

Sétif 1 University-Ferhat ABBAS

Faculty of Sciences

Department of mathematics

 Faculty of Sciences

Numerical Methods and Programming

 with MATLAB implementation

Dr. Raouf Ziadi

Conforming to the second-year undergraduate Physics/Chemistry curriculum

2024/2025

Raouf Ziadi

Numerical Methods and
Programming

Conforming to the second-year undergraduate
Physics/Chemistry curriculum

2024/2025

Setif 1 University - FERHAT ABBAS
Faculty of Sciences

Departement of Mathematics

Contents

Numerical Integration 3
Midpoint Method . 4
Trapezoidal Method . 6
Simpson Method . 12
Matlab codes . 16

Pseudo-code of Midpoint method 16
Pseudo-code of Trapezoidal method 17
Pseudo-code of Simpson method 17

Solved Exercises . 19
Supplementary Exercises 26

Numerical Solution of Nonlinear Equations 28
Separation of Roots . 29
Numerical methods . 31

Bisection Method 31
Lagrange Method 34
Newton-Raphson Method 37

Matlab codes . 40
Pseudo-code of Bisection method 40
Pseudo-code of Lagrange method 42
Pseudo-code of Newton-Raphson method 43

ii

Solved Exercises . 45
Suplementary Exercicises 54

Numerical Solution of Ordinary Differential Equa-
tions of First Order 56
The Basic Principles of Initial-Value Problems 57

Cauchy problem . 57
Existence and uniqueness of the solution 58

Picard’s Method of Succssive Approximations 59
Numerical Methods . 61

Euler Method . 61
Improved Euler Method 64
Second-order Runge-Kutta (Heun’s) Method 65
Fourth-order Runge–Kutta Method 66

Matlab codes . 68
Pseudo-code of Euler method 68
Pseudo-code of improved Euler method 70
Pseudo-code of Second-order Runge-Kutta (RK2)

method 71
Pseudo-code of Fourth-order Runge-Kutta (RK4)

method 73
Solved Exercises . 75

Supplementary Exercises 81

Numerical Solution of Systems of Linear Equations 83
Jacobi Method . 86
Gauss-Seidel Method 88
Matlab codes . 90

Pseudo-code of Jacobi method 90
Pseudo-code of Gauss-Seidel method 92

Solved Exercises . 93

Polynomial Interpolation 97
Lagrange Interpolation 98

Hermite Interpolation 101
Matlab codes . 104

Pseudo-code of Lagrange interpolation method 104
Pseudo-code of Hermite interpolation method . . . 105

Solved Exercises . 106
Supplementary Exercises 109

Bibliography 110

Introduction

Engineers are constantly confronted with concrete problems in their
respective fields. The majority of these problems can be formulated as
mathematical problems (such as solving an equation, calculating an in-
tegral, and so on), and the majority of these problems are not resolvable
by traditional analytical methods, or we are convinced that it will take
a long time to solve them analytically if this is not possible, that is why
we then resort to numerical methods.

For example, the integrals
∫ 3

−2

e−x2

dx and
∫ π

−π

sin(x2)dx cannot be

calculated using classical methods such as integration by parts, substi-
tution, etc. Using a numerical method, this type of integration can be
approximated numerically with a given accuracy.

Over the past few decades, numerous algorithms based on theoret-
ical studies have been developed to solve various mathematical prob-
lems. This course is designed for second-year undergraduate students
of physics/chemistry. It constitutes an introduction to numerical calcu-
lation and consequently to the different techniques that these students
will frequently have to use, without delving into the theoretical consid-
erations and foundations of the methods presented. In fact, we have
described the most well-known and widely used numerical methods to
solve various problems encountered during their studies, focusing on
the practical aspects in the presentation of these methods.

In this booklet, each section is followed by detailed examples, and
at the end of each chapter, students are encouraged to work on addi-
tional exercises. The course is structured into five main chapters. The

1

Raouf Ziadi

first chapter is dedicated to numerical integration. The second chapter
focuses on the numerical solution of nonlinear equations. The third
chapter describes numerical techniques for solving ordinary differential
equations. The fourth chapter is dedicated to methods for solving sys-
tems of linear equations. Finally, the last chapter covers two methods
of polynomial interpolation.

2

1
Numerical

Integration

Often, the explicit computation of the integral of a continuous function
f over an interval [a, b] of R can be very expensive or can not be solved
analytically. To overcome these difficulties, we use numerical methods

to calculate an approximation of an integral
∫ b

a

f(x)dx within a given

precision. In this chapter, we present three common integration tech-
niques: Midpoint method, Trapezoid method, and Simpson method.
Using these algorithms we can even approximate the integral of func-
tions known only through discrete data points.

The idea is to approximate
∫ b

a

f(x)dxby a finite linear combination,
i.e

I(f) =

∫ b

a

f(x)dx ≃
n∑

i=0

λif(xi),

with xi ∈ [a, b], λi ∈ R and the calculation error is given by:

Rn(f) =

∫ b

a

f(x)dx−
n∑

i=0

λif(xi).

3

Raouf Ziadi

1 . 1 Midpoint Method

The classical formula of the midpoint method (or rectangle method) is
obtained by replacing f with its value at the midpoint of the interval
[a, b] (see Figure 1.1).

Figure 1.1: Midpoint formula

The simple midpoint formula is obtained by using the following
formula on the interval [a, b]:

I(f) = (b− a)f

(
b+ a

2

)

Composite Midpoint rule

The composite midpoint formula is obtained by applying the previ-
ous midpoint formula to each subinterval [xi−1, xi], i = 1, ..., n, with
xi = a+ i× h, i = 0, . . . , n and h = (b− a)/n.

By repeating the previous midpoint formula to each subinterval with
centers x̃i =

xi−1+xi

2
, the integral of the function is approximated by

the following sum-up:

I(f) = h× f(x̃1) + h× f(x̃2) + · · ·+ h× f(x̃n),

4

Numerical Methods and Programming

we then obtain the following general formula:

I(f) = h×
n∑

i=1

f(x̃i).

Figure 1.2: Composite midpoint formula over five subintervals

Example 1.1. Let us integrate the function f(x) = 3x2 + 2x over the
interval [1, 2]. This function is very simple to integrate analytically:∫ 2

1

f(x) dx = 10.

Using the midpoint method with n = 4, the steplength is h = 2−1
4

=

0.25 and the evaluated points are: x̃1 = 1+1.25
2

= 1.1250, x̃2 =

1.3750, x̃3 = 1.6250, and x̃4 = 1.8750. Then,

I(f) = 0.25[f(1.1250) + f(1.3750) + f(1.6250) + f(1.8750)] = 9.9844

5

Raouf Ziadi

By increasing n to 8, the new the steplength is h = 1
8
= 0.125, and the

new approximation is:

I(f) = 0.125[f(1.0625) + f(1.1875) + f(1.3125) + f(1.4375)

+ f(1.5625) + f(1.6875) + f(1.8125) + f(1.9375)]

= 9.9961,

and with n = 100 we get I(f) = 9.999975.

Theorem 1.1. Let f ∈ C2([a, b]). Then, there exists ξ ∈ [a, b] such that:

Rn(f) = −(b− a)3

24n2
f ′′(ξ) = −b− a

24
h2f ′′(ξ),

where f ′′ denotes the second derivative of the function f . The upper bound
of the calculation error can be expressed as follows:

Rn(f) ≤
(b− a)3

24n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣

Remark 1.1. Given a precisionε, the minimum numbern of subdivisions
can be determined using the following formula:

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

24 ε
.

1 .2 Trapezoidal Method

This formula is very simple; it allows replacing the curve Cf of the
function f to be integrated by a straight line that connects the points(
a, f(a)

)
and
(
b, f(b)

)
, which forms a trapezoid (see Figure 1.3 below).

The integral is thus replaced by the area of the trapezoid:

I(f) ≃ S =
b− a

2
[f(a) + f(b)] .

6

Numerical Methods and Programming

Figure 1.3: Trapezoidal method

We can observe that there is a significant difference between the func-
tion’s curve and the straight line, which means that a calculation error
was made. To minimize this error, we use a more suitable version of this
formula.

Composite Trapezoidal rule

To obtain better results, we divide the interval [a, b] into n subinter-
vals, and we apply the trapezoidal method to each of them: [a =

x0, x1], [x1, x2], . . . , [xn−1, b = xn]. Applying the trapezoidal for-
mula gives:

I(f) ≃ h

2

(
f(x0) + f(x1)

)
+

h

2

(
f(x1) + f(x2)

)
+ . . .

+
h

2

(
f(xn−1) + f(xn)

)
≃ h

2

[
f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)

]
.

Hence

I(f) ≃ h

2

[
f(x0) + f(xn) + 2

n−1∑
i=1

(f(xi))

]
. (1.1)

7

Raouf Ziadi

For example, in Figure 1.4 below, for these four trapezoids we have:

Figure 1.4: Composite trapezoidal formula represented over 4 subinter-
vals.

I1(f) =
h

2

(
f(x1) + f(a)

)
,

I2(f) =
h

2

(
f(x1) + f(x2)

)
,

I3(f) =
h

2

(
f(x2) + f(x3)

)
,

I4(f) =
h

2

(
f(x3) + f(b)

)
.

It follows that, I(f) ≃ I1(f) + I2(f) + I3(f) + I4(f).

Theorem 1.2. Let f ∈ C2([a, b]). Then, there exists ξ ∈ [a, b] such that:

Rn(f) = −(b− a)3

12n2
f ′′(ξ) = −b− a

12
h2f ′′(ξ),

where f ′′ denotes the second derivative of the function f . We can write
the upper bound of the error made as follows:

Rn(f) ≤
(b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣.

8

Numerical Methods and Programming

Remark 1.2. Given a precision ε, we can determine the minimum num-
ber n of subintervals using the following formula:

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

12 ε
.

There exists an improved version of the trapezoidal method, called the
Poncelet method, whose numerical scheme is given by:

I(f) ≃ h

4

(
f(x0)+f(x2n)+7

(
f(x1)+f(x2n−1)

)
+8

n−2∑
i=1

f(x2i+1)
)
.

Example 1.2. Let the function f(x) =
√
x+ 1 with x ∈ [0, 1]. Using

the trapezoidal method, calculate the integral
∫ 1

0

√
x+ 1 dx with n =

10 and evaluate the calculation error.
Solution:
Forn = 10, the step size ish = b−a

n
= 0.1, and the sequence of evaluated

points are listed in the table below

xi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f(xi) 1 1.0481 1.0954 1.1401 1.1832 1.2247 1.2649 1.3038 1.3416 1.3784 1.4142

Applying the composite trapezoidal formula, it results that

I(f) =
h

2

[
f(a) + f(b) + 2

9∑
i=1

f(xi)

]
=

0.1

2
[1 + 1.4142 + 2 (1.0488 + 1.0954 + 1.1402 + 1.1832

+1.2247 + 1.2649 + 1.3038 + 1.3416 + 1.3784)] = 1.2188.

Hence,
∫ 1

0

√
x+ 1dx ≃ 1.2188.

- Calculation error: Rn(f) ≤ 1
12×102

max
x∈[0,1]

∣∣f ′′(x)
∣∣, on the other

9

Raouf Ziadi

hand, we have

f ′(x) =
1

2
(x+ 1)−

1
2 ,

f ′′(x) = −1

4
(x+ 1)−

3
2 ,

f (3)(x) =
3

8
(x+ 1)−

5
2 > 0, ∀x ∈ [0, 1].

Hence, max
x∈[0,1]

|f ′′(x)| = |f ′′(0)| = 0.25, then: Rn(f) ≤ 0.25 ×
1

12×102
≃ 2.08× 10−4.

Therefore, ∫ 1

0

√
x+ 1dx ≃ 1.2188± 2.08× 10−4.

Example 1.3. Compute the integral
∫ 1

0

e−x2

dxwith a precision of10−3

by the trapezoid method.
Solution:
We have first to determine the number of divisionsn needed to obtain this
precision.
The integration error is written as:

Rn(f) ≤
(b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣ = b− a

12
h2 max

x∈[a,b]

∣∣f ′′(x)
∣∣ ≤ 10−3.

On the other hand, we have: f ′′(x) = (4x2 − 2) exp(−x2), which is
strictly increasing on the interval [0, 1] and max

x∈[0,1]
|f ′′(x)| = |f ′′(0)| =

2.
Then, Rn(f) ≤ b−a

12
h2 max

x∈[a,b]

∣∣f ′′(x)
∣∣ ≤ 10−3, so, h ≤

√
12×0.001
(1−0)×2

=

0.0774, therefore n ≥ 1
0.0774

= 12.91. We need 13 divisions, using the
same technique as in Example 1, we get∫ 1

0

e−x2

dx ≃ 0.74646± 10−3.

10

Numerical Methods and Programming

Example 1.4. Using the trapezoid method, calculate the integral∫ π

0

sinx2dx with 5 intervals.

- Knowing that the exact value is 0.7726; compare the obtained result
with the exact value.
Solution:

For five subintervals, the steplength h = b−a
n

= π
5

and the evaluated
points are:

xi 0 π/5 2π/5 3π/5 4π/5 π

f(xi) 0 0,3846 1,0000 - 0,3999 0,0333 - 0,4303
We have also:

I(f) =
h

2

[
f(a) + f(b) + 2

(
9∑

i=1

f(xi)

)]
=

π

10
[0− 0, 4303 + 2(0.3846 + 1− 0.3999 + 0.0333)]

= 0, 5044.

Hence,
∫ π

0

sinx2dx ≃ 0, 5044.

- Comparison :

We have
∫ π

0

sinx2dx = 0.7726, I(f) = 0, 5044 and
∣∣I(f) −∫ π

0

sinx2dx
∣∣ = 0.2682.

For n = 5, the absolute error between the exact and the obtained result is
0.2682.

Example 1.5. Consider the integral defined by
∫ 3

1

(1 + log(x)) dx.

- Determine the number of subintervals required to achieve an integration
error less than 10−3.
Solution
Achieving an error Rn(f) < 10−3 ⇐⇒ (3−1)

12n2 × 0.1111 < 10−3, thus
n2 > 18.5, which impliesn > 4.30. It follows that with five subintervals,
we achieve an error of less than 10−3.

11

Raouf Ziadi

1 . 3 Simpson Method

In Simpson formula, the function is not replaced by a straight
line but by a parabola that must pass through three points
(x0, f(x0)), (x1, f(x1)), (x2, f(x2)), which means that this method
is only applicable for an even number of slices; see Figure 1.5 below.

Figure 1.5: Simpson method

Simpson formula is written as:∫ b

a

f(x) dx ≃ b− a

6
(f(x0) + 4f(x1) + f(x2))

Composite Simpson rule

We subdivide the interval [a, b] into n (with n even (n = 2k | k ∈ N))
subintervals with h = b−a

n
, and we apply the Simpson method for

each interval of the form [a, x2], [x2, x4], . . . , [xn−2, b] (see Figure 1.6
below). The numerical scheme of this method is given by:

I(f) =
h

3

[
f(a) + f(b) + 2

k−1∑
i=1

f(x2i) + 4
k∑

i=1

f(x2i−1)

]

12

Numerical Methods and Programming

In Figure 1.6 below, to compute the coloured area, we subdivide the
interval [a, b] into four slices, then we apply the standard Simpson for-
mula for each slice, i.e. each subinterval is interpolated by its degree-
two Lagrange polynomial over three nodes x2i, x2i + h, x2i + 2h for
i = 0, 1, 2, 3.

Figure 1.6: Composite Simpson formula represented over four subin-
tervals.

For the four subintervals we write:

I1(f) =
h

3
(f(x0) + 4f(x1) + f(x2))

I2(f) =
h

3
(f(x2) + 4f(x3) + f(x4))

I3(f) =
h

3
(f(x4) + 4f(x5) + f(x6))

I4(f) =
h

3
(f(x6) + 4f(x7) + f(x8)) .

Therefore I(f) ≃ I1(f) + I2(f) + I3(f) + I4(f).

