. Donc la solution générale est

1
y:—icos2x+kx+c, k,c € R.

3.2 Les équations différetielles du premier ordre

Définition 3.2.1 Une équation différentielle du premier ordre est une expression qui

décrit une relation entre une fonction a une variable et sa dérivée premiére

F(z,y,y") =0,

lorsque cette équation est résoluble en y', on peut la mettre sous la forme

y = f(z,y).
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L’ensemble des solutions de l’équation différentielle est appelé solution générale.

Si on ajoute a ’équation une condition initiale y(x¢) = yo, on dit que le systéme

y/ - f(xvy)

y(wo) = Yo

9
admet une solution particuliére.

3.2.1 Types d’équations différentielles du premier ordre
Equations différentielles & variables séparables

Définition 3.2.2 On dit qu’une équation différentielle du 1" ordre est a variable sépa-

rable st elle s’écrit

ou f € C°(I,R) et g € C°(I,R).

En pratique, on écrit ' = f(z)g(y) de la fagon suivante

ce qui donne, en intégrant des deux cotés
/d_y —/f(w)dx@G(y) =F(z)+k
9(y) ’

1
ou GG est une primitive de —, F' est une primitive de f et k est une constante arbitraire.
Exemple 41 Soit y/ = e¥Ysin(z).
e Tout d’abord, vérifions qu’il s’agit bien d’une équation différentielle o variable sé-

parable : f(x) =sin(z) et g(y) = €Y ou f et g sont bien continues sur R.
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o y/ = e¥sin(x) < e Ydy = sinxdz, ce qui donne en intégrant

Jevdy = [sinzdr = eV =cosxz+k

= y = —log |cosx + k| zlogm.

Equations différentielles homogénes

Définition 3.2.3 On appelle équation différentielle homogéne ’équation différentielle du
1¢"ordre de type : y' = f(y) ot [ est continue sur I.
x

2
x
Exemple 42 3/ = Y_ L st une équation différentielle homogéne.
x

Y2
En effet :

2
, Y x x 1 Y . 1
Ry iy oi () =1 -+
x
Méthode de résolution On considére I'équation différentielle ¢/ = f (g), on pose
x

u(z) = @ avec x # 0 (y(z) = u(z)x).

Si y est une solution de 1’équation, alors :
y'(x) = zu'(z) + u(z).
En remplacant y et ¢y par leurs valeurs, on trouve
zu' +u = f(u).
C’est une équation a variables séparables et s’écrit sous la forme :
:loﬁg(u):;eth(x): L

flu)=u flu) =u x

On pose



donc

Equations différentielles de type y/(z) = f(az + by + )

1. Sib =0,y = f(ax + ¢) est une équation différentielle du 1¢ ordre est & variables

séparables.

2. Si b # 0, il ne s’agit pas d’une équation a variables séparables, mais on peut la
ramener en posant

u(x) = ax + by(x) + c.

Si y est une solution de I’équation différentielle y/ = f(az + by + ¢), on a :

u'(z) = a+by'(x)
= a+bf(ax+by+c)
= a+bf(u(x)).

Il s’agit d’une équation de type u' = g(u) (& variables séparables) qui est résolue.

Exemple 43 ¢ = (z+y+ 1) = f(z +y+ 1) avec f(t) = >

On pose

u(z) =z +y(z) +1,
donc

W(r)=1+y(x)=1+(x+y+1)?2=1+u%().
On a donc : (2)
o ) u'(z)
u(z)=1+u*(z) & T+
du

& = [ 1d
fl+u2 f x7
& arctanu =z + k

< u=tang (z + k)
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d’ot

wz) =z +yx)+1=tang(z+k) = y(z) =tang (r + k) —x — 1.
Equations différentielles linéaires du 1¢ordre

Définition 3.2.4 On appelle équation différentielle linéaire d’ordre 1, toute équation
différentielle de la forme :

y +alz)y(z) = f(z) (E)

ot a et f sont des fonctions continues de I & valeurs dans R (ouK), I étant un intervalle

de R non réduit a un point.