Theorem 1.3. Let f ∈ C4([a, b]). Then, there exists ξ ∈ [a, b] such that:

13

Raouf Ziadi

Rn(f) = −(b− a)5

180n4
f (4)(ξ) = − b− a

180n2
h4f (4)(ξ),

where f (4) denotes the fourth derivative of the function f . We can write
the upper bound of the error made as follows:

Rn(f) ≤
(b− a)5

180n4
max
x∈[a,b]

∣∣f (4)(x)
∣∣

Remark 1.3. Let ε be the required precision, the number of subintervals
n can be determined by:

n ≥
4

√√√√(b− a)5 max
x∈[a,b]

∣∣f (4)(x)
∣∣

180ε
.

Example 1.6. Let the function f(x) = 1
2x+1

, with x ∈ [0, 1]. Using

Simpson method, calculate the integral
∫ 1

0

1

2x+ 1
dx with n = 10

and evaluate the error.
Solution
For n = 10 (i.e. 5 slices), the step-length is h = b−a

n
= 0.1 and the

evaluated points are listed in table below

xi 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
f(xi) 1 0.8333 0.7142 0.625 0.5555 0.5 0.4545 0.4166 0.3846 0.3571 0.3333

Using Simpson formula, we get

I(f) = 0.1
3
[1 + 0.3333 + 4 (0.8333 + 0.625 + 0.5 + 0.4166 + 0.3571)

+2 (0.7142 + 0.5555 + 0.4545 + 0.3846)] = 0.5493

14

Numerical Methods and Programming

Furthermore, the function f (4)(x) = 384
(2x+1)5

is strictly decreasing on
[0, 1]. Then,

max
x∈[0,1]

∣∣f (4)(x)
∣∣ = f(0) = 384,

hence,
Rn(f) ≤

384

180× 104
= 2.116× 10−4.

Therefore, ∫ 1

0

1

2x+ 1
dx ≃ 0.5493± 2.116× 10−4.

Example 1.7. Compute the integral
∫ 1

0

e−x2

dx with a precision of

10−3 using Simpson method.

Solution
We must first determine the number of divisions n required to achieve
this precision.
The integration error is written as:

Rn(f) ≤
(b− a)5

180n4
max
x∈[a,b]

∣∣f (4)(x)
∣∣ = h4 b− a

180
max
x∈[a,b]

∣∣f (4)(x)
∣∣ ≤ 10−3.

We have f (4)(x) = (16x4 − 48x2 + 12)e−x2 , and max
x∈[0,1]

∣∣f (4)(x)
∣∣ =

f(0) = 12. Then

h ≤ 4

√
180× 0.001

(1− 0)× 12
= 0.35

Thus due to fact that n must be even number, i.e. n = 2k ≥ 1
0.35

=

2.85, it results that k = 2 for which we take n = 4 with a bsteplength
h = 0.25. Following the same steps as in the previous example, we obtain:

15

Raouf Ziadi

I(f) ≃ 0.7469. Therefore,∫ 1

0

e−x2

dx ≃ 0.7469± 10−3.

1 .4 Matlab codes

1 .4 . 1 Pseudo-code of Midpoint method

% Midpoint Method for Numerical
Integration

clc; clear;
% Define the function to integrate
f = @(x)x.^2; % Example: f(x) = x^2
a = 0; % Lower limit
b = 1; % Upper limit
n = 10; % Number of subintervals
h = (b-a)/n;
integral_approx = 0;
for i = 1:n

midpoint = a+(i-0.5)*h;
integral_approx = integral_approx +

f(midpoint);
end
integral_approx = integral_approx * h;
% Display the result
fprintf('Approximate integral using the

Midpoint Method: %.6f\n',
integral_approx);

16

Numerical Methods and Programming

1 .4 .2 Pseudo-code of Trapezoidal
method

clc; clear;
% Define the function to integrate
f = @(x)x.^2; % Example: f(x) = x^2
a = 0; % Lower limit
b = 1; % Upper limit
n = 10; % Number of subintervals
h=(b-a)/n;
% Evaluate the function at the endpoints
sum=f(a)+f(b);
% Evaluate the function at the

intermediate points and sum them up
for i = 1:n-1

sum= sum+2*f(a+i*h);
end
% Multiply by the step size and divide by

2
I=(h/2)*sum;
% Display the result
fprintf('Approximate integral using

Trapezoidal Method: %.6f\n', I);

1 .4 .3 Pseudo-code of Simpson method

% Simpson algorithm for numerical
integration

clc;
clear;
% Define the function to integrate

17

Raouf Ziadi

f = @(x) x.^2 + 3*x + 2; % Example: f(x)
= x^2 + 3x + 2

% Input limits of integration and number
of subintervals (must be even)

a = 0; % Lower limit
b = 4; % Upper limit
n = 6; % Number of subintervals (

must be even)
% Check if n is even
if mod(n, 2) ~= 0

error('Number of subintervals (n) must
be even.');

end
h = (b - a) / n; % Step size
x = a:h:b;% Generate x values
y = f(x);% Evaluate function at x values
I = y(1) + y(end);
for i = 2:n

if mod(i, 2) == 0
I = I + 4 * y(i); % 4*f(x_odd)

else
I = I + 2 * y(i); % 2*f(x_even)

end
end
I = I * h / 3;
% Display the result
fprintf('Approximate integral value using

Simpson algorithm: %.6f\n', I);

18

Numerical Methods and Programming

1 . 5 Solved Exercises

Exercise 1.1. .

a- Determine by the trapezoidal and Simpson methods an approximate

value of the integral
∫ 2

0

f(x)dx using the data of the following

table:

xi 0 1/2 1 1.5 2
f(xi) = ex

2 1 1.284 2.718 9.487 54.598

b- Estimate the calculation error in each case using 10 subdivision.

c- What is the number of required subdivision to achieve a precision of
ϵ(I) = 10−2 for each method?

Solution
a.1- The approximation of the integral by the trapezoidal method.

I(f) =
h

2

[
f(x0) + f(xn) + 2

n−1∑
i=1

(f(xi))

]
=

0.5

2
[1 + 54.598 + 2(1.284 + 2.718 + 9.487)]

= 20.644

19

Raouf Ziadi

a.2- Approximating the integral using the Simpson.

I(f) =
h

3

[
f(0) + f(2) + 2

k−1∑
i=1

f(x2i) + 4
k∑

i=1

f(x2i−1)

]
=

0.5

3
[f(0) + f(2) + 2f(1) + 4(f(0.5) + f(1.5))]

=
0.5

3
(1 + 54.598 + 2× 2.718 + 4× (1.284 + 9.487))

= 26.0295

b.1- Evaluating the error by the trapezoidal method with n = 10.
We have f ′′(x) = 2ex

2
+ 4x2ex

2 and max
x∈[0,2]

∣∣f ′′(x)
∣∣ = 982.766, thus:

Rn(f) ≤
(b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣

≤ 8

12× 102
982.766 = 6.551

b.2- Evaluating the error by Simpson method with n = 10.
We have f (4)(x) = 12ex

2
+48x2ex

2
+16x4ex

2
= ex

2
(16x4+48x2+

12) and max
x∈[0,2]

∣∣f (4)(x)
∣∣ = ∣∣f (4)(2)

∣∣ = 39092.275, thus:

Rn(f) ≤
(b− a)5

180n4
max
x∈[a,b]

∣∣f (4)(x)
∣∣

≤ 2

180× 104
39092.275 = 0.6950

c.2- Calculating the number of points required to achieve a precision
10−2 with the trapezoidal method.

20

Numerical Methods and Programming

We have:

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

12 ε

≥
√

982.766× 23

12× 102
≃ 256

Thus, the number of required subdivisions is n ≥ 256.
c.1- Calculating the number of required subdivision to achieve a preci-
sion of 10−2 with Simpson method.
We have:

n ≥
4

√√√√(b− a)5 max
x∈[a,b]

∣∣f (4)(x)
∣∣

180ε

≥ 4

√
39092.275× 25

180× 10−2
≃ 51.344

Thus, the number of required subdivisions using Simpson method is
n ≥ 52.

Exercise 1.2. Consider the following integral I =

∫ π

0

sin(x)dx.

1. Calculate the exact value of I .
2. Using the trapezoidal and Simpson methods with h = π

4
:

a- Approximate the value of the integral I .

b- Estimate the calculation error.

c- Evaluate the absolute error.

3. Find the value of steplenght h and the number of required subdivisions
so that the error obtained by the trapezoidal (resp. Simpson) method is less
than 5× 10−4.

21

Raouf Ziadi

Solution.
1. I =

∫ π

0

sin(x)dx = 2.

2. I- Approximating the integral using the trapezoidal method:
a-

I(f) =
h

2

[
f(x0) + f(xn) + 2

3∑
i=1

f(xi)

]
=

π

8
(f(0) + f(π) + 2(f(π/4) + f(π/2) + f(3π/4)))

≃ 1.896.

b- We have

Rn(f) ≤
(b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣ = b− a

12
h2 max

x∈[a,b]

∣∣f ′′(x)
∣∣

≤ π3

192
max
x∈[0,π]

∣∣ sin(x)∣∣ ≤ π3

192
≃ 0.16149.

c-
∣∣I(f)− ∫ π

0

sin(x)dx
∣∣ = 0.1038

2. II- The Simpson method:
a-

I(f) =h
3

[
f(a) + f(b) + 2

k−1∑
i=1

f(x2i) + 4
k∑

i=1

f(x2i−1)

]
, with k = 2

=
π

12
(f(0) + f(π) + 2f(

π

2
) + 4(f(

π

4
) + f(

3π

4
))) ≃ 2.04.

b- We have

Rn(f) ≤
(b− a)5

180n4
max
x∈[a,b]

∣∣f (4)(x)
∣∣

≤ π5

180× 44
max
x∈[0,π]

∣∣ sin(x)∣∣ ≤ π5

180× 44
≃ 0.0066

22

Numerical Methods and Programming

c- |I(f)−
∫ π

0

sin(x)dx| = 0.004

3. Let’s calculate the value of the steplenght h and the number of re-
quired subdivisions n so that the error is less than ε = 5× 10−4.
3.I- The trapezoidal method:
We have

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

12 ε

≥

√√√√π3 max
x∈[0,π]

∣∣ sin(x)∣∣
12× 5× 10−4

≃ 71.8

Thus, the number of required subdivisions is n ≥ 72.
3.II- The Simpson method:
We have

n ≥
4

√√√√(b− a)5 max
x∈[a,b]

∣∣f (4)(x)
∣∣

180ε

≥
4

√√√√π5 max
x∈[0,π]

∣∣ sin(x)∣∣
180× 5× 10−4

≃ 7.64116

Thus, the number of required subdivisions using Simpson method is
n ≥ 8.

Exercise 1.3. A rocket is launched vertically from the ground, and its
acceleration γ is measured during the first 80 seconds:

t in (s) 0 10 20 30 40 50 60 70 80
γ in m/s2 30 31.63 33.44 35.47 37.75 40.33 43.29 46.70 50.67

- Calculate the velocity V of the rocket at t = 80s, using the trapezoidal
and Simpson methods.

23

Raouf Ziadi

Solution.
We know that the acceleration γ is the derivative of the velocity V , so

V (t) = V (0) +

∫ t

0

γ(t)dt = 0 +

∫ 80

0

γ(t)dt

- First, lets calculate V (80) using the trapezoidal method. According to
the previous table of values, we have h = 10 and n = 8. Therefore,

V (80) =
h

2
(γ(t0) + γ(t2) + 2(γ(t1) · · ·+ γ(t7)))

= 5(30 + 50.67 + 2(31.63 + 33.44 + 35.47 + 37.75+

40.33 + 43.29 + 46.70)) = 3089m/s.

- Next, we calculate V (80) using Simpson method:

V (80) =
h

3

[
γ(t0) + γ(tk) + 2

3∑
i=1

γ(t2i) + 4
4∑

i=1

γ(t2i−1)

]
=

10

3
(30 + 50.67 + 2(33.44 + 37.75 + 43.29)+

4(31.63 + 35.47 + 40.33 + 46.70)) = 3087m/s

Exercise 1.4.

a- Using 4 subintervals, determine by the trapezoidal method an approxi-

mate value of
∫ 2

0

sin2(x)dx, and estimate the calculation error.

b- What is the number of required subintervals to achieve a precision of
10−2 by the trapezoidal method?

24

Numerical Methods and Programming

Solution.
a- Approximating the integral using the trapezoidal method:

∫ 2

0

f(x)dx ≃ I(f) =
h

2

[
f(x0) + f(xn) + 2

n−1∑
i=1

(f(xi))

]
= 0.5

2
[f(0) + f(2) + 2(f(0.5) + f(1) + f(1.5))]

= 1.173

- Evaluating the error by the trapezoidal method with n = 4: We
have f ′′(x) = 2(cos2(x) − sin2(x)) = 2(1 − 2 sin2(x)) and
max
x∈[0,2]

∣∣f ′′(x)
∣∣ = f ′′(0) = f ′′(

π

2
) = 2, thus:

Rn(f) ≤
(b− a)3

12n2
max
x∈[a,b]

∣∣f ′′(x)
∣∣

≤ 8

12× 42
2 = 0.0833

b- The number of required subdivisions to achieve a precision of 10−3

with the trapezoidal method.
We have:

n ≥

√√√√(b− a)3 max
x∈[a,b]

∣∣f ′′(x)
∣∣

12 ε

≥
√

2× 23

12× 10−3
≃ 36.51

Thus, the number of required subdivisions is n ≥ 37.

25

Raouf Ziadi

1 . 5 . 1 Supplementary Exercises

Exercise 1.5. We consider the following integral:

I =

∫ 1

0

dx

1 + x2
dx.

1. Calculate the exact value of this integral.
2. Approximate the value of this integral numerically using:

- Midpoint method with 5 intervals.
- Trapezoidal method with 4 intervals.
- Simpson method with 2 intervals.

Result.

1. I =

∫ 1

0

dx

1 + x2
= 0.7854.

2.
- By the midpoint rule, we obtain: I(f) = 0.8387

- By the trapezoidal method, we obtain: I(f) = 0.7828

- By Simpson method, we obtain: I(f) = 0.7854

Exercise 1.6. Determine the required number of subdivisions to approx-

imate the integral
∫ 1

0

xe−xdx with a precision of 10−8 using:

1. Trapezoidal method.
2. Simpson method.

Result.
1. n ≥ 4083

2. n ≥ 40

Exercise 1.7. Determine the number of required subdivisions to approxi-

mate the value of the integral
∫ π

−π

cos(x)dxwith a precision of 5×10−4

using Simpson method.

Result
- n ≥ 20

26

Numerical Methods and Programming

Exercise 1.8. Consider the following integral:

I =

∫ π
3

−π
3

(ex + sin(x)) dx

1- Compute the exact value of I .

2- Give an approximation of the integral I with a precision of ε = 2×
10−4 using Simpson’s method.

3- Using the trapezoidal method with step size h = π
6

:

i) Provide an approximation of the integral I .

ii) Evaluate the error between the exact value and the approxi-
mate value of the integral.

Exercise 1.9. Let f be a function defined on]0,+∞[by
f(x) = e−x − ln(x).

1- Determine the analytical expression of
∫

f(x)dx.

2- Give the iterative scheme of the Simpson’s algorithm to approximate a
limited integral.

3- Using the Simpson’s algorithm, approximate the value of the integral∫ 3

2

f(x) dx with a precision of 10−4.

4- Using the trapezoidal method, determine the required number of subdi-

visions to approximate the integral
∫ 3

2

f(x) dx with a precision of 10−4.

27

2
Numerical Solution of
Nonlinear Equations

In mathematics and applied sciences, nonlinear equations play a crucial
role in modeling complex phenomena across various disciplines. Unlike
linear equations, which can be solved analytically using algebraic meth-
ods, finding exact solutions for nonlinear equations is often difficult or
even impossible.

For example, consider the equation:

cos(x3) sin(2x2 − 3) + 0.5 = 0.

It is evident that solving this equation analytically would be ex-
tremely time-consuming, if not impossible. These types of equations,
known as nonlinear (transcendental) equations, can instead be solved
numerically using methods that allow us to compute approximate roots
with a specified level of precision.

In this chapter, we will explore three numerical methods for solving
nonlinear univariate equations of the form f(x) = 0.