L’équation homogéne (ou sans second membre) associée & (E) est :
y +a(x)y=0 (Eo)

a) Résolution de ’équation sans second membre
On remarque que y = 0 est une solution de (Ej).

Par ailleurs, si y # 0 alors

y +alr)y=0 & == —a(z)

ot k € R et A est une primitive de a(x) dans I, puis y = Ce=4® on C' € R*.
Cette méthode ne fait pas apparaitre la solution nulle que I'on aura le soin de ne pas

oublier en choisissant C' dans R (tout entier).

73



Exemple 44 Résoudre les équations différentielles suivantes :

a) Yy +ey=0 b))y +y’e” =0.

Preuve 13 a)

b)

Y+t =0 =19y =1’

b) Résolution de I’équation avec second membre

i) Les solutions de (E) s’obtiennent en ajoutant & une solution particuliere de (£) les

solutions de (Ep). Ce qui donne :

Proposition 9 Siyy est une solution de (E), alors les solutions de (E) sont les fonctions
y: I — R définies par :
y=1yo+ ke @ aveck e R

ot x — A(z) est une primitive de x — a(x).

Preuve 14 Montrons d’abord qu’elles forment des solutions de (E ).
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y'(z) = yh(x) — ka(z)e @
= —a(@)yo(r) + C(x) — ka(z)e ")
= —a(z) [yo(ﬂv) + ke’A(f”)] + C(x)

= —a(x)y(x) + C(x).

Ce sont bien des solutions de (E).
1l reste a voir qu’on les aura toutes de la méme forme.

Soit y une solution quelconque de (E), considérons z(z) = (y(z) — yo(x)) €@, on a

(@) = (y(x) = yh(x)) e + (y(x) — yo(2)) a(z)e™
= (—a(2)y(z) + C(z) + a(z)yo(z) — C(z)) e + (y(z) — yo(x)) a(z)e™
= —(y(z) — yo(2)) a(z)e™ + (y(z) — yo(z)) a(z)e*™

= 0.

Donc z(z) = C et on conclut facilement que y = yo + Ce 4@ avec C € R.

La recherche de la solution générale de (£) se réduit donc a la recherche d’une solution
particuliere. Parfois ceci se fait en remarquant une solution évidente. Par exemple,
I'équation différentielle y' = —2xy + 2z a pour solution particuliere yo(z) = 1. Donc

’ensemble des solutions de cette équation sont les y(x) = 1+ ke=®® avec k € R.

ii) Dans le cas ou l'on ne dispose pas de solution particuliere de (E), on recherche les
solutions de (E) & partir d’une solution non nulle de (Ey) de la forme y = Ce=4(®)
ou C' = C(z) est maintenant une fonction a déterminer pour que ¥ soit une solution
de (E).

On a
y = C'(2)e @) — q(2)C(x)e 4@,
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En reportant y et y'dans (E) on obtient

que 'on intégre pour obtenir C(z).

Exemple 45 1° Résoudre les équations différentielles
a) Y +2zy =2z b) (z+y?) dy = yda
2° Trouver la solution particuliere de I’équation
Yy +y=cosx+sinz

qui vérifie la condition y(0) = 1.

Preuve 15 Les équations données sont des équations différentielles linéaires d’ordre 1.

1° a) Soit l’équation différentielle avec second membre
y + 2zy = 2me ™ (E)
on considére l'équation différentielle sans second membre associée a (E)
Y + 22y =0 (Eo)

(c’est une équation différentielle o variables séparables).

Pour y # 0, léquation (Ey) est équivalente a [’équation

—= = =2 dz,
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donc les solutions vérifient
log |y| = —2* + C} ov Cp €R,

ou bien encore

Yy = Ce ™ ou C €R".

D’autre part y = 0 est une solution de (Ey), donc
Yy = Ce ou CeR

est la solution générale de I’équation sans second membre.
Pour la résolution de I’équation (E), on considére deuz méthodes :
1¥"méthode : On utilise la méthode de variation de la constante. On recherche les solu-

tions de l’équation (E) de la forme

y=C(x)e ™.

y = C'(z)e™ — 22C(z)e ™
et on reportant y et y' dans ’équation (E), on obtient

2

C'(z)e ™ = 22C(x)e™ + 22C(x)e™ = 2awe™®
d’ot
C'(z) =20 = C(x)=2>+k ou keER.

Ainsi

y=(2>+k)e " ou keR
est la solution générale de l’équation (E).
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Zmeméthode : On recherche la solution particulére de 'équation (E).
Puisque le second membre de l’équation (E) est le produit d’un polynéme de degré un

et de e_“"”Q, on cherche une solution particuliére y, de l’équation (E) sous la forme
2 —x?
yp = (az® 4+ bx + c)e

ot a, b, ¢ sont des nombres réels a déterminer.
On dérive y, et on la remplace dans l'équation (E), ensuite par identification des
coefficients, on trouve

a=1,b=0 et c quelconque.

Donc

Yy, = (2% + e ou ceR

est une solution particuliére de (E).
La solution générale de ’équation (E) est donnée par la somme de la solution générale

de Uéquation (Ey) et la solution particuliére y, de l’équation (E). On a donc

2

y = Ce™ +(22+c)e™ ou C,ceR

= (@®+ke™ ou keR

b) Si on considére x comme une fonction de y, 'équation donnée s’écrit pour y # 0 sous
la forme

r——=1y.
Y

On résoud d’abord [’équation sans second membre et on utilise ensuite la méthode de la

variation de la constante ou on cherche une solution particuliére sous la forme

,=ay’*+by+c ou a, b, ceER.
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2° Considérons l’équation sans second membre
C’est une équation a variables séparables car pour y # 0, on a
dy

— = —dx.
Y

La solution de l’équation différentielle (Ey) est
y=Ce ™ ou CeR.

1°"¢méthode : Variation de la constante.

On recherche les solutions de l’équation (E) avec second membre de la forme
y=C(x)e™

o, C' est une fonction dérivable de x.

En dérivant y et en la remplagant dans (E) on obtient
C'(z)e™ =sinx + cosx

d’ot

C(x) = / (sinz + cosz) e*dx.
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En utilisant 'intégration par parties, deux fois, on obtient

C(z) = (sinz+cosz)e® — [ (cosx —sinz)e’dr
= (sinz + cosz) {(cosx —sinx) e’ — / (—sinx — cos ) exdml
= (sinx + cosx) [ cosx — sinz) e® + / (sinz + cos ) emdx]
= (sinz 4 cosz)e” — (cosx —sinz) e — C(x).

D’ou
C(z) =sinze®+k ou keR.

La solution générale avec second membre est

y = (sinze®+k e

= sinz+ ke ® ou keR.

En utilisant la condition initiale y(0) = 1, alors k =1 et y = sinz + e ",

2meméthode : On remarque que y, = sinx est une solution particuliére de l’équation avec
second membre, donc

y=Ce *+sinz, CeR

est la solution générale de l’équation (E) donnée. Puisque y(0) =1, alors C' = 1.

Equation de Bernoulli

Définition 3.2.5 Soient a(x) et b(x) deuz fonctions numériques continues dans un in-

tervalle I de R et o un réel différent de 0 et 1. L’ équation différentielle

Y + a(x)y = b(x)y” (E)
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est dite de Bernouli.

Méthode de résolution : On écarte les cas a = 0 et a = 1 pour lesquels ’équation
est linéaire, la fonction inconnue y sera supposée positive si «a est non entier et de plus
non nulle si « est négatif.

En divisant ’équation de Bernoulli par y* (éventuellement en écartant la solution
triviale y = 0) on obtient

y Y +a(x)y " = b(x). (E')

On effectue ensuite, le changement de fonction z(z) = y'~%(x), d’ou 2/(x) = (1 — ) y/'(z)y (),

on obtient une équation différentielle en z :

Z/

- +a(x)z = b(x). (E")

C’est une équation linéaire du 1¢"ordre non homogéne. On la résout par la méthode de

la variation de la constante.