Definition 2.1. Any numberξ that satisfiesf(ξ) = 0 is called a solution
(or root) of the equation f(x) = 0. Geometrically, ξ represents the x-
coordinate of the point where the graph of the function f(x) intersects the
x-axis.

28

Numerical Methods and Programming

Definition 2.2. If the equation f(x) = 0 can be written in the form

f(x) = (x− ξ)mg(x) = 0

where g(x) ̸= 0, then ξ is called a root of order m. If m = 1, ξ is called
a simple root of the equation f(x) = 0.

In all iterative methods, it is necessary, to avoid divergence of the
solution, to determine an interval containing the root being sought
and to carefully choose the initial values.

2. 1 Separation of Roots

Most numerical methods assume the existence of the desired root
within a given interval [a, b]. In this case, the root is said to be local-
ized or separated from any other potential roots.

Definition 2.3. We say that a root ξ of an equation f(x) = 0 is sepa-
rable if we can find an interval [a, b] such that ξ is the only root of this
equation in [a, b]. The root ξ is then called separated or localized.

The two most classical techniques for localizing or separating roots
are:

Analytical method

In this case, we rely on the Intermediate Value Theorem (IVT):

Theorem 2.1. Let [a, b] ⊂ R and let f be a continuous function from
[a, b] to R such that f(a)f(b) < 0. Then there exists ξ ∈ (a, b) such
that f(ξ) = 0.

Example 2.1. Let us determine the roots of the function f(x) = x4 −
4x− 1. The variations of f are given in the following table:

29

Raouf Ziadi

x

f ′(x)

f(x)

−∞ 1 +∞

− 0 +

+∞+∞

-4-4

+∞+∞

According to the table of variations, the function f is strictly mono-
tonic on the intervals [−1, 0] ∪ [1, 2], with f(−1) · f(0) < 0 and
f(1) · f(2) < 0. Therefore, there are two roots: ξ1 ∈ (−1, 0) and
ξ2 ∈ (1, 2).

Graphical method (geometric)

Let us trace (experimentally or by studying the variations off) the graph
of the function f and look for its intersection with the Ox-axis. Alter-
natively, we can decompose f into two functions f1 and f2 that are
easier to study, such that f = f1 − f2, and we search for the points of
intersection of the graphs of f1 and f2, whose x-coordinates are exactly
the roots of the equation f(x) = 0.

Remark 2.1. The functions f1 and f2 are often chosen with well-known
graphs.

Example 2.2. Consider the equation

x log x = 1, x > 0. (2.1)

This equation can also be written as: log x = 1
x

. Let us define f1(x) =
log x, f2(x) = 1

x
, and f(x) = f1(x) − f2(x) = log x − 1

x
. The

variations of the functions f1 and f2 are given by the curves below (Figure
2.1). The x-coordinate of the point of intersection of the two curves allows
us to localize the solution of the equation (2.1) and even provides a (first)
approximation of it.

30

Numerical Methods and Programming

Figure 2.1: Graphical separation of the root.

2.2 Numerical methods

2.2 . 1 Bisection Method

The Bisection method (or dichotomy method) assumes that the func-
tion f is continuous on an interval [a, b], has only one root ξ ∈ (a, b),
and satisfies f(a)f(b) < 0.

The principle is as follows: we set a0 = a, b0 = b, and define
x0 = (a0+b0)

2
as the midpoint of the initial interval and evaluate the

function f at this point. If f(x0) = 0, the point x0 is the root of f ,
and the problem is solved. Otherwise, if f(a0)f(x0) < 0, the root ξ
is contained within the interval (a0, x0), while it belongs to (x0, b0) if
f(x0)f(b0) < 0. This process is then repeated on the new interval
[a1, b1], with a1 = a0 and b1 = x0 in the first case, or a1 = x0 and
b1 = b0 in the second, and so on. In this way, we recursively construct
three sequences {an}n∈N, {bn}n∈N, and {xn}n∈N with:

- xn = an+bn
2

- an+1 = an and bn+1 = xn if f(an)f(xn) < 0

31

Raouf Ziadi

- an+1 = xn and bn+1 = bn if f(xn)f(bn) < 0

Figure 2.2: Construction of the first three iterations of the method.

Proposition 2.1. Letf be a continuous function on the interval [a, b] sat-
isfying f(a)f(b) < 0. Let ξ ∈ (a, b) be the unique solution of the equa-
tion f(x) = 0. Then, the sequence {xn}n∈N generated by the method
converges to ξ with a precision given by

|xn − ξ| ≤ b− a

2n+1
, ∀n ∈ N.

Remark 2.2. From this inequality, if the precision ε is known, the re-
quired number of iterations n can be calculated. Indeed:

b− a

2n+1
≤ ε =⇒ n ≥

ln
(
b−a
2ε

)
ln 2

Example 2.3. Apply the method to calculate the root of the equation x3+

4x2 − 10 = 0 with a precision ε = 10−2.
The table of variations of f is as follows:

32

Numerical Methods and Programming

x

f ′(x)

f(x)

−∞ −8/3 0 +∞

+ 0 − 0 +

−∞−∞

--

-10-10

+∞+∞

Figure 2.3: Graph of f .

From the table of variation and Figure 2.3, it follows that ∃!ξ ∈ (1, 2)

such that f(ξ) = 0. Hence the required number of iterations to reach a
precision of 10−2 is

n ≥
ln
(

2−1
2×10−2

)
ln 2

≃ 5.64

33

Raouf Ziadi

Then n = 6 and the following table summarizes the evaluated points.
n an bn xn f(xn) sign: f(an).f(xn) δn = b−a

2n+1

0 1 2 1.5 2.375 - 0.5
1 1 1.5 -1.25 -1.789 + 0.25
2 1.25 1.5 1.375 0.1621 - 0.125
3 1.25 1.375 1.3125 -0.848 + 0.0625
4 1.3125 1.375 1.3437 -0.3509 - 0.03125
5 1.3437 1.375 1.3593 -0.0964 + 0.015625
6 1.35937 1.375 1.36718 0.0322 + 0.0078125

Example 2.4. Let’s calculate the first root of the equation ln(x)− x2 +

2 = 0 that lies in the interval [0.1, 0.5] with a precision of ε = 0.01.
First, we calculate the number of subdivisions n to perform:

n ≥
ln
(
0.5−0.1
2×10−2

)
ln 2

≃ 4.32 =⇒ n = 5.

The following table summarizes the steps of the method.
n an bn xn f(xn) sign: f(an).f(xn) δn = b−a

2n+1

0 0.1 0.5 0.3 0.706 - 0.2
1 0.1 0.3 0.2 0.351 - 0.1
2 0.1 0.2 0.15 0.08 - 0.05
3 0.1 0.15 0.125 -0.095 + 0.025
4 0.125 0.15 0.1375 -0.030 + 0.0125
5 0.1375 0.15 0.14375 0.0393 - 0.0062

2.2 .2 Lagrange Method

Lagrange method, also known as the method of false position, is a tech-
nique for finding an approximate value of the solution of an equation
f(x) = 0. It can be described as follows: suppose that the function
f is continuous on [a, b] with f(a)f(b) < 0. Consider the points
A(a, f(a)) and B(b, f(b)) located on the curve Cf of f . We construct
a sequence {xn}n∈N of real numbers using the points An on Cf . To do
this, we set A0 = A and construct An+1 by drawing the line (AnB)

that intersects the x-axis at a point with abscissa xn+1. The point An+1

34

Numerical Methods and Programming

is the point on Cf with abscissa xn+1.
The iterative scheme of Lagrange algorithm is given as follows: Choose
a starting point x0 that satisfies the condition f(x0)f

′′(x0) < 0 and
for each iteration we set{

−Select x0 = a if f(a)f ′′(a) < 0

−Set xn+1 = xn − f(xn)
xn−b

f(xn)−f(b)
.

and {
−Select x0 = b if f(b)f ′′(b) < 0

−Set xn+1 = xn − f(xn)
xn−a

f(xn)−f(a)
.

Exemple. Consider the equation f(x) = x3−20 = 0. Since the func-
tion f is contentiously decreasing on the interval [0.75, 4.5]with
f(0.75)f(4.5) < 0, we can apply Lagrange method in the inter-
val [0.75, 4.5] by choosing x0 = 0.75 as the starting point. The
construction of the first iterates of Lagrange method is illustrated
in Figure 2.4.

Figure 2.4: Construction of the iterates using Lagrange method

35

Raouf Ziadi

Proposition 2.2. Let f be a continuous function on the interval [a, b],
satisfying f(a)f(b) < 0, and let ξ ∈ (a, b) be the unique solu-
tion of the equation f(x) = 0. If f ∈ C2([a, b]) such that ∀x ∈
[a, b], f ′(x)f ′′(x) ̸= 0, then the sequence {xn}n∈N constructed by La-
grange method converges to ξ with a precision given by

|xn − ξ| ≤ M1 −m1

m1

|xn − xn−1|

where
M1 = max

[a,b]
{|f ′(x)|}, m1 = min

[a,b]
{|f ′(x)|}.

Example 2.5. Find the root of the function f(x) = x3 − x − 4 in
the interval [1, 2] within a precision of ε = 10−2, using the Lagrange
method. We have

Figure 2.5: Graph of f

M1 = max
[1,2]

{|f ′(x)|} = |f ′(2)| = 11

m1 = min
[1,2]

{|f ′(x)|} = |f ′(1)| = 2,

36

Numerical Methods and Programming

and for all x ∈ [1, 2], we have

f ′(x) = 3x2 − 1 > 0,

f ′′(x) = 6x > 0,

and f(1)f ′′(1) < 0, so we take x0 = 1, and for all n ∈ N,

xn+1 = xn − f(xn)
xn − 2

f(xn)− f(2)
.

By following the iterative scheme of the Lagrange algorithm, we obtain

∗ x1 = x0 − f(x0)
x0 − 2

f(x0)− f(2)
= 1.666 and f(x1) = −1, 0368

|x1 − ξ| ≤ M1 −m1

m1

|x1 − x0| =
11− 2

2
|1, 6667− 1| = 3.

∗ x2 = x1 − f(x1)
x1 − 2

f(x1)− f(2)
= 1.7805

|x2 − ξ| ≤ M1 −m1

m1

|x2 − x1| = 0.05

∗ x3 = x2 − f(x2)
x2 − 2

f(x2)− f(2)
= 1.7945

|x3 − ξ| ≤ M1 −m1

m1

|x3 − x2| = 0.034

∗ x4 = x3 − f(x3)
x3 − 2

f(x3)− f(2)
= 1.7961

|x4 − ξ| ≤ M1 −m1

m1

|x4 − x3| = 0.009

Hence ξ = 1.7961± 0.009

2.2 .3 Newton-Raphson Method

This method is the most used for finding roots in one-dimensional prob-
lems. However, it requires the evaluation of f(x) and f ′(x).

37

Raouf Ziadi

Let ξ be a unique root of the equation f(x) = 0 on the interval
[a, b], such that f is continuous and satisfies:

f ′(x) ̸= 0, ∀x ∈ [a, b], (2.2)

f ′′(x) ̸= 0, ∀x ∈ [a, b]. (2.3)

The main idea of this method is to replace, at each iteration k, the
arc of the curve of the function y = f(x) on [a, b] with the tangent to
this arc at the point (xn, f(xn)): The abscissa xn+1 of the intersection
of the tangent equation with the Ox-axis is an approximation of the
unique solution ξ in [a, b] for the equation f(x) = 0 (see Figure 2.6).

The equation of the tangent is:

y = f(xn) + f ′(xn)(x− xn),

which intersects the Ox-axis at the point (xn+1, 0), from which we get:

f(xn) + f ′(xn)(xn+1 − xn) = 0,

which gives the following iterative scheme (Newton-Raphson):{
−Select a starting point x0 ∈ [a, b] withf(x0).f

′′(x0) > 0.

−Set xn+1 = xn − f(xn)
f ′(xn)

.

Proposition 2.3. Let f be a continuous function on the interval [a, b],
satisfying f(a)f(b) < 0, and let ξ ∈ (a, b) be the unique solution of
the equation f(x) = 0. If f ∈ C2([a, b]) such that for all x ∈ [a, b],
f ′(x)·f ′′(x) ̸= 0, then the sequence {xn}n∈N constructed by the Newton-
Raphson method converges to ξ with a precision given by:

|xn − ξ| ≤ M2

2m1

(xn − xn−1)
2

38

Numerical Methods and Programming

Figure 2.6: Construction of the first three iterates using Newton-
Raphson method.

where
M2 = max

[a,b]
{|f ′′(x)|}, m1 = min

[a,b]
{|f ′(x)|}.

Example 2.6. Let’s calculate the root of the function f(x) = x3−x−4

in [1, 2], within a precision of 10−2, using the Newton-Raphson method.
We have f(1) · f(2) < 0, and for all x ∈ [1, 2], f ′(x) = 3x2 − 1 > 0

and f ′′(x) = 6x > 0. We have
Applying the iterative scheme of the Newton-Raphson algorithm start-

ing from x0 = 2 with f(2) · f ′′(2) > 0, we get:

x1 = x0 −
f(x0)

f ′(x0)
= 2− f(2)

f ′(2)
= 1.8181,

|ξ − x1| ≤
M2

2m1

(x1 − x0)
2 =

12

2× 2
(1.818− 2)2 ≈ 0.01,

where

M2 = max[1,2]{|f ′′(x)|} = f ′′(2) = 12 and m1 = min[1,2]{|f ′(x)|} = f ′(1) = 2,

39

Raouf Ziadi

Next, for x2:

x2 = x1 −
f(x1)

f ′(x1)
= 1.8181− f(1.8181)

f ′(1.8181)
= 1.7966,

|ξ − x2| ≤
M2

2m1

(x2 − x1)
2 =

12

4
(1.7966− 1.818)2 ≈ 0.001.

Thus, ξ = 1.7966± 0.001.

In some situations, the derivative f ′ can be quite complicated, or
even impossible to calculate. In this case, we approximate the derivative
of f using a rate of change. This method is called the secant method:{

−Select x0, x1 ∈ [a, b] close to ξ.

−Set xn+1 = xn − f(xn)
xn−xn−1

f(xn)−f(xn−1)
.

Here, xn+1 depends on both xn and xn−1: we say that it is a two-step
method; indeed, we need two initial iterates, x0 and x1. The advantage
of this method is that it does not require the calculation of the derivative
f ′. The drawback is that the convergence is no longer as fast.