Exemple 46 Soit [’équation différentielle de Bernoulli
Y +ay+ayt =0.

Ici, o = 4. En posant z(x) = y>et en ayant écarter au préalable la solution triviale

y =0, on a l’équation différentielle linéaire
2 = 3xz + 3.

L’équation homogéne associée a pour solution générale

(%)
Z = cexp 7 .
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La méthode de la variation de la constante donne
1 . 322
7= — = — cexp | —
y? Pl

Yy = ol ¢ constante.

et par la suite

Equation de Riccati

Définition 3.2.6 Une équation différencielle du premier ordre est dite de Riccati si elle
est de la forme

Y +a(@)y +b(x) = c(2)y” . (E)

les fonctions a, b et ¢ étant supposées continues dans l'intervalle 1.

Méthode de résolution : Ce type d’équations différentielles n’est pas toujours ré-
soluble de fagon élémentaire. Mais, si une solution particuliére y; pouvait étre trouvée,
on pourrait alors ramener la résolution de I’équation de Riccati a celle d’une équation

différentielle linéaire. En effet, en posant
y=uy+z
et en la remplagant dans (F) on obtient
2+ (a(z) — 2y1c(x)) 2z = c(x) 2> (E")

qui est de Bernoulli, que nous pouvons résoudre.

1 e, .
En posant © = —, on est ramené a une équation linéaire. La solution générale est donc
z
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donnée par

1
y=uy+ -
U
ou u est la solution générale de
—u' + (a(z) = 2y1c(x)) u = c(z) (E")

qui est une équation différentielle linéaire résoluble.

Exemple 47 Soit I’équation différentielle de Riccati
y =1—2°+ xy’.

1l est aisé de vérifier que y; = x est une solution particuliére. La solution générale est

donc

ot u est la solution générale de
u 4+ 20%u 42 = 0.
Equation de Lagrange

Définition 3.2.7 Une équation différencielle du premier ordre est dite de Lagrange st

elle est de la forme

y=af(y)+9() (E)

les fonctions f et g étant supposées continiment dérivables dans un intervalle I.

Méthode de résolution : Pour la résoudre, on pose



alors

y = af(u) +g(u) (E2)

et on prend v comme nouvelle variable. x et y sont alors considérées comme fonctions de
u.

En dérivant, par rapport a u, les deux membres de la relation (F5), on obtient

Yo = 20 f () + 2f'(u) + g (u). (Es)

Or d’apres le théoréme de dérivation des fonctions composées, on a

et en utilisant (F}), on obtient

Yu = ULy,

Donc en la remplagant dans (F3), il vient

Deux cas sont a distinguer :
Premier cas : u # f(u)

On peut mettre ’équation (Ej) sous la forme normale. Dans ’ensemble des couples
(x,u) tels que u # f(u), elle est équivalente &
: f'(w) g'(u)

T T R ) f(@) (£5)

qui est donc une équation différentielle linéaire du premier ordre pour la fonction inconnue

x de la variable u. Une fois z(u) déterminée, en résolvant (Es), on aura

y(u) = x(u) f(u) + g(u).
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Second cas : u = f(u)

Les ug de I telles que ug = f(up) donnent d’aprés la relation (Es),

y = upx + g(uo).

Cette solution est définie dans R tout entier et différe des solutions obtenues dans le

premier cas.
Exemple 48 Considérons l’équation de Lagrange
y=—x+ @y +1)>°.
En posant iy = u, on obtient
(u+1)zl, =2(u+1).
* Pour u # 1, on trouve

x, =2 =>r=2u+c
=y=—2u—c+ (u+1)’

=y =u?+1—c, c est une constante.

On peut éliminer le paramétre u entre ces deux derniéres équations et trouver
y==(r—c)’+1—c (les courbes intégrales sont des paraboles).

4

* Pour u = —1, on trouve la solution y = —x (cette solution ne fait pas partie de la

famille de paraboles).

Equation de Clairaut
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Définition 3.2.8 Une équation différencielle du type

y=ay + ). (E)
La fonction f étant supposée dérivable dans l'intervalle I, est dite de Clairaut.

Méthode de résolution : L’équation de Clairaut est un cas particulier de I’équation
de Lagrange. Elle se résout par le méme procédé que celui décrit ci-dessus (on pose
Yy = u).

Deux cas sont donc a envisager :

a) u = c ( ¢ constante), on obtient alors une famille de solutions donnée par :
y=cx+ f(c), (¢ constante arbitraire),

les courbes intégrales sont des droites.
b) = = —f'(u), donc
y = —uf'(u) + f(u)

c’est une équation qui constitue une représentation paramétrique (parameétre w)
d’une solution bien déterminée. C’est une solution de ’équation de Clairaut qui ne
peut étre obtenue a partir des solutions de (a) en donnant a ¢ une valeur appropriée.

Exemple 49 Résoudre
/2

y::):y/—y—.
4

On utilise le paramétre u = y!/, l’équation s’écrit alors :

y=au——r,

donc

dy = udx + xdu — ;du,
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c’est-a-dire

(x — §)du = 0.

* Lorsque du = 0, on trouve les solutions affines, qui sont de la forme

2
y=cr— CZ’ ( ¢ constante).

u .
* Lorsque x = 5 o trouve la solution x2.
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Chapitre 4

Equations différentielles linéaires a
coeflicients constants du second

ordre

On aborde dans ce chapitre le cas des équations différentielles linéaires du second
ordre dont les coefficients sont constants et qu’on rencontre souvent en pratique. On

peut mettre de telles équations sous la forme
ay” +by' +cy = g(). (E)

oua,b,c€eR, a+#0etgest une fonction continue sur un intervalle ouvert I.
L’équation
ay” + by +cy=0 (Ep)
est appelée ’équation homogene associée a (F).

Pour commencer, on montrera que ’équation différentielle homogeéne associée peut étre

résolue sans difficulté.

Théoréme 4.0.1 L’ensemble des solutions de [’équation homogéne (Ey) est un R-espace

vectoriel de dimension 2.
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4.1 Equations linéaires sans second membre

Pour résoudre I’équation différentielle sans second membre (Ej), on cherche des solu-
tions sous la forme y = €"* avec r constante complexe a déterminer.
Ona oy =re™ et y" =r2e™.

Ainsi, la fonction €™ est une solution si et seulement si
e (ar2+br+c) =0 ar’+br+c=0.

Définition 4.1.1 L ’équation ar’*+br+c = 0 est appelée équation caractéristique associée

a (Eyp).
Soit A = b? — 4ac, le discriminant de I’équation caractéristique associée a (Fy).

Théoréme 4.1.1 e Si A > 0, ’équation caractéristique posséde deux racines réelles

distinctes 1 # ro et les solutions de (Fy) sont les
y(x) = Xe™® + pe™” ot A, p€R.

e 5i A =0, l’équation caractéristique posséde une racine double rq et les solutions de
(Eo) sont les
y(x) = A+ px)e™®  ou A\ peR

e Si A < 0, l'équation caractéristique posséde deuxr racines complexes conjuguées

r=a+1i8, 19 =a—1if et les solutions de (Eg) sont les
y(z) = e™ (Acos(Bx) + psin(Bx)) ou A, pu€R.

Preuve 16 La preuve consiste a trouver deux solutions linéairement indépendantes, ce

qui permet d’affirmer qu’elles forment une base d’aprés le théoréme précédent.
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e Si A > 0, alors l’équation caractéristique a deux racines réelles distinctes r1 # rs.
On obtient ainsi deux solutions y; = €%, yy = €% qui sont linéairement indépendantes
car ry # ro.

Comme l’espace des solutions est un espace vectoriel de dimension 2, alors une base de
Uespace des solutions de (Eyp) est {e"*, €™} .