2.3 Matlab codes

2.3 . 1 Pseudo-code of Bisection method

clc;clear all;close all
f=@(x) x^3-x-2; % Example: f(x)=x^3-x-2
% Define the interval [a,b]
a=1; % Left endpoint
b=2; % Right endpoint
tol=1e-6; % Desired accuracy
max_iter =100; % Maximum number of

iterations

40

Numerical Methods and Programming

% Check if the function has opposite signs
at the endpoints

if f(a)*f(b)>= 0
error('The function must have opposite

signs at a and b.');
end
% Initialize variables
iter =0; % Iteration counter
fprintf('Iter\t a\t\t b\t\t c\t\t f(c)\n')

;
while (b-a)/2>tol && iter <max_iter

iter=iter +1;% Increment iteration
counter

c=(a+b)/2;% Compute the midpoint
% Display current step
fprintf('%d\t%.6f\t%.6f\t%.6f\t%.6f\n'

,iter ,a,b,c,f(c));

% Check if the root is found or narrow
the interval

if f(c)==0
break; % c is the root

elseif f(c)*f(a)<0
b=c; % Root is in the left

subinterval
else

a=c; % Root is in the right
subinterval

end
end
% Output the result
root=(a+b)/2;

41

Raouf Ziadi

fprintf('The root using Bissection method
is approximately: %.6f\n',root);

fprintf('Number of iterations: %d\n',iter)
;

%

2.3 .2 Pseudo-code of Lagrange method

clc;clear all;close all
f=@(x) x^3-x-2; % Example: f(x)=x^3-x-2
ddf =@(x)6*x;
% Define the interval [a,b]
a=1; % Left endpoint
b=2; % Right endpoint
max_iter =100; % Maximum number of

iterations
tol=1e-6; %Required tolerance
% Check if the function has opposite signs

at the endpoints
if f(a)*f(b)>= 0

error('The function must have opposite
signs at a and b.');

end
iter =0; % Iteration counter
%Select the starting point
if f(a)*ddf(a) <0

x0=a;
x_end=b;

else
x0=b;
x_end=a;

end
x=x0;

42

Numerical Methods and Programming

while iter < max_iter
if abs(f(x))<tol

root=x;
break;

end
% Lagrange iteration formula
x_new=x-f(x)*(x-x_end)/(f(x)-f(x_end))

;
% Check for convergence
if abs(x_new -x)<tol

root=x_new;
break

end
x=x_new;
iter=iter +1;

end
root=x; % Return the final approximation

if max_iter is reached
fprintf('The root using Lagrange method is

approximately: %.6f\n',root)
fprintf('Number of iterations: %d\n',iter)
fprintf('Approximate root: %.6f\n', root)

2.3 . 3 Pseudo-code of Newton-Raphson
method

clc;clear all;close all
f=@(x) x^3-x-2; % Example: f(x)=x^3-x-2
df=@(x)3*x^2-1;
ddf =@(x)6*x;
% Define the interval [a,b]
a=1; % Left endpoint

43

Raouf Ziadi

b=2; % Right endpoint
max_iter =100; % Maximum number of

iterations
tol=1e-6; %Required tolerance
% Check if the function has opposite signs

at the endpoints
if f(a)*f(b)>= 0

error('The function must have opposite
signs at a and b.');

end
iter =0; % Iteration counter
%Select the starting point
if f(a)*ddf(a) >0

x0=a;
else

x0=b;
end
x=x0;
while iter < max_iter

if abs(f(x))<tol
root=x;

break;
end
% Lagrange iteration formula
x_new=x-f(x)/df(x);
% Check for convergence
if abs(x_new -x)<tol

root=x_new;
break

end
x=x_new;
iter=iter +1;

end

44

Numerical Methods and Programming

root=x; % Return the final approximation
if max_iter is reached

fprintf('The root using Newton -Raphson
method is approximately: %.6f\n',root)

fprintf('Number of iterations: %d\n',iter)
fprintf('Approximate root: %.6f\n', root)

2.4 Solved Exercises

Exercise 2.1. Using the Newton-Raphson algorithm, find the square root
of 2 in the interval [1, 2] with a precision of ε = 10−3, using x0 = 2 as
a starting starting point.

Solution
We seek the square root of 2 in the interval [1, 2], i.e., we find the root
of the following equation

x2 = 2 ⇒ f(x) = x2 − 2 = 0.

For all k ∈ N, we apply the Newton-Raphson iterative scheme :

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2, . . .

We have f ′(x) = 2x and f ′′(x) = 2 > 0, so

M2 = max
[1,2]

|f ′′(x)| = 2 and m1 = min
[1,2]

|f ′(x)| = f ′(1) = 2.

45

Raouf Ziadi

k = 1 : x1 = x0 −
f(x0)

f ′(x0)
= 2− f(2)

f ′(2)
= 1.5

|ξ − x1| ≤
M2

2m1

(x1 − x0)
2 =

2

2× 2
(2− 1.5)2 = 0.125

k = 2 : x2 = x1 −
f(x1)

f ′(x1)
= 1.5− f(1.5)

f ′(1.5)
= 1.416

|ξ − x2| ≤
M2

2m1

(x2 − x1)
2 =

2

2× 2
(1.5− 1.416)2 = 0.0035

k = 3 : x3 = x2 −
f(x2)

f ′(x2)
= 1.416− f(1.416)

f ′(1.416)
= 1.414

|ξ − x3| ≤
M2

2m1

(x3 − x2)
2 =

2

2× 2
(1.416− 1.414)2 = 2× 10−6

Thus, x∗ ≈ 1.414± 2× 10−6 is the approximated square root of 2.

Exercise 2.2.

a- Give the iterative scheme of the Newton-Raphson algorithm to solve a
nonlinear equation f(x) = 0.

b- Using the Newton-Raphson algorithm, determine the root in the inter-
val [0, 1] of the equation x2 = e−2x with a precision of 10−3, starting
with an initial point x0 = 1.

Solution
b- Let’s determine the root in the interval [0, 1] of the equation x2 =

e−2x with a precision of 10−3 using the Newton-Raphson algorithm.
We have

f ′(x) = 2x+ 2e−2x and f ′′(x) = 2− 4e−2x,

with

M2 = max
[0,1]

|f ′′(x)| = f ′′(1) = 1.45 and m1 = min
[0,1]

|f ′(x)| = f ′(0.346) = 1.69.

46

Numerical Methods and Programming

Proceeding as in the previous exercise, we get:

k = 1 :x1 = x0 −
f(x0)

f ′(x0)
= 1− f(1)

f ′(1)
= 0.6192

|ξ − x1| ≤
M2

2m1

(x1 − x0)
2 = 0.0624

k = 2 :x2 = x1 −
f(x1)

f ′(x1)
= 0.6192− f(0.6192)

f ′(0.6192)
= 0.5677

|ξ − x2| ≤
M2

2m1

(x2 − x1)
2 = 0.0011

k = 3 :x3 = x2 −
f(x2)

f ′(x2)
= 0.5677− f(0.5677)

f ′(0.5677)
= 0.5671

|ξ − x3| ≤
M2

2m1

(x3 − x2)
2 = 1.55× 10−7 < ε

Thus, x∗ ≈ 0.5671± 1.55× 10−7 is the approximated root.

Exercise 2.3. Consider the equation f(x) = 2 tan(x) − x − 1 = 0

with x ∈ [−π, π].
a- Separate analytically the roots of this equation.
b- Calculate the number n of required iterations to approximate this root
with a precision of 10−3 using the method.

Solution
a- We have f(x) = 2 tan(x) − x − 1, and f ′(x) = 2

cos(x)2
− 1. The

table of variations of f is given as follows:

x

f ′(x)

f(x)

−π −π/2 π/2 π

+ || + || +

2.142.14

+∞

-∞

+∞

−∞

−4.14−4.14

47

Raouf Ziadi

Thus, according to this table, there exists a single root in the interval
]− π

2
, π
2
[.

b- Let’s calculate the required number of iterations n:

n ≥
ln
(
b−a
2ε

)
ln 2

≥
ln
(

π
2×10−3

)
ln 2

≃ 10.6173

Therefore, to reach the root with a precision of 2 × 10−3, we need at
least n ≥ 11.

Exercise 2.4. a. Approximate the smallest root of the function f(x) =

x4 − 2x− 4 with a precision of 5× 10−3 using Newton-Raphson and
Lagrange methods.
b. Compare the two methods and draw a conclusion.

Solution
According to Figure 2.7, this function f(x) has two roots; let’s find the
negative root located in the interval [−2,−1].

Figure 2.7: Graph of f .

48

Numerical Methods and Programming

Approximating using Newton-Raphson method:
We have

f ′(x) = 4x3 − 2 < 0,∀x ∈ [−2,−1],

f ′′(x) = 12x2 > 0,∀x ∈ [−2,−1].

and

M2 = max
[−2,−1]

{|f ′′(x)|} = |f ′′(−2)| = 48

m1 = min
[−2,−1]

{|f ′(x)|} = |f ′(−1)| = 6

Since f(−2).f ′′(−2) > 0, we take x0 = −2 as a starting point, and
for all k ∈ N, we set

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, 2,

Following the iterative scheme of the Newton-Raphson algorithm, we
obtain:

k = 1 : x1 = x0 −
f(x0)

f ′(x0)
= −2− 16

−34
= −1.53

|ξ − x1| ≤
M2

2m1

(x1 − x0)
2 =

48

2× 6
(−1.53 + 2)2 = 0.88

49

Raouf Ziadi

k = 2 :x2 = x1 −
f(x1)

f ′(x1)
= −1.53− −4.53

−16.32
= −1.25

|ξ − x2| ≤
M2

2m1

(x2 − x1)
2 = 0.31

k = 3 :x3 = x2 −
f(x2)

f ′(x2)
= −1.25− 0.94

−9.81
= −1.1542

|ξ − x3| ≤
M2

2m1

(x3 − x2)
2 = 0.03

k = 4 :x4 = x3 −
f(x3)

f ′(x3)
= −1.1542− 0.083

−8.15
= −1.144

|ξ − x4| ≤
M2

2m1

(x4 − x3)
2 = 0.004

Hence ξ = −1.144± 0.004 is the prescribed solution.
Approximating using Lagrange method:
Since f(−1).f ′′(−1) < 0, we take x0 = −1 as initial point,and for all
n ∈ N, we set

xn+1 = xn − f(xn)
xn + 2

f(xn)− f(−2)

with M1 = max
[−2,−1]

{|f ′(x)|} = |f ′(−2)| = 34 and

m1 = min
[−2,−1]

{|f ′(x)|} = |f ′(−1)| = 6

k = 1 : x1 = x0 − f(x0)
x0 + 2

f(x0)− f(−2)
= −1.05

|x1 − ξ| ≤ M1 −m1

m1

|x1 − x0| = 0.274

k = 2 : x2 = x1 − f(x1)
x1 + 2

f(x1)− f(−2)
= −1.0941

|x2 − ξ| ≤ M1 −m1

m1

|x2 − x1| = 0.164

50

Numerical Methods and Programming

k = 3 : ∗ x3 = x2 − f(x2)
x2 + 2

f(x2)− f(−2)
= −1.1149

|x3 − ξ| ≤ M1 −m1

m1

|x3 − x2| = 0.097

k = 4 : x4 = x3 − f(x3)
x3 + 2

f(x3)− f(−2)
= −1.127

|x4 − ξ| ≤ M1 −m1

m1

|x4 − x3| = 0.0564

k = 5 : x5 = x4 − f(x4)
x4 + 2

f(x4)− f(−2)
= −1.1341

|x5 − ξ| ≤ M1 −m1

m1

|x5 − x4| = 0.033

k = 6 : x6 = x5 − f(x5)
x5 + 2

f(x5)− f(−2)
= −1.1382

|x6 − ξ| ≤ M1 −m1

m1

|x6 − x5| = 0.0191

k = 7 : x7 = x6 − f(x6)
x6 + 2

f(x6)− f(−2)
= −1.1406

|x7 − ξ| ≤ M1 −m1

m1

|x7 − x6| = 0.011

k = 8 : x8 = x7 − f(x7)
x7 + 2

f(x7)− f(−2)
= −1.1419

|x8 − ξ| ≤ M1 −m1

m1

|x5 − x4| = 0.006

k = 9 : x9 = x8 − f(x8)
x8 + 2

f(x8)− f(−2)
= −1.14275

|x9 − ξ| ≤ M1 −m1

m1

|x9 − x8| = 0.004

Henceξ = −1.14275± 0.004.
To achieve a precision of 5 × 10−3, it would require 9 iterations

using the Lagrange method, whereas the Newton method requires only
4 iterations. The Newton method converges faster than the Lagrange
method.

51

Raouf Ziadi

Exercise 2.5. We consider the equation f(x) = 0, with f(x) =

ln(x)− x+ 2.
1.a. Write the equation f(x) = 0 in the form f1(x) = f2(x) with
f1(x) = ln(x).
b. Plot the graphs of f1 and f2. What can be said about this equation?
2.a. Perform 4 iterations of the method to approximate the solution in the
interval [3, 4]. At which iteration we obtain the best result? Justify and
conclude.
b. Determine the number ofn of required iterations to achieve a precision
of 10−4.
c. Give an estimate of the error after 25 iterations.
3. Approximate the root with a precision of 10−4 using the Newton-
Raphson method, starting from x0 = 3.
4. Compare the two methods and draw a conclusion.

Solution

1-a.

f(x) = 0 ⇔ ln(x)− x+ 2 = 0

⇔ ln(x) = x− 2

⇔ f1(x) = f2(x) avec f1(x) = ln(x) et f2(x) = x− 2

1-b. According to Figure 2.8, the graphs of f1 and f2 have two intersec-
tion points, so this equation has two roots ξ1 ∈]0, 1[and ξ2 ∈]3, 4[.
2-a. Proceeding as in examples 1 and 2, we obtain x1 = 3.5, x2 = 3.25,
x3 = 3.125, and x4 = 3.1875, with x3 the best result obtained since
f(x3)min{f(xi), i = 1, 2, 3, 4}. We conclude that, although the con-
vergence of the method towards the root is guaranteed, it is not mono-
tonic.

52

Numerical Methods and Programming

Figure 2.8: Graphical separation of the roots.

2-b.

n ≥
ln(b−a

2ε
)

ln 2

≥
ln(1

10−4)

ln 2
≃ 13.29 ,

hence n ≥ 14.
2-c

|xn − ξ| ≤ b− a

2n+1

=
4− 3

226
= 1.4901× 10−8

3. By applying the Newton algorithm starting from the pointx0 = 3,
and after 3 iterations, the algorithm reaches the root within 10−4. The
generated points are x1 = 3.1479, x2 = 3.1462, and x3 = 3.1462.
4. To achieve a precision of 10−4, it would require 14 iterations using
the method, whereas the Newton method only requires 3 iterations.
The Newton-Raphson method converges quicker than the method.

53

Raouf Ziadi

2.4 . 1 Suplementary Exercicises

Exercise 2.6. Consider the function f(x) = x2 − ξ defined on R, with
ξ ∈ R+.

1- Prove that the iterative scheme of the Newton-Raphson method to
find a root of f can be given by the following form:

xk+1 =
1

2

(
xk +

ξ

xk

)
, k ∈ N. (2.4)

2- Let ξ = 5.

i) Determine an interval of the form [a, a + 1], with a ∈ N,
where we can approximate a value of

√
ξ.

ii) Provide an approximation of the value
√
ξ using the recur-

rent formula (2.4), choosing x0 = a+ 1 as the initial point
and using the stopping criterion ∆k =

M
2m

(xk − xk−1)
2 ≤

ε, with M = max
[a,a+1]

|f ′′(x)|, m = min
[a,a+1]

|f ′(x)|, and

ε = 10−4 (where k is the number of iterations).

3- Determine the number of iterations n required by the Bisection
method to obtain an approximate solution with the same precision
ε = 10−4.

Exercise 2.7. Let f be a function defined on]0,+∞[by
f(x) = e−x − ln(x).

1- Prove that there exists a unique root ξ of the function f , located between
two consecutive integers a and a+ 1.

2- Calculate the numbern of required iterations to reach an error less than
10−4 using Bisection method.

3- Give the iterative scheme of the Newton-Raphson algorithm.

54

Numerical Methods and Programming

4- Approximate the value of ξ with a precision of 10−4 using the Newton-
Raphson algorithm, justifying the choice of the initial point x0 between
a and a+ 1.

Exercise 2.8. Let f be a function defined on R by f(x) = e
x
4 − 3/2.

1- Prove that there exists a unique root ξ of the function f , located between
two consecutive integers a and a+ 1.

2- Calculate the numbern of required iterations to reach an error less than
10−4 using Bisection method.

3- Approximate the value of ξ with a precision of 10−4 using the Newton-
Raphson algorithm, justifying the choice of the initial point x0 between
a and a+ 1.

55

3
Numerical Solution of
Ordinary Differential

Equations of First
Order

Many challenges in science and engineering can be reduced to the task
of solving differential equations while satisfying certain predefined con-
ditions. Traditional analytical techniques, which are assumed to be un-
derstood by the reader, are suitable for solving only a subset of these
equations. However, the differential equations that govern the behav-
ior of physical systems often lack closed-form solutions. Therefore, it is
crucial to use numerical methods to solve these problems.

Definition 3.1. An ordinary differential equation (ODE) of order
n, n ∈ N∗ is any relation of the type

f(t, y(t), y′(t), . . . , y(n)(t)) = 0 (3.1)

which we write in the canonical form as

y(n)(t) = f(t, y(t), y′(t), . . . , y(n−1)(t)) (3.2)

56

Numerical Methods and Programming

where y is a function of the variable t, and for i = 1, . . . , n, y(i) is the
derivative of y with respect to t of order i.

The general solution of equations (3.1) and (3.2) is given by a relation
between t and y with a number of constants (equal to the degree of the
equation). This relation can be implicit:

W (t, y(t), c1, . . . , cn) = 0

or explicit
y(t) = V (t, c1, . . . , cn).

To determine the constants ci, i = 1, . . . , n, we need initial or bound-
ary conditions on y.

Definition 3.2. A differential equation is said to be of order 1 if it is of
the form: y′(t) = f(t, y(t)) with t ∈ [a, b] and f a function is defined
on [a, b]× R → R.

In this chapter, we present some numerical methods that aim to ap-
proximate solutions of ordinary differential equations of first order.

3 . 1 The Basic Principles of
Initial-Value Problems

Definitions and results from ordinary differential equations theory are
necessary before delving into methods for approximating solutions of
initial-value problems.

3 . 1 . 1 Cauchy problem

The goal is to find a differentiable function y(t) : I = [a, b] → R such
that

(P) :

{
y′(t) = f(t, y(t)), t ∈ I

y(t0) = y0 (Initial condition)

57

Raouf Ziadi

3 . 1 .2 Existence and uniqueness of the
solution

Theorem 3.1. If f(t, y) is a continuous function on I×R, then the prob-
lem (P) admits a solution. The uniqueness of the solution is guaranteed
under one of the following conditions:

a- f(t, y) satisfies the Lipschitz condition with respect to y, i.e.,

∃L > 0,∀y1, y2 ∈ R : |f(t, y1)− f(t, y2)| ≤ L|y1 − y2|

b- The partial derivative ∂f
∂y
(t, y) is continuous and bounded on I×

R.

Example 3.1.

(P1) :

{
y′(t) = −y

t ln t
+ 1

ln t
, t ∈ [e, 5]

y(e) = e

We have f(t, y) = −y
t ln t

+ 1
ln t

, which is continuous, and |∂f
∂y
(t, y(t))| =

| −1
t ln t

| ≤ 1
e

, so ∂f
∂y

is continuous and bounded on [e, 5] × R. Therefore,
the problem (P1) admits a unique solution y(t) = t

ln t
.

Example 3.2.

(P2) :

{
y′(t) = 1 + t sin(ty(t)), t ∈ [0, 2]

y(0) = 0

We have f(t, y) = 1 + t sin(ty(t)), which is continuous, and
∂f
∂y
(t, y(t)) = t2 cos(ty(t)) ≤ t2 ≤ 4, so ∂f

∂y
is bounded. Therefore,

the problem (P2) admits a unique solution.

Example 3.3. Consider the following IV P :

(P3) :

{
y′(t) = − y

t ln t
+ 1

ln t
, t ∈ [e, 5]

y(e) = e

58

Numerical Methods and Programming

The function f(t, y) = − y
t ln t

+ 1
ln t

is continuous on
D = [e, 5]× R. Additionally, we have:∣∣∣∣∂f∂y (t, y)

∣∣∣∣ = ∣∣∣∣ −1

t ln t

∣∣∣∣ ≤ 1

e
.

Therefore, the problem (P3) possesses a unique solution y(t) = t
ln(t)

.

Example 3.4. Consider the following IV P :

(P4) :

{
y′ = 1 + t sin(ty), t ∈ [0, 2]

y(0) = 0.

The function f(t, y) = 1 + t sin(ty) is continuous on D = [0, 2]×
R,

∂f

∂y
(t, y) = t2 cos(ty) ≤ 4.

Hence, the problem (P4) has a unique solution.

3 .2 Picard’s Method of
Succssive Approximations

Upon integrating the an IVP, we integrate the following integral equa-
tion

y = y0 +

∫ t

t0

f(t, y)dt. (3.3)

Equation (3.3), wherein the unknown function y appears under the
integral sign, is termed an integral equation. Such an equation can be
resolved through the method of successive approximations, wherein the
initial approximation to y is acquired by substituting y0 for y on the
right side of Eq. (3.3). Thus, we express:

y1 = y0 +

∫ t

t0

f (t, y0) dt.

59

Raouf Ziadi

The integral on the right can now be evaluated, yielding y1, which is
then substituted for y in the integrand of Eq. (3.3), resulting in the sec-
ond approximation y2:

y(2) = y0 +

∫ t

t0

f
(
t, y(1)

)
dt.

Continuing iteratively, we obtain y3, y4, . . . , yn−1 and yn, where

yn = y0 +

∫ t

t0

f (t, yn−1) dt. (3.4)

Thus, this method provides a sequence of approximations
y1, y2, . . . , yn, and it can be demonstrated that if the function
f(t, y) remains bounded in a certain region around the point (t0, y0)
and if f(t, y) satisfies the Lipschitz condition, then the sequence
y1, y2, . . . converges to the solution of Problem (P).

Example 3.5. Consider the following IVP

y′ = t+ y2, t ∈ [0,+∞[, y(0) = 1.

Starting with y0 = 1, the first approximation is

y(1) = 1 +

∫ t

0

(t+ 1)dt = 1 + t+
1

2
t2.

The second approximation is

y(2) = 1 +

∫ t

0

[
t+

(
1 + t+

1

2
t2
)2
]
dt

= 1 + t+
3

2
t2 +

2

3
x3 +

1

4
t4 +

1

20
t5.

It is evident that as we proceed to higher approximations, the integrations
may become increasingly challenging.

60

Numerical Methods and Programming

3 .3 Numerical Methods

3 .3 . 1 Euler Method

The Euler method is the simplest numerical method that allows approx-
imating a solution of first-order ordinary differential equations with
initial conditions. To numerically solve the Cauchy problem (P), we
begin by partitioning the interval I = [a, b], i.e., we choose points
t0, t1, . . . , tn such that a = t0 < t1 < · · · < tn = b, with
ti+1 = ti+h,h = b−a

n
(the step size) withn is the number of evaluated

points. The tangent to the curve y = y(t) at t = t0 has the equation:

ỹ(t) = y(t0) + (t− t0)y
′(t0)

where
ỹ(t) = y(t0) + (t− t0)f(t0, y(t0)).

At the point t = t1, we get (see Figure 3.1):

y(t1) ≃ ỹ(t1) = y(t0) + (t1 − t0)f(t0, y(t0)),

by setting h = t1 − t0, it become

y(t1) ≃ ỹ(t1) = y(t0) + hf(t0, y(t0)).

Let y0 = ỹ(t0), y1 = ỹ(t1), and then repeat the same procedure in the
interval [t1, t2], we obtain:

y(t2) ≃ y2 = y1 + hf(t1, y1).

Thus, continuing in this way, we construct the following Euler algo-
rithm: {

y0 = y(t0), t0 = a

yi+1 = yi + hf(ti, yi), i = 1, . . . , n− 1

61

Raouf Ziadi

where h = b−a
n

, and ti+1 = ti + h.

Figure 3.1: Construction of the first iterates of the Euler method.

Definition 3.3. A numerical method that approximates y(ti) by yi with
an error ei = |y(ti)− yi| with

ei ≤ khp

is said of order p, where k is a constant independent of i and h, and y(ti)

is the exact value of the solution of the Cauchy problem at the point ti =
t0 + ih.

Theorem 3.2. Let f(t, y) be a continuous function on [a, b]×R and L-
Lipschitz continuous with respect to the variable y, and lety(t) ∈ C2[a, b].
Then we have

ei ≤ (eL(b−a) − 1)
M2

2L
h

where M2 = max
t∈[a,b]

|y′′(t)|, and ei is the error made at the point (ti, yi),

i.e., ei = |y(ti)− yi|.

Remark 3.1. This result can be expressed in the form ei ≤ kh, meaning
that the Euler method is of order 1.

62

Numerical Methods and Programming

Example 3.6. Consider the following Cauchy problem be given:{
y′(t) = ty1/3

y(1) = 1

Let’s calculate y(1.01), y(1.02), y(1.03) using the Euler method.
We take y0 = 1, t0 = 1 with yi+1 = yi + h(tiy

1/3
i) and h = 0.01, the

it results that:

y(1.01) ≃ y1 = y0 + 001× t0 × y
1/3
0 = 1 + 0.01× 1× 11/3 = 1.01.

y(1.02) ≃ y2 = y1 + 0.01× 1.01× (1.01)1/3 = 1.0201

y(1.03) ≃ y3 = y2 + 0.01× 1.0201× (1.0201)1/3 = 1.0304.

Example 3.7. Solve the following Cauchy problem using Euler method
with a step size h = 0.25.{

y′(t) = 2− ty2, t ∈ [0, 1]

y(0) = 1

The points ti to evaluate for h = 0.25 are t0 = 0, t1 = 0.25, t2 =

0.5, t3 = 0.75, t4 = 1. Following the same scheme as in the previous
example, we obtain:

y(0.25) ≃ y1 = y0 + 0.25× f(t0, y0)

= 1 + 0.25(2− 0× 12) = 1.5

y(0.50) ≃ y2 = y1 + 0.25× f(t1, y1)

= 1.5 + 0.25(2− 0.25× 1.52) = 1.8594

y(0.75) ≃ y3 = y2 + 0.25× f(t2, y2)

= 1.859 + 0.25(2− 0.5× 1.8592) = 1.927

y(1.00) ≃ y4 = y3 + 0.25× f(t3, y3)

= 1.927 + 0.25(2− 0.75× 1.9272) = 1.7308.

63

Raouf Ziadi

Example 3.8. Consider the following Cauchy problem:{
y′(t) = t+ y, t ∈ [0, 1]

y(0) = 1.

We want to approximate the solution of this problem at t = 1 using Euler
method, by subdividing the interval [0, 1] into ten equal parts. Following
the same procedure, we obtain the values {ti, yi} as listed below:

i 0 1 2 3 4 5 6 7 8 9 10
ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
yi 1 1,1 1,22 1,362 1,5282 1,7210 1,9431 2,1974 2,4871 2,8158 3,1874

From this table, we obtain y(1) ≃ y10 = 3.187. This approximation
is quite rough because the exact solution to this problem is given by y(t) =
2et − t− 1, so the exact value is y(1) = 3.437.

3 .3 .2 Improved Euler Method

This method is more precise than the previous one; it consists of re-
placing, in Euler method, the slope of the tangent at (xn, yn) with the
corrected value at the midpoint of the interval [xn, xn+1], whose algo-
rithm is:


y0 = y(t0), t0 = a

yi+1 = yi + hf(ti +
h
2
, yi +

h
2
K1), i = 1, . . . , n− 1

K1 = f(xi, yi)

Example 3.9. Consider the following Cauchy problem:{
y′(t) = y(t)− t+ 2, t ∈ [0, 1]

y(0) = 2

64

Numerical Methods and Programming

Using the Improved Euler method with a step size ofh = 0.1, we obtain
y0 = y(0) = 2, h = 0.1

y1 = y(0.1) = y0 + hf(t0 +
h
2
, y0 +

h
2
K1),

K1 = f(t0, y0) = f(0.2) = 4

y(0.1) ≃ y1 = 2 + 0.1
2
f(0.05, 2.2) = 2.415.

Proceeding the same process, we obtain the results in the following table:

i 0 1 2 3 4 5 6 7 8 9 10
ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
yi 2 2.415 2.8465 3.3111 3.8122 4.3535 4.9388 5.5727 6.2599 7.0059 7.8165

3 .3 . 3 Second-order Runge-Kutta
(Heun’s) Method

Runge-Kutta methods approximate the solution with higher accu-
racy (they generate numerical solutions that are closer to the analyti-
cal solutions) than the Euler method. The second-order Runge-Kutta
method (RK2) is an amelioration of the Euler method. Indeed, the
Euler method relies on a first-order Taylor expansion. However, it is
clear that more efficient methods can be obtained by considering ex-
pansions of higher order than 1. Thus, if the function f is sufficiently
differentiable, we can write:

yi+1 = yi + h× y′(ti) +
h2

2
y′′(ti)

with,

y′(t) = f(t, y) and y′′(t) =
δf

δt
(t, y) + f(t, y).

δf

δy
(t, y).

Hence,

yi+1 = yi + hf(ti, yi) +
h2

2

(
δf

δt
(ti, yi) + f(ti, yi).

δf

δy
(ti, yi)

)
,

65

Raouf Ziadi

since we have:

f(ti + h, yi + hf(ti, yi)) = f(ti, yi) + h
(

δf
δt
(ti, yi) + f(ti, yi).

δf
δy
(ti, yi)

)
,

it results that

y(ti+1) = y(ti) +
h

2
f(ti, yi) +

h

2
f(ti + h, yi + hf(ti, yi)).

Thus, we obtain the second-order Runge-Kutta algorithm:

(RK2)


y0 = y(t0), t0 = a and h = b−a

n

yi+1 = yi +
h
2
(K1 +K2), i = 1, . . . , n− 1

K1 = f(ti, yi)

K2 = f(ti + h, yi + hK1)

3 .3 .4 Fourth-order Runge–Kutta
Method

This is the most accurate and widely used method in practice, with
an error of order four. It calculates the value of the function at four
intermediate points. Its iterative scheme is given as follows:

(RK4)



y0 = y(t0), t0 = a and h = b−a
n

yi+1 = yi +
h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(ti, yi)

K2 = f(ti +
h
2
, yi +

h
2
K1)

K3 = f(ti +
h
2
, yi +

h
2
K2)

K4 = f(ti + h, yi + hK3)

Note that the number of terms retained in the Taylor series defines
the order of the Runge-Kutta method. The Runge-Kutta method of
order 4 truncates the Taylor series at the term O(h4).

66

Numerical Methods and Programming

Example 3.10. Consider the following Cauchy problem:{
y′(t) = y − 2t

y
, t ∈ [0, 1]

y(0) = 1.

The exact solution of this problem is: y(t) =
√
2t+ 1.

- Compute an approximate value of y(0.2) using the RK2 and RK4

methods with a step size h = 0.2.
- Evaluate the obtained results by comparing them with the exact solution.
Runge-Kutta Method of Order 2:

(RK2)



y0 = y(0) = 1, h = 0.2

y1 = y(0.2) = y0 +
h
2
(K1 +K2),

K1 = f(t0, y0) = f(0, 1) = 1

K2 = f(t0 + h, y0 + hK1) = f(0.2, 1.2) = 0.866

y1 = y(0.2) = 1 + 0.2
2
(1 + 0.866) = 1.1866.

eRK2 = |
√
2× (0.2) + 1− 1.1866| = 3.450709× 10−3.

Runge-Kutta Method of Order 4:

(RK4)



y0 = y(0) = 1, h = 0.2

y1 = y0 +
h
6
(K1 + 2K2 + 2K3 +K4),

K1 = f(t0, y0) = 1

K2 = f(t0 +
h
2
, y0 +

h
2
K1) = f(0.1, 1.1) = 0.918182

K3 = f(t0 +
h
2
, y0 +

h
2
K2) = f(0.1, 1.091818) = 0.908637

K4 = f(t0 + h, yi + hK3) = f(0.2, 1.181727) = 0.843239

y1 = 1 + 0.2
6
(K1 + 2K2 + 2K3 +K4) = 1.1832292

eRK4 = |
√

2× (0.2) + 1 − 1.1832292| = 1.32 × 10−5. Hence
eRK4 ≪ eRK2 .

67

Raouf Ziadi

Example 3.11. Give an approximate solution of the following Cauchy
problem using the RK4 method with a step size of h = 0.25.{

y′(t) = 2− ty2, t ∈ [0, 1]

y(0) = 1.

For the first step, we have

(RK4)



y0 = y(0) = 1, h = 0.25

y1 = y0 +
h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(t0, y0) = 2

K2 = f(t0 +
h
2
, y0 +

h
2
K1) = 1.8047

K3 = f(t0 +
h
2
, y0 +

h
2
K2) = 1.8122

K4 = f(t0 + h, yi + hK3) = 1.4722

y1 = 1 + 0.25
6
(K1 + 2K2 + 2K3 +K4) = 1.4461

By proceeding the same process as in step 1, we obtain: y2 = 1.7028, y3 =

1.7317 and y4 = 1.6147.