La solution générale de (Ey) s’écrit
y(x) = X + pe™®  ou A\ peR

e St A =0, alors l’équation caractéristique a une racine réelle double roy. On obtient

ainsi une solution y; = €%, On vérifie que yy = xe™* est aussi une solution :

ayy + by + e = (2aro+argr) €7+ (b+ brox) € + coe™”
= (ar§ 4 bro + c) ze"" + (2arg + b) €

= 0

car 2arg +b = P'(rg) =0, ot P(r) = ar?* + br + c.
Ces deux solutions sont linéairement indépendantes. Une base de l’espace des solutions

est {e"", xe™*} et la solution générale de (Ey) s’écrit
y(z) = (A + px) e™” ot A, ueR.

e 51 A < 0, alors ’équation caractéristique a deux racines compleres conjuguées

rr=a+ 183, ro = a—if3. On obtient deux solutions complexes

Y, = otz — po2oife — 00T (cog B + isin fz)

Y, = elo)7 = pa2o=ir — 0% (co5 By — isin fz) .
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Les fonctions

i+ oz
5 = e*cosfzx
Y, - Y
L_"2 = ooy B,
21

sont encore des solutions particuléres réelles linéairement indépendantes de (Ey) et la

solution générale pourra alors se mettre sous la forme
y(x) = e (Acos(fBx) + psin(fr)) ou A pu€R.

Exemple 50 :

e Le polynéme caractéristique associé a

y' =3y +2y=0
est 2 — 3r + 2 qui a le discriminant A = 1, a deux solutions réelles distinctes

7‘1:3;—1:1 et 7“1:%:2,
Toutes les solutions sont alors les fonctions
y(x) = Ae® + pue® pour tout \,u € R.

e Le polynome caractéristique associé a

y' =4y +4y =0
est 2 —4r + 4 qui a le discriminant A = 0, a deux solutions réelles coincidentes

rL=r9 = 2.
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Toutes les solutions sont les fonctions
y(x) = (N + px)e*  pour tout \,u € R.
e Le polynome caractéristique associé a
v'+y +y=0

est > +r+1 qui a le discriminant A = —3 < 0. Les deux racines sont

—1+iV3 . —1-i/3
= — g =,

" 2 ¢ 2

et la solution générale est

1
y(x) = e 2" </\ cos(\?x) + usin(@x)) ot A\, u € R.

4.2 Equations linéaires avec second membre

Nous passons au cas général d’une équation différentielle linéaire d’ordre 2, & coef-
ficients constants, mais avec un second membre g qui est une fonction continue sur un
intervalle ouvert / de R :

ay” +by' +cy = g(x). (E)

Théoréme 4.2.1 (Théoréme de Cauchy-Lipschitz) Pour chaque xoy € I et chaque
couple (yo,y1) € R?, l'équation (E) admet une unique solution y sur I satisfaisant auzx

conditions initiales : y(xo) = yo et y' (o) = 11

Dans la pratique, pour résoudre une équation différentielle linéaire avec second membre
(avec ou sans conditions initiales), on cherche d’abord une solution de 1’équation homo-
geéne, puis une solution particuliére de I’équation avec second membre et on applique le

principe de superposition :
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Proposition 10 Les solutions générales de l’équation (E) s’obtiennent en ajoutant les

solutions générales de l’équation homogéne (Fy) o une solution particuliére de (E).

Remarque 4.2.1 Si g(z) = u(x) +v(x) avec y1 une solution particuliére de ay” + by’ +
cy = u(x) et ya une solution particuliére de ay” + by’ + cy = v(x), alors y; + yo est une

solution particuliére de (F).

Considérons maintenant quelques cas de second membre simples qui apparaissent sou-
vent en pratique et pour lesquels la recherche d’une solution particuliére est relativement

aisée.

4.2.1 Le second membre est un polynéme de degré n

Lorsque le second membre de (£) est un plynéme en x, on cherche une solution par-
ticuliére polynomiale et on procédera par identification pour déterminer les coefficients.

On distingue deux cas :

a) Sic # 0, on détermine une solution sous la forme d’un polynome de degré n (P,(x)).

b) Sic=0 (avec b # 0), on cherche une solution sous la forme xP,(z).