3 .4 Matlab codes

3 .4 . 1 Pseudo-code of Euler method

% Euler Method for Solving a Cauchy
Problem

clear;clc;close all;

% Define the function f(x, y) = dy/dx
f=@(x,y) -2*x*y; % Example: dy/dx = -2xy

% Initial conditions
x0=0; % Initial x-value
y0=1; % Initial y-value

68

Numerical Methods and Programming

h=0.1; % Step size
x_end =2; % Final x-value

% Number of iterations
N=(x_end -x0)/h;

% Initialize arrays for x and y
x=zeros(1,N+1);
y=zeros(1,N+1);

% Set initial values
x(1)=x0;
y(1)=y0;

% Euler Method Iteration
for i=1:N

y(i+1)=y(i)+h*f(x(i),y(i));
x(i+1)=x(i)+h;

end

% Display results
disp('x-values:');
disp(x);
disp('y-values:');
disp(y);

% Plot the numerical solution
plot(x,y,'bo -','LineWidth ',2,'MarkerSize '

,6);
hold on;
xlabel('x');
ylabel('y');

69

Raouf Ziadi

title('Euler Method for Solving Cauchy
Problem ');

grid on;
legend('Euler Approximation ');

3 .4 .2 Pseudo-code of improved Euler
method

% Improved Euler Method for Solving a
Cauchy Problem

clear;clc;close all;

% Define the function f(x, y) = dy/dx
f = @(x,y) -2*x*y; % Example: dy/dx = -2xy

% Initial conditions
x0=0; % Initial x-value
y0=1; % Initial y-value
h=0.1; % Step size
x_end =2; % Final x-value

% Number of iterations
N=(x_end -x0)/h;

% Initialize arrays for x and y
x=zeros(1,N+1);
y=zeros(1, N+1);

% Set initial values
x(1)=x0;
y(1)=y0;

70

Numerical Methods and Programming

% Improved Euler Method Iteration (Heun 's
Method)

for i=1:N
k1=f(x(i),y(i));
k2=f(x(i)+h/2,y(i)+(h/2)*k1);
y(i+1)=y(i)+h*k2;
x(i+1)=x(i)+h;

end

% Display results
disp('x-values:');
disp(x);
disp('y-values:');
disp(y);

% Plot the numerical solution
plot(x,y,'bo -','LineWidth ',2,'MarkerSize '

,6);
hold on;
xlabel('x');
ylabel('y');
title('Improved Euler Method for Solving

Cauchy Problem ');
grid on;
legend('Improved Euler Approximation ');

3 .4 .3 Pseudo-code of Second-order
Runge-Kutta (RK2) method

% Runge -Kutta 2nd Order Method (RK2) for
Solving a Cauchy Problem

clear;clc;close all;

71

Raouf Ziadi

% Define the function f(x, y)=dy/dx
f = @(x, y) -2*x*y; % Example: dy/dx=-2xy

% Initial conditions
x0=0; % Initial x-value
y0=1; % Initial y-value
h=0.1; % Step size
x_end =2; % Final x-value

% Number of iterations
N=(x_end -x0)/h;

% Initialize arrays for x and y
x=zeros(1,N+1);
y=zeros(1,N+1);

% Set initial values
x(1)=x0;
y(1)=y0;

% RK2 Method Iteration
for i=1:N

k1=f(x(i),y(i));
y_predictor=y(i)+h*k1;
k2=f(x(i)+h,y_predictor);
y(i+1)=y(i)+(h/2)*(k1+k2);
x(i+1)=x(i)+h;

end

% Display results
disp('x-values:');
disp(x);

72

Numerical Methods and Programming

disp('y-values:');
disp(y);

% Plot the numerical solution
plot(x,y,'bo -','LineWidth ',2,'MarkerSize '

,6);
hold on;
xlabel('x');
ylabel('y');
title('Runge -Kutta 2nd Order Method (RK2)

for Solving Cauchy Problem ');
grid on;
legend('RK2 Approximation ');

3 .4 .4 Pseudo-code of Fourth-order
Runge-Kutta (RK4) method

% Fourth -Order Runge -Kutta (RK4) Method
for Solving a Cauchy Problem

clear;clc;close all;

% Define the function f(x,y)=dy/dx
f = @(x,y) -2*x*y; % Example: dy/dx=-2xy

% Initial conditions
x0=0; % Initial x-value
y0=1; % Initial y-value
h=0.1; % Step size
x_end =2; % Final x-value

% Number of iterations

73

Raouf Ziadi

N=(x_end -x0)/h;

% Initialize arrays for x and y
x=zeros(1,N+1);
y=zeros(1,N+1);

% Set initial values
x(1)=x0;
y(1)=y0;

% RK4 Method Iteration
for i=1:N

k1=f(x(i), y(i));
k2=f(x(i)+h/2,y(i)+(h/2)*k1);
k3=f(x(i)+h/2,y(i)+(h/2)*k2);
k4=f(x(i)+h,y(i)+h*k3);

y(i+1)=y(i)+(h/6)*(k1+2*k2+2*k3+k4);
x(i+1)=x(i)+h;

end

% Display results
disp('x-values:');
disp(x);
disp('y-values:');
disp(y);

% Plot the numerical solution
plot(x,y,'bo -','LineWidth ',2,'MarkerSize '

,6);
hold on;
xlabel('x');
ylabel('y');

74

Numerical Methods and Programming

title('Fourth -Order Runge -Kutta (RK4)
Method for Solving Cauchy Problem ');

grid on;
legend('RK4 Approximation ');

3 . 5 Solved Exercises

Exercise 3.1. Consider the following Cauchy problem:{
y′(t) = 2t− y(t)

∣∣∣t ∈ [0, 1]

y(0) = 1.
(P)

a- Prove that the problem (P) admits a unique solution.

b- Verify that the problem (P) admits the equation (3.5) as a partic-
ular solution.

y(t) = 2t− 2 + 3e−t. (3.5)

c- Provide the iterative scheme of the fourth-order Runge–Kutta al-
gorithm to solve the problem (P).

d- Apply the fourth-order Runge–Kutta algorithm (RK4) for this
problem with h = 0.1 to evaluate the solution at t = 0.3. Com-
pare the obtained solution with the exact solution.

Solution
a- We have δf

δy
= 1, which is a continuous and bounded function, so

this problem admits a unique solution.
b- We have, according to (3.5),

y′(t) =2− 3e−t

=2− 3e−t − 2t+ 2t

=− y(t) + 2t.

75

Raouf Ziadi

On the other hand, we have y(0) = −2 + 3 = 1, from which we
deduce that the equation (3.5) is a particular solution.
c-

(RK4)



y0 = y(t0), t0 = a et h = b−a
n

yi+1 = yi +
h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(ti, yi)

K2 = f(ti +
h
2
, yi +

h
2
K1)

K3 = f(ti +
h
2
, yi +

h
2
K2)

K4 = f(ti + h, yi + hK3)

d- Apply the fourth-order Runge-Kutta method algorithm RK4 with
h = 0.1:

(RK4)



y0 = y(0) = 1, h = 0.1

y1 = y0 +
h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(t0, y0) = f(0, 1)− 1

K2 = f(t0 +
h
2
, y0 +

h
2
K1) = f(0.05, 1.05) = −0.95

K3 = f(t0 +
h
2
, y0 +

h
2
K2) = f(0.05, 0.955) = −0.852

K4 = f(t0 + h, y0 + hK3) = f(0.05, 0.914) = −0.814

y1 = 1 + 0.1
6
(K1 + 2K2 + 2K3 +K4) = 0.943

hence y(0.1) ≃ y1 = 0.943.

(RK4)



y2 = y1 +
h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(t1, y1) = f(0.1, 0.9430) = −0.743

K2 = f(t1 +
h
2
, y1 +

h
2
K1) = f(0.15, 0.905) = −0.605

K3 = f(t1 +
h
2
, y1 +

h
2
K2) = f(0.15, 0.9127) = −0.6127

K4 = f(t1 + h, y1 + hK3) = f(0.2, 0.8818) = −0.4818

y1 = 0.943 + 0.1
6
(K1 + 2K2 + 2K3 +K4) = 0.882

then y(0.2) ≃ y2 = 0.882.
By repeating the same process, we obtain: y(0.3) ≃ y3 = 0.8436

76

Numerical Methods and Programming

Comparison:The exact value at t = 0.3 is y(0.3) = 0.8225, then

err = |0.8225− 0.8436| = 0.0216

Exercise 3.2.

a- Provide the iterative scheme of the Euler algorithm to solve the problem
(P) of Exercise 1.

b- Apply the Euler algorithm for this problem with h = 0.1 to evaluate
the solution at t = 0.3. Compare the obtained solution with the exact
solution.

Solution
a- {

y0 = y(t0), t0 = a

yi+1 = yi + hf(ti, yi), i = 1, . . . , n− 1

with h = b−a
n

, et ti+1 = ti + h.
b-

y(0.1) ≃ y1 = y0 + 0.1(2t0 − y(t0)) = 0.92.

y(0.2) ≃ y2 = y1 + 0.1(2t1 − y(t1)) = 0.868

y(0.3) ≃ y3 = y2 + 0.1(2t2 − y(t2)) = 0.8412

Then y(0.3) ≃ y3 = 0.8412.
Comparison: The exact value at t = 0.3 is y(0.3) = 0.8225, so the
error made when applying the Euler algorithm is

err = |0.8225− 0.8412| = 0.019.

The theoretical error is given by

et ≤ (eL(b−a) − 1)
M2

2L
h,

77

Raouf Ziadi

where M2 = maxt∈[0,1] |y′′(t)| and L is the Lipschitz constant of f
with respect to y, which is equal to 1.
In addition, we have

y′′(t) = 3e−t

Then M2 = max
t∈[0,1]

|3e−t| = 3. Hence,

et ≤ (eL(b−a) − 1)
M2

2L
h

≤ (e1(0.3−0) − 1)
3× 0.1

2× 1

≤ 0.05247

It is clear that err ≤ et, so the Euler method provides a good approxi-
mation for this Cauchy problem at t = 1.

Exercise 3.3. Consider the following differential equation:{
y′(t) = y(t) + t, t ∈ [0, 1]

y(0) = 1.

The exact solution of this equation is y(t) = −1− t+ 2et.
- Approximate the solution of this equation at t = 1 using Euler method
by subdividing the interval into 10 equal parts.
- Compare the obtained solution with the exact solution.

Solution
Let f(t, y) = y(t) + t, the points ti to evaluate for h = 0.1 are t1 =
0.1, t2 = 0.2, t3 = 0.3, . . . , t10 = 1. By following the same procedure

78

Numerical Methods and Programming

as in the previous examples, we obtain:

y(0.1) ≃ y1 = y0 + 0.1× f(t0, y0) = 1.1

y(0.2) ≃ y2 = y1 + 0.1× f(t1, y1) = 1.22

y(0.3) ≃ y3 = y2 + 0.1× f(t2, y2) = 1.362

...

y(1) ≃ y10 = y9 + 0.1× f(t9, y9) = 3.1874 .

That is, the approximation at t = 1 of y(t) is y10 = 3.1874.

- Comparison of results:
The exact value at t = 1 is y(1) = −1− 1+ 2e1 = 3.4366. Thus, the
error made when applying Euler method is

err = |3.4366− 3.1874| = 0.25.

Now, let’s find the theoretical error, which is given by

et ≤ (eL(b−a) − 1)
M2

2L
h

where M2 = max
t∈[0,1]

|y′′(t)| and L is the Lipschitz constant of f with
respect to y.
We have,

|f(t, y1)− f(t, y2)| = |y1 − y2| ⇒ L = 1.

Furthermore, we have,

y′′(t) = y′(y) + 1 = y(t) + t+ 1

= 1 + t+ (−1− t+ 2et)

= 2et

79

Raouf Ziadi

M2 = max
t∈[0,1]

|2et| = 2e. Hence

et ≤ (eL(b−a) − 1)
M2

2L
h

≤ (e1(1−0) − 1)
2e× 0.1

2× 1

≤ 0.4673 .

It is clear that err ≤ et, so the Euler method provides a good approxi-
mation for this problem at t = 1.

Exercise 3.4. Determine an approximate solution of the following
Cauchy problem using the fourth-order Runge-Kutta method with a step
size of h = 0.1. {

y′(t) = y(t)− t+ 2, t ∈ [0, 1]

y(0) = 2.

Solution
We have

(RK4)



y0 = y(0) = 2, h = 0.1

y1 = y0 +
h
6
(K1 + 2K2 + 2K3 +K4), i = 1, . . . , n− 1

K1 = f(t0, y0) = 0.4

K2 = f(t0 +
h
2
, y0 +

h
2
K1) = 0.4150

K3 = f(t0 +
h
2
, y0 +

h
2
K2) = 0.4157

K4 = f(t0 + h, yi + hK3) = 0.4365

y1 = 1 + 0.25
6
(K1 + 2K2 + 2K3 +K4) = 2.4163

By repeating the same process for the other iterations, we obtain the
results listed in the following table:

i 0 1 2 3 4 5 6 7 8 9 10
ti 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
yi 2 2.4163 2.8659 3.5323 3.8793 4.4513 5.0728 5.7492 6.4863 7.2903 8.1684

80

Numerical Methods and Programming

3 . 5 . 1 Supplementary Exercises

Exercise 3.5. Consider the following ordinary differential equation:{
y′(t) = t− ln y

y(2) = 3.4

- Calculate y(2.8) using the fourth-order Runge-Kutta method withh =

0.8 and then with h = 0.4.

Result
- y(2.8) with h = 0.8 is y(2.8) ≃ y1 = 4.255952.
- y(2.8) with h = 0.4 is y(2.8) ≃ y2 = 4.255888.

Exercise 3.6. Consider the following ordinary differential equation:

y′(t) =
y2

t

y(1) = 1

- Calculate y(1.5) using the fourth-order Runge-Kutta method with a
step size of h = 0.5.
- Recalculate y(1.5) with h = 0.25.

Result
- y(1.5) with h = 0.5 is y(1.5) ≃ y1 = 1.67985

- y(1.5) with h = 0.25 is y(1.5) ≃ y2 = 1.68178

Exercise 3.7. Consider the following ordinary differential equation:

y′(t) = −y + t+ 1
∣∣∣t ∈ [0, 1]

y(0) = 1.

a- Calculate an approximation of y(0.2) using the Euler method,
with a step size of h = 0.1.

81

Raouf Ziadi

b- Calculate an approximation of y(0.2) using the improved Euler
method, with a step size of h = 0.1.

c- For each method, calculate the error made by comparing the result
obtained with the exact solution y∗(0.2) = 1.018731.

Result
a- y(0.2) ≃ y2 = 1.01 and |y2 − y(0.2)| = 0, 008731.
b- y(0.2) ≃ y2 = 1.019025 and |y2 − y(0.2)| = 0, 000294.

Exercise 3.8. Consider the following ordinary differential equation:

dy

5y − 3
= dt

1- Determine the expression of the general solution of the given ODE.

2- Given that y(0) = 1, give an approximation of y(0.5) using RK4
with a steplength h = 0.25. Compute the error between y(0.5) and its
approximated value.

Exercise 3.9. Consider the following Cauchy problem:

(P)

{
(3t+ 1)dy = y dt, t ∈ [0, 1]

y(0) = 1

Let h = 0.1 be the step size for subdividing the interval [0, 1].

1- Give the expression of the function f .

2- Determine an approximate value of y(0.2) using Euler’s method and
then the Second-order Runge-Kutta Method (RK2).

3- Verify that y(t) = (3t+ 1)1/3 is the exact solution of Problem (P).

4- Evaluate the results obtained in Question 2).

82

4
Numerical Solution of

Systems of Linear
Equations

In practice, engineers often encounter problems whose solution re-
quires solving a system of linear equations that models the problem
under consideration. For example, determining currents and voltages
in electrical networks requires solving a system of linear equations. That
is, we seek the vector X ∈ Rn, where X = (x1, x2, . . . , xn), which is
the solution of the following linear system:

AX = b ⇐⇒


a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
...
an1x1 + an2x2 + · · ·+ annxn = bn

(4.1)

This system admits a unique solution when the determinant of A is
nonzero, which we will assume below. Solving this system using direct
methods becomes impractical when n is relatively height. Therefore, it
is preferable to use numerical methods that construct a sequence con-
verging to the solution of the system.

83

Raouf Ziadi

In this chapter, we present two numerical methods that provide ap-
proximate solutions to systems of linear equations using a linear func-
tion f such that Xk+1 = f(Xk), k ∈ N. These methods are easy
to implement, require minimal memory, and produce results with the
desired accuracy.

Given an arbitrary initial vector X0, we construct a sequence of vec-
tors

X0, X1, . . . , Xk, . . .

which converges to the solution X∗ of the linear system AX = b.
We consider the linear system (4.1), where A is an n × n invertible

matrix and b is a vector in Rn. For any invertible square matrix M of
order n, the system (4.1) is equivalent to

MX − (M − A)X = b.

By setting N = M − A, B = M−1N , and c = M−1b, we obtain

X = BX + c .

This allows us to define the following iterative formula:{
X0 ∈ Rninitial vector
Xk+1 = BXk + c.

(4.2)

Let X∗ be the exact solution of (4.1). If we denote ek = ∥Xk −X∗∥
as the k-th error vector, we obtain

ek = ∥Xk −X∗∥ = ∥(BXk−1 + c)− (BX∗ + c)∥ = B∥Xk−1 −X∗∥
= Bek−1 = Bke0.

Remark 4.1. In practice, if we impose a precision ε, we can estimate the
error by:

∥Xk −Xk−1∥ ≤ ε

84

Numerical Methods and Programming

This means that, for all i ∈ {1, . . . , n}, we have:

|xk
i − xk−1

i | ≤ ε.

Theorem 4.1. The iterative method (4.2) converges if the sequence of
vectors {ek}k∈N converges to zero independently of the initial vector X0,
if one of the three norms is less than 1:

- ∥B∥1 = max
j

(
n∑

i=1

|Bij|)

- ∥B∥∞ = max
i

(
n∑

j=1

|Bij|)

- ∥B∥2 =
√

ρ(BBt).

Depending on the choices of the matrices M and N , we obtain dif-
ferent iterative methods. LetD be the matrix formed by the diagonal el-
ements ofA,E be the matrix formed by the−aij when i > j, andF be
the matrix formed by the −aij when i < j, so thatA = D− (E+F).

- The matrix D is a diagonal matrix of A, given by:

D =


a11 0 · · · 0

0 a22 · · · 0
...

...
0 0 · · · ann


- The matrix E is a lower triangular matrix of A with a zero diagonal.

E =


0 0 · · · 0

−a21 0 · · · 0
...

...
−an1 −an2 · · · 0


85

Raouf Ziadi

- The matrix F is an upper triangular matrix of A with a zero diago-
nal.

F =


0 −a12 · · · −a1n
0 0 · · · a2n
...

...
0 0 · · · 0



4. 1 Jacobi Method

In the Jacobi iterative method, the matrix A of the system AX = b

is decomposed as A = M − N . The matrix M corresponds to the
diagonal of A (with zeros outside the diagonal), so M = D, and the
matrix N is the matrix A in which the diagonal elements are replaced
by zeros, i.e., N = E + F . The matrix J = M−1N = D−1(E +

F) = I − D−1A is called the Jacobi matrix. Starting from an initial
vectorX0 = (x0

1, x
0
2, . . . , x

0
n)

t, at each step, we computeXk using the
following formula:

xk+1
i =

1

aii

(
bi −

n∑
j=1,j ̸=i

aijx
k
j

)
, i = 1, 2 . . . , n . (4.3)

Remark 4.2. The Jacobi method does not always converge. If A is a
positive definite matrix, the Jacobi method converges. Similarly, if A is
a strictly diagonally dominant matrix, i.e., |aii| >

∑
j ̸=i |aij|, then the

Jacobi method is convergent.

Example 4.1. Consider the following system
4x1 + 2x2 + x3 = 4

−x1 + 2x2 = 2

2x1 + x2 + 4x3 = 9 .

86

Numerical Methods and Programming

Let X0 = (0, 0, 0)t be the initial vector. By calculating the first five
iterations, we obtain:

X1 =

 1

1

9/4

 , X2 =

−1/16

3/2

3/2

 , X3 =

 −1/8

−1/32

61/32

 , X4 =

 5/128

15/16

265/128

 and X5 =

 7/512

261/256

511/256


Example 4.2. Let us solve the following system using the Jacobi method:

3x1 + x2 − x3 = 2

x1 + 5x2 + 2x3 = 17

2x1 − x2 − 6x3 = −18

The iterative scheme is
i = 1, xk+1

1 = 1
3

(
2− xk

2 + xk
3

)
i = 2, xk+1

2 = 1
5

(
17− xk

1 − 2xk
3

)
i = 3, xk+1

3 = −1
6

(
−18− 2xk

1 + xk
2

)
Let X0 = (0, 0, 0)t be the initial vector, we obtain: X1 =

(2/3, 17/5, 3)t, X2 = (8/15, 31/15, 2.6555)t.
After 10 iterations, we obtain the following table of results:

k xk
1 xk

2 xk
3

0 0 0 0
1 0,666666 3,4 3
2 0,533333 2,066667 2,655556
3 0,862963 2,231111 2,833333
4 0,867407 2,094074 2,915802
5 0,940576 2,0601198 2,970123
6 0,959975 2,035835 2,970159
7 0,978108 2,019941 2,980686
8 0,986915 2,012104 2,989379
9 0,992425 2,006865 2,993621
10 0,995585 2,004067 2,996331

87

Raouf Ziadi

From this table, we notice that the sequence of points converge towards
the solution X = (1, 2, 3)t.

4.2 Gauss-Seidel Method

The Gauss-Seidel method is an amelioration of the Jacobi method be-
cause, it makes the iterative process faster. In the Jacobi method, the
generated vectors X1, X2, . . . , Xk, . . . convergences to the solution
X∗, which means that each new vector is better than the previous one.
However, to calculate the componentx2

2 of the vectorX2, in the Jacobi,
we use those of X1 even though x2

1 is already calculated and it is better
than x1

1. To overcome this drawback, the principle of the Gauss-Seidel
method, is to use each component as soon as it is calculated. Thus, to
compute the componentxk+1

i , we use all the components fromxk+1
1 to

xk+1
i−1 already determined at iteration (k+1) as well as the components

xk
i+1 to xk

n that are still at iteration k.
The matrix A is decomposed as A = M −N . We take:

M = D − E, N = F.

This modifies relation (4.3) as follows: for k ≥ 0 (assuming again that
aii ̸= 0 for i = 1, . . . , n).

xk+1
i =

1

aii

(
bi −

i−1∑
j=1

aijx
k+1
j −

n∑
j=i+1

aijx
k
j

)
, i = 1, 2 . . . , n .

(4.4)

Remark 4.3. The Gauss-Seidel method does not always converge. If A
is a positive definite matrix, the iterative method converges. Similarly, if
A is a diagonally dominant matrix, i.e., if

|aii| >
∑
j ̸=i

|aij|,

88

Numerical Methods and Programming

then the Gauss-Seidel method converges.

Example 4.3. Solve the following system using the Gauss-Seidel method
using 3 iterations and X0 = (0, 0, 0)t as a starting point.

−x1 + x2 + 3x3 = −1

x1 + 2x2 = 2

3x1 + x2 − x3 = 1

This system can be written in following form:
i = 1, x1

k+1 = 1 + x2
k + 3x3

k

i = 2, x2
k+1 = 1− 1

2
x1
k+1

i = 3, x3
k+1 = −1 + 3x1

k+1 − x2
k+1

- First iteration, we obtain X1 = (1, 0.5, 1.5)t,
- Second iteration, we obtain X2 = (6,−2, 19)t ,
- Third iteration, we obtain X3 = (56,−27, 194)t .
Hence after three iterations, X∗ ≃ (56,−27, 194)t

Example 4.4. Let us solve the linear system of Example 2 using the Gauss-
Seidel method. The iterative scheme, in this case, is written as follows:

i = 1, xk+1
1 = 1

3

(
2− xk

2 + xk
3

)
i = 2, xk+1

2 = 1
5

(
17− xk+1

1 − 2xk
3

)
i = 3, xk+1

3 = −1
6

(
−18− 2xk+1

1 + xk+1
2

)
Starting from X0 = (0, 0, 0)t, we find X1 =

(
2
3
, 49
15
, 241

90

)t. After 10
iterations, we obtain the following table of results:

89

Raouf Ziadi

k x1
k x2

k x3
k

0 0 0 0
1 0.6666667 3.266667 2.677778
2 0.4703704 2,234815 2.784321
3 0.8498354 2.116305 2.930561
4 0.9380855 2.040158 2.972669
5 0.9775034 2.015432 2.989929
6 0.9914991 2.005729 2.996212
7 0.9968271 2.002150 2.998584
8 0.9988115 2.000804 2.999470
9 0.9995553 2.000301 2.999802
10 0.9998335 2.000113 2.999926

It can be observed that for the same number of iterations, the approximate
solution obtained by the Gauss-Seidel method is more accurate. The Gauss-
Seidel method generally converges more quickly than the Jacobi method,
but not always.

4.3 Matlab codes

4.3 . 1 Pseudo-code of Jacobi method

clc; clear all;close all
% Jacobi Method to solve Ax = b
% Input matrix A and vector b

A = [5 -2 3;
-3 9 1;
2 -1 -7];

b = [-1; 2; 3];
x0 = [0; 0; 0]; % Initial guess

90

Numerical Methods and Programming

max_iter = 100; % Maximum number of
iterations

tol = 1e-4; % Tolerance for convergence
n = length(b);% Size of the system

x = x0;% Initialize variables
x_new = x0;
fprintf('Iter\t\tx1\t\t\tx2\t\t\tx3\n');
% Jacobi iteration
for k = 1: max_iter

for i = 1:n
sigma = 0;
for j = 1:n

if j ~= i
sigma = sigma + A(i,j) * x

(j);
end

end
x_new(i) = (b(i) - sigma) / A(i,i)

;
end

% Print current iterate
fprintf('%d\t\t%.6f\t%.6f\t%.6f\n', k,

x_new (1), x_new (2), x_new (3));

% Check for convergence
if norm(x_new - x, inf) < tol

fprintf('Jacobi method converged
in %d iterations .\n', k);

break;
end

91

Raouf Ziadi

x = x_new;
end
% Output result
disp('Solution x:');
disp(x_new);

4.3 .2 Pseudo-code of Gauss-Seidel
method

% Gauss -Seidel Method for solving AX = b
% Inputs:
clc;clear all;close all
A = [5 -2 3;

-3 9 1;
2 -1 -7];

b = [-1; 2; 3];
X = [0; 0; 0];% Initial guess
tol = 1e-4;% Tolerance
max_iter = 100;%maximum number of

iterations
n = length(b);% Size of the system
iter = 0;
while iter < max_iter

X_old = X;
for i = 1:n

sum1 = A(i, 1:i-1) * X(1:i-1);
sum2 = A(i, i+1:n) * X_old(i+1:n);
X(i) = (b(i) - sum1 - sum2) / A(i,

i);
end

92

Numerical Methods and Programming

fprintf('%d\t\t%.6f\t%.6f\t%.6f\n',
iter , X(1), X(2), X(3));

% Check for convergence
if norm(X - X_old , inf) < tol

fprintf('The Gauss -Seidel method
converged after %d iterations .\
n', iter);

break;
end
iter = iter + 1;

end
% Final result
disp('Solution x =');
disp(X);

4.4 Solved Exercises

Exercise 4.1. Solve the following system using the Jacobi method and
determine the number of iterations required to obtain an errorε = ∥xk−
xk−1∥ ≤ 10−4, taking the initial vector X0 = (0, 0, 0)t.

4x1 + 1x2 + x3 = 4

−x1 + 2x2 = 2

2x1 + x2 + 4x3 = 9

Solution
For each iterationk, the iterative scheme of the Jacobi method is written
in this case as follows:

i = 1, xk+1
1 = 1

4

(
4− 4xk

2 − xk
3

)
i = 2, xk+1

2 = 1
2

(
2 + xk

1

)
i = 3, xk+1

3 = 1
4

(
9− 2xk

1 − xk
2

)
93

Raouf Ziadi

Starting from X0 = (0, 0, 0)t, to achieve the prescribed accuracy, we
perform 12 iterations, the results of which are presented in the follow-
ing table.

k x1
k x2

k x3
k

0 0 0 0
1 1 1 2.25
2 -0.0625 1.5 1.5
3 -0.125 0.9688 1.9063
4 0.0391 0.9375 2.0703
5 0.0137 1.0195 1.9961
6 -0.0088 1.0068 1.9883
7 -0.0005 0.9956 2.0027
8 0.0015 0.9998 2.0013
9 -0.0002 1.0008 1.9993
10 -0.0002 0.9999 1.9999
11 0.0001 0.9999 2.0001
12 0 1 2

Exercise 4.2. Consider the following system
2x1 − x2 + x3 = 3

x1 + 7x2 − 3x3 = 6

−x1 + 3x2 + 4x3 = 17

a- Starting from X0 = (0, 0, 0)t, determine the first six iterations of the
Jacobi and Gauss-Seidel methods.

b- Given that the exact solution is X = (1, 2, 3)t, what can we conclude?

Solution
a- For each iteration k, the iterative scheme of the Jordan method is
written in this case as follows:

94

Numerical Methods and Programming


i = 1, xk+1

1 = 1
3

(
2− xk

2 − xk
3

)
i = 2, xk+1

2 = 1
5

(
17− xk

1 − 2xk
3

)
i = 3, xk+1

3 = −1
6

(
−18− 2xk

1 + xk
2

)
Starting from X0 = (0, 0, 0)t, we obtain

X1 = (1.5000, 0.8571, 4.2500)t

X2 = (−0.1964, 2.4643, 3.9821)t

X3 = (0.7411, 2.5918, 2.3527)t

X4 = (1.6196, 1.7596, 2.4914)t

X5 = (1.1341, 1.6935, 3.3352)t

X6 = (0.6791, 2.1245, 3.2634)t

with ε = ∥X6 −X∗∥ = 0.4334.
- For each iteration k, the iterative scheme of the Gauss-Seidel method
is written in this case as follows:

i = 1, xk+1
1 = 1

3

(
2− xk

2 − xk
3

)
i = 2, xk+1

2 = 1
5

(
17− xk+1

1 − 2xk
3

)
i = 3, xk+1

3 = −1
6

(
−18− 2xk+1

1 + xk+1
2

)
Starting from X0 = (0, 0, 0)t, we obtain

X1 = (1.5, 0.6429, 4.1429)t

X2 = (−0.25, 2.6684, 2.1862)t

X3 = (1.7411, 1.5454, 3.5262)t

X4 = (0.5096, 2.2956, 2.6557)t

X5 = (1.3199, 1.8067, 3.2249)t

X6 = (0.7909, 2.1263, 2.8530)t

95

Raouf Ziadi

avec ε = ∥X6 − x∗∥ = 0.2851.
b- We note that, for the same number of iterations, the approximate
solution obtained by the Gauss-Seidel method is more precise.

Exercise 4.3. Using the Gauss-Seidel method, approximate the solution
of the following system of linear equation within a precision of 10−3

8x1 + x2 + x3 = 26

x1 + 5x2 − x3 = 7

x1 − x2 + 5x3 = 7

Solution
For each iteration k, the Gauss-Seidel method is written in this case as
follows: 

i = 1, xk+1
1 = 1

8

(
26− xk

2 − xk
3

)
i = 2, xk+1

2 = 1
5

(
7− xk+1

1 + xk
3

)
i = 3, xk+1

3 = 1
5

(
7− xk+1

1 + xk+1
2

)
Starting from X0 = (0, 0, 0)t, it results that

X1 = (3.25, 0.75, 0.9000)t

X2 = (3.0438, 0.9712, 0.9855)t

X3 = (3.0054, 0.996, 0.9981)t

X4 = (3.0007, 0.9995, 0.9997)t

X5 = (3.0001, 0.9999, 1)t .

The generated vectors of this system converge to X∗ = (3, 1, 1)t.