Exemple 51 Résoudre les équations différentielles

a)y'+y —2y=22>-3x+1
b)y' —y =z+1

a) La solution de l’équation homogéne associée est y = \e® + pe > ou A, p € R (car
les racines de [’équation caractéristique, sont r1 = 1 et 1o = —2). Comme ¢ # 0, on

cherche une solution particuliére de l’équation compléte de la forme

yp:ax2+bx—|—c ou a, b, ceR.
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En dérivant y, deux fois et en reportant y,, y, ety, dans léquation (a ), on obtient
2a+2aa7—|—b—2(ax2—|—bm+c) =22° — 3w+ 1.
Par identification des coefficients, on a :
a=—-1,b=

Ainsi

L’intégrale générale est

5
y = Ne” + pe > —x2—|—g—1 ot A\, u€R

b) L’équation caractéristique de [’équation homogéne associée est r> —r = 0. Elle
admet deuz racines (1 =0 et r = 1). Ainsi, la solution générale de l’équation homogéne

est

y(r) = A+ pe®  pour tout \,u € R.

Comme ¢ = 0, on cherche une solution particuliére de l’équation compléte de la forme
yp=x(ax+0b) ou a,beR.
En dérivant y, deux fois et en reportant y,, y, ety dans l’équation (b), on obtient
2a — (2ax +b) =z + 1.

Par identification des coefficients, on a :



ainsit

L’intégrale générale est

1
y=\+ pe’ —§x2—2x ot A\ p € R.

4.2.2 Le second membre est de la forme expmz (m constante)

On distingue trois cas selon les valeurs de m

1. m n’est pas une racine de ’équation caractéristique, on cherche alors une solution

de la forme ke™?.

2. m est une racine simple de I’équation caractéristique, on détermine alors une inté-

grale particuliere de type kxe™".

3. m est une racine double de ’équation caractéristique, la forme de la solution par-

ticuliere sera kxe™*

Exemple 52 Soit I’équation différencielle
Y — 4y + 4y = .
Comme solution particuliére de ’équation compléte, on en cherchera une de type
Y = kz?e®.

1
En prenant k = 3 la solution générale ( d’aprés l’exemple 50 ) s’écrit

2
y = e*® ()\+uw+%>.
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Exemple 53 Résoudre ’équation différentielle
y// . 5y/ + 6y — 2633; + 6436.

On ary =2 et ry =3 comme racines de ’équation caractéristique r*> — 5r + 6 = 0, alors

la solution générale de [’équation sans second membre est
y = \e* + e’

En wutilisant la Remarque 4.2.1, on cherche la solution particuliére pour chacune des

équations différentielles

y' =5y +6y = 2 (%)

y' =5y +6y = . (*¥)

Une solution particuliére de l'équation (*) est donnée par 2xe*. Quant a l'équation dif-
4z
e

férentielle (**), elle en posséde une de la forme —.

Finalement, ["intégrale générale est

4z

y = \e®® + pe® 4 2we>® + %

4.2.3 Le second membre est de la forme f(x) exp ma(m constante)

Pour chercher une solution particuliére, on fait le changement de fonction inconue
y = ue™”. La nouvelle fonction inconnue u étant supposée deux fois dérivables, on trouve

successivement
Yy = (v 4+ mu)em”
yl/ — (mQU + 2mul + 'LL”) emm
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Ainsi, I’équation se transforme a une équation différentielle en u de la forme
au” + b’ + cyu = f(x)

ou
by = b+ 2am

cp =am?+bm+c

et le second membre est plus simple.

4.2.4 Le second membre est du type cos mx (ou sin mzx, m constante)

Dans cette situation, on distingue deux cas dans la recherche de la solution particuliere

1. 4m n’est pas racine de I’équation caractéristique (cos mz ou sinmz n’est pas solu-

tion de ’équation sans second membre ). On pose y; = ki cosmz + kg sinmzx et on

détermine les constantes ki et ko par identification.

2. im est racine de ’équation caractéristique. On cherche alors une solution de la

forme y; = z (kycosmzx + ke sinmazx) et comme au cas précédent, on détermine

les constantes k; et ks.

Exemple 54 Intégrer [’équation différentielle
y' — 4y + 4y = xe* + 25cos (E)

La solution de I’équation homogéne est y = (A + ux) e** (exemple 50).

Déterminons une solution particuliere y,; de
y// . 4y/ + 4y — 1:62:1: (El)

r = 2, étant racine double de [’équation caractéristique, on cherchera une solution de la

forme

y = R(z)e*

97



avec R(z) = 2% (ax + 1), on obtient

y = (R(x)+2R(z))e™

y' = (R'(z) +4R'(z) + 4R(xv)) e*.

En substituant ces valeurs dans (FEy), on obtient :
R”(l’)62x — ZL’G%,

puis, aprés simplification

2b + 6ax = x,
, 1
ce qui donne a = 5 et b=0.
Finalement
3
— m_€2:r:
yp,l 6 .

Déterminons une solution y, o de

y" — 4y + 4y = 25 cos z.

On pose

Yp2 = k1 cosx + kysinz,

on obtient apres substitution

Yp2 = 3cosx — 4sinw.

Donc
3

T
Yp = Yp1 + Up2 = Ze?® 4 3cosx —4sin

6

est une solution particuliére de (E).
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Finalement, la solution générale est
23
y = (/\ + px + E) e* + 3cosx — 4sin .

4.2.5 Meéthode de variation des constantes

Si {y1, Y2} est une base de solutions de ’équation homogene (Ejy), on cherche une

solution particuliére sous la forme

Yp = AY1 + LY.

Considérons A et 1 comme des fonctions de x contintiment dérivables.

En dérivant, on obtient

Yy = N1+ 1'y2 + My + s

Comme A et 1 sont des fonctions inconnues, on peut imposer une condition supplémen-
taire qui est de la forme

Nyr + p'ys = 0.

Il reste alors

Y, = M)+ s ety = Ny 4 w'ys + 4+ Ny + 1"y

Pour que Ay; + py» soit une solution de ’équation compléte, il faut et il suffit que

T
X%+u@&=ﬂjv
Ainsi, \' et y/ vérifient le systéme
(s) Nyi + iy, =0
T
A%+M%=%%

99



qui est de Gramer car son déterminant n’est autre que le Wronskien W (A, i) # 0 pour x
de I. Le systéme linéaire (S) permet de calculer X' et p; on déduira A et u en prenant

des primitives.

Exemple 55 Résoudre I’équation différentielle :

y" 4+ 4y = sin . (E)
L’équation homogéne associée est
y' +4y =0, (£o)
[’équation caractéristique est
r’+4=0,

donc la solution générale de l’équation homogéne est

y=Asin2x + pcos2x ou A, p€R.

1°7¢ méthode : On utilise la méthode de variation des constantes pour trouver la solution
de (E) sous la forme

y = \(z)sin 2z + p(z) cos 2x ()

ou \ ety sont deux fonctions dérivables vérifiant le systéme

N'sin 2z + p/ cos 2z = 0
sin

N cos2x — pi sin 2z =

En multipliant la premiére équation par sin 2z, la seconde par cos2x et en additionnant
les deux, on obtient

1
N = 3 sin x cos 2.
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Ainsi,

1 1
A= §/SiI1:L‘COS2ZL‘ dl’:Z/2SinZL’COSQ$ dx
1 . . 1 .
= 1 (s1n3:1:—smx)da::—Ecos?):n—i-zcosx—l—kl ot ki €R.
Par suite,
1 1
o= —Esmxsm%c: —Z(cosa:—cos?):c).
Donc
1 1. 1 . .
=7 (cosx — cos 3x) da::—zsmaH—Esm?)m—l—kg ot ky € R.

On reporte ensuite X\ et ju dans (*), on aura

1 1 1 1
y = (—Ecos?):v—i-zcosx—l—kl)sin2x+(—zsinx+Esian—i—kg)cost

sinx + ki sin2x + kg cos2x ou ki, ko € R.

1
-3
2me_méthode : On cherche une solution particuliére y, de l’équation donnée sous la forme

Yp =asinz ou a € R.

Cette méthode contient moins de calculs.
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