96

5
Polynomial

Interpolation

In practice, we often encounter problems where the function f is not
known explicitly but is only known at certain points x0, x1, . . . , xn,
or can be evaluated only by calling expensive code. However, in many
cases, we need to perform operations (differentiation, integration, min-
imization, etc.) on the function f . We therefore seek to reconstruct f
using an approximating function fr that is both simple to represent and
efficient to evaluate, based solely on the discrete data of f . We require
that fr remains a faithful approximation of f at all points of interest.

In this course, we focus on reconstructingf using polynomials. More
precisely, given n+1 points with distinct abscissae mi(xi, f(xi)), i =
0, 1, . . . , n in the plane, the polynomial interpolation problem consists
of finding a polynomial P (x) whose graph passes through all n + 1

points mi, that is:

P (xi) = f(xi), ∀i = 0, 1, . . . , n (5.1)

In this chapter, we present numerical method for approximating f by
a polynomial form, that is:

P (x) = anx
n + · · ·+ a2x

2 + a1x+ a0

97

Raouf Ziadi

where ai (i = 0, 1, 2, . . . , n) are coefficients to be determined. The
polynomials we will study differ only in how the coefficients ai (i =
0, 1, . . . , n) are determined, since for a given set of data points, the in-
terpolation polynomial is unique.

5 . 1 Lagrange Interpolation

Let (n + 1) distinct points x0, x1, x2, . . . , xn be given, and let f be
a function whose values at these points are f(x0), f(x1), . . . , f(xn).
Then, there exists a unique polynomial of degree less than or equal to
n that coincides with the interpolation points, i.e.:

f(xi) = P (xi), i = 0, 1, . . . , n.

This polynomial is given by:

P (x) =
∑n

i=0 f(xi)Li(x) = f(x0)L0(x) + f(x1)L1(x) + · · ·+ f(xn)Ln(x),

where

Li(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

, i = 0, . . . , n.

The polynomial P (x) is called the Lagrange interpolation poly-
nomial of the function f at the points x0, x1, . . . , xn, and the poly-
nomials Li(x) are called the Lagrange basis polynomials associated
with these points.

Theorem 5.1 (Uniqueness and Error Bound). Let f ∈ Cn+1[a, b], and
letP (x) be the interpolation polynomial of f at the pointsmi(xi, f(xi)),
for i = 1, . . . , n. Then for all x ∈ [a, b], there exists ξx ∈

98

Numerical Methods and Programming

] min
1,...,n

{xi},max
1,...,n

{xi}[such that the error f(x)− P (x) is given by

E(x) =
γn+1(x)

(n+ 1)!
f (n+1)(ξx),

where γn+1(x) =
n∏

i=0

(x − xi). If we set Mn+1 = max
a≤x≤b

|f (n+1)(x)|,

then we have

E(x) ≤ |γn+1(x)|
(n+ 1)!

Mn+1.

Example 5.1. Let’s determine the Lagrange polynomial which interpo-
lates the function defined by values of the following table

xi 0 2 3 5
yi = f(xi) -1 2 9 87

We have

P (x) =
3∑

i=0

f(xi)Li(x) = f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x) + f(x3)L3(x).

with

Li(x) =
3∏

j=0,j ̸=i

x− xj

xi − xj

, i = 0, 1, 2, 3

Then

P (x) = −(x− 2)(x− 3)(x− 5)

(0− 2)(0− 3)(0− 5)
+ 2

(x− 0)(x− 3)(x− 5)

(2− 0)(2− 3)(2− 5)

+ 9
(x− 0)(x− 2)(x− 5)

(3− 0)(3− 2)(3− 5)
+ 87

(x− 0)(x− 2)(x− 3)

(5− 0)(5− 2)(5− 3)

=
53

30
x3 − 7x2 +

253

30
x− 1.

Example 5.2. Using Lagrange method, construct the interpolation poly-
nomial P (x) of degree four that interpolates the points (x0, f(x0)) =

99

Raouf Ziadi

(0, 0), (x1, f(x1)) = (1, 5), (x2, f(x2)) = (2, 15), (x3, f(x3)) =

(3, 0) and (x4, f(x4)) = (4, 3).
We have,

P (x) =
4∑

i=0

f(xi)Li(x) =f(x0)L0(x) + f(x1)L1(x)+

f(x2)L2(x) + f(x3)L3(x) + f(x4)L4(x).

with

Li(x) =
4∏

j=0,j ̸=i

x− xj

xi − xj

, i = 0, 1, 2, 3, 4.

Furthermore L0(x) = L3(x) = 0 because they will be multiplied by
zero. Following the same procedure as in the previous example we obtain:

L1(x) =
(x− 0)(x− 2)(x− 3)(x− 4)

(1− 0)(1− 2)(1− 3)(1− 4)

= −1

6
(x4 − 9x3 + 26x2 − 24x)

L2(x) =
(x− 0)(x− 1)(x− 3)(x− 4)

(2− 0)(2− 1)(2− 3)(2− 4)

=
1

4
(x4 − 8x3 + 19x2 − 12x)

L3(x) =
(x− 0)(x− 1)(x− 2)(x− 3)

(4− 0)(4− 1)(4− 2)(4− 3)

=
1

24
(x4 − 6x3 + 11x2 − 6x)

Finally by substituting the polynomial coefficients, we obtain:

f(x) ≃ P (x) = 3.0416x4 − 23.25x3 + 50.9583x2 − 25.75x4.

100

Numerical Methods and Programming

5 .2 Hermite Interpolation

Hermite interpolation generalizes Lagrange interpolation by ensuring
that not only the function values f(x) and P (x) coincide at the nodes
xi, but also their first derivatives.

Let x0, x1, . . . , xn be (n + 1) distinct points in the interval [a, b],
and let f be a function defined on [a, b] with known derivatives
f ′(x0), f

′(x1), . . . , f
′(xn). Then, there exists a unique polynomial

P (x) of degree at most 2n+ 1 satisfying the conditions:

P (xi) = f(xi) and P ′(xi) = f ′(xi) for all i = 0, 1, . . . , n.

This polynomial P (x) is given by:

P (x) =
n∑

i=0

Hi(x)f(xi) +
n∑

i=0

Ki(x)f
′(xi),

where the Hermite basis polynomialsHi(x) andKi(x) are defined
as: {

Hi(x) = [1− 2(x− xi)L
′
i(xi)]L

2
i (x),

Ki(x) = (x− xi)L
2
i (x),

with Li(x) is the Lagrange basis polynomials:

Li(x) =
n∏

j=0
j ̸=i

x− xj

xi − xj

.

Theorem 5.2. (Error bound Hermite interpolation method)
Let f ∈ C2n+2[a, b] and P (x) be the polynomial interpolation of f over
the points mi(xi, f(xi)), for i = 1, . . . , n. Then for all x ∈ [a, b],
there exists ξx ∈] min

1,...,n
{xi},max

1,...,n
{xi}[such that the error f(x)− P (x)

satisfies

E(x) =
γ2
n+1(x)

(2n+ 2)!
f (2n+2)(ξx).

101

Raouf Ziadi

By setting M2n+2 = max
a≤x≤b

|f (2n+2)(x)|, then we have

E(x) ≤
γ2
n+1(x)

(2n+ 2)!
M2n+2

Example 5.3. Let’s determine the Hermite polynomial which interpolates
the function f(x) = 1

1+x2 at the points x0 = 0 and x1 = 5.
The Hermite polynomial P (x) is written as

P (x) =
1∑

i=0

Hi(x)f(xi) +
1∑

i=0

Ki(x)f
′(xi)

where {
Hi(x) = [1− 2(x− xi)L

′
i(xi)]L

2
i (x)

Ki(x) = (x− xi)L
2
i (x)

Let us compute the polynomials Li(x), L
′
i(x), Hi(x) and Ki(x), know-

ing that the x-coordinates of the support points are x0 = 0 and x1 = 5.

L0(x) =
(x− x1)

(x0 − x1)
= 1− x

5

L1(x) =
(x− x0)

(x1 − x0)
=

x

5

and

L′
0(x) = −1

5

L′
1(x) =

1

5

102

Numerical Methods and Programming

H0(x) = [1− 2(x− x0)L
′
0(x0)]L

2
0(x)

=

(
1− 2(x− 0)

−1

5

)(
1− x

5

)2
=

2

125
x3 +

3

25
x2 + 1.

H1(x) = [1− 2(x− x1)L
′
1(x1)]L

2
1(x)

=

(
1− 2(x− 5)

1

5

)(x
5

)2
= − 2

125
x3 +

3

25
x2.

Furthermore, we have

K0(x) = (x− x0)L
2
0(x) = (x− 0)

(
1− x

5

)2
=

1

25
x3 − 2

5
x2 + x.

K1(x) = (x− x1)L
2
1(x) = (x− 5)

(x
5

)2
=

1

25
x3 − 2

5
x2.

Then,

P (x) =
1∑

i=0

Hi(x)f(xi) +
1∑

i=0

Ki(x)f
′(xi)

= H0(x)f(x0) +H1(x)f(x1) +K0(x)f
′(x0) +K1(x)f

′(x1)

=

(
2

125
x3 +

3

25
x2 + 1

)
+

1

26

(
− 2

125
x3 +

3

25
x2

)
− 10

262

(
1

25
x3 − 2

5
x2

)
.

=
10

262
x3 − 76

262
x2 + 1

103

Raouf Ziadi

5 . 3 Matlab codes

5 . 3 . 1 Pseudo-code of Lagrange
interpolation method

% Lagrange Interpolation
clc; clear;

% Example data points
x=[0 2 3 5]; % known x-values
y=[-1 2 9 87];% corresponding f(x) values
n=length(x);
syms X; % symbolic variable for the

polynomial
P=0; % initialize the Lagrange polynomial
% Construct Lagrange interpolation

polynomial
for i=1:n

L=1;
for j=1:n

if j ~= i
L=L*(X-x(j))/(x(i)-x(j));

end
end
P=P+y(i)*L;

end
P=expand(P); % expand the polynomial for

readability
disp('The Lagrange interpolation

polynomial P(x) is:');
pretty(P)

104

Numerical Methods and Programming

5 . 3 .2 Pseudo-code of Hermite
interpolation method

% Hermite Interpolation
% This constructs the Hermite

interpolating polynomial H(x)
clc;clear;
% Example data points
x=[1,2 ,9,28]; % known x-values
f= [0,1,2,3]; % f(x) values at those

points
df=[0.5 ,0.5 ,0.5 ,0.5]; % f'(x) values at

those points
n=length(x);
syms X;
H=0; % Hermite polynomial initialization
for i=1:n
% Construct the Lagrange basis polynomial

L_i(x)
Li=1;
for j=1:n

if j~=i
Li=Li*(X-x(j))/(x(i)-x(j));

end
end
Li=expand(Li);
% Compute derivative of Li
dLi=diff(Li , X);
% Construct H_i(x) and K_i(x)
Hi=(1 -2*(X-x(i))*dLi)*(Li)^2;
Ki=(X-x(i))*(Li)^2;
% Add to Hermite polynomial
H=H+f(i)*Hi+df(i)*Ki;

105

Raouf Ziadi

end
H=expand(H);
disp('The Hermite interpolation polynomial

H(x) is:');
pretty(H)

5 .4 Solved Exercises

Exercise 5.1. Suppose that f(x) = 3
√
x and (x0, f(x0)) =

(0, 0), (x1, f(x1)) = (1, 1) and (x2, f(x2)) = (8, 2).
1) Determine the polynomial interpolation polynomial P2(x) that passes
through the points (xi, yi)i=0,1,2.
2) Calculate P2(x) and f(x) = 3

√
x for x = 0.5, 0.95, 1, 1.5 and 3.

Solution
1- Following the Lagrange method,

P2(x) =f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x)

=f(x0)
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ f(x1)

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+

+ f(x2)
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

=0
(x− 1)(x− 8)

(0− 1)(0− 8)
+ 1

(x− 0)(x− 8)

(1− 0)(1− 8)
+ 2

(x− 0)(x− 1)

(8− 0)(8− 1)

=− 3

28
x2 +

31

28
x.

Then, P2(0) = 0, P2(1) = 1 and P2(8) = 2.
2-

xi 0.5 0.95 1 1.5 3
f(xi) 0.7937 0.98305 1 1.1447 1.4422
P2(x) 0.52679 0.95509 1 1.4196 2.3571

106

Numerical Methods and Programming

Exercise 5.2. Consider the function f(x) = 1/x.
1- Find the Lagrange interpolation polynomial that passes through the
points (2, 0.5), (2.5, 0.4) and (4, 0.25).
2- Calculate the approximation of f(2.2).
3- Estimate the maximum error.

Solution
1- P2(x) =

1
20
x2 − 17

40
x+ 23

20
.

2- We deduce that

f(2.2) ≃ P2(2.2) = 0.457

3- The error of the polynomial P2(x): From Theorem 5.1, there exists
ξx ∈ [2, 4] such that;

E(x) =
f (3)(ξx)

3!
(x− x0)(x− x1)(x− x2)

then,

E(x) =
f (3)(ξx)

3!
(x− 2)(x− 2.5)(x− 4).

Let M3 = max
2≤x≤4

|f (3)(x)|, then

E(x) ≤ M3

3!
|(x− 2)(x− 2.5)(x− 4)|.

On the other hand f (3)(x) = − 6
x4 et max

2≤x≤4
|f (3)(x)| = 3

8
. Hence

E(x) ≤ 3

48
|(x− 2)(x− 2.5)(x− 4)|.

For x = 2.2, the error is bounded as follows:

E(x) ≤ 3

48
|(2.2− 2)(2.2− 2.5)(2.2− 4)| ≃ 0.0068

107

Raouf Ziadi

Exercise 5.3. Consider the following points: (0, 0), (1, 2), (2, 36),
(3, 252) and (4, 104).

1. Determine the Lagrange polynomial passing through the first three
points.

2. Determine the Lagrange polynomial passing through the first four
points.

3. Provide the analytical expression of the error for the polynomials
obtained in (1) and (2).

4. Determine approximations of f(1.5) using the two polynomials
obtained in (1) and (2).

Solution
1- P2(x) = 16x2 − 14x.
2-P3(x) = x(x−2)(x−3)−18x(x−1)(x−3)+42x(x−1)(x−2) =

61x3 − 203x2 + 144x. 3- The error of the polynomial P2(x):From
Theorem 5.1, there exists ξx ∈ [0, 2] such that:

E2(x) =
f (3)(ξx)

3!
(x− x0)(x− x1)(x− x2)

then,

E2(x) =
f (3)(ξx)

3!
(x− 0)(x− 1)(x− 2)

whereas for P3(x), there exists ξx ∈ [0, 4], where the error is given by:

E3(x) =
f (4)(ξx)

4!
(x− 0)(x− 1)(x− 2)(x− 3)

4- If we approximate f usingP2, we have f(1.5) ≈ P2(1.5) = 15, and
if we approximate f using P3, we obtain f(1.5) ≈ P3(1.5) = 5.625.

108

Numerical Methods and Programming

5 .4 . 1 Supplementary Exercises

Exercise 5.4. We want to design a railway track curve between the points
(0, 0) and (1, 1). The curve is described by a function of the form y =

f(x) that satisfies:

f(0) = 0 and f(1) = 1.

Moreover, to ensure a smooth transition, the slope of the curve must satisfy:

f ′(0) = 0 and f ′(1) = 0.3.

The curve is represented by a polynomial on the interval [0, 1].
- Construct, using the Hermite method, the interpolation polynomialP (x)

that interpolates these points.

Result
The polynomial obtained following the Hermite method is

P (x) = −1.7x3 + 2.7x2

Exercise 5.5. Consider the following points: (0, 0), (1, 2), (2, 36) and
(3, 252).

1. Determine the Lagrange polynomial passing through the first three
points.

2. Determine the Lagrange polynomial passing through the four
points.

Result
1- P2(x) = 16x2 − 14x.
2- P3(x) = 25x3 − 59x2 + 36x

Exercise 5.6. Determine the Lagrange polynomial passing through the
points (1, 0), (2, 1), (9, 2) and (28, 3).

109

Raouf Ziadi

Result
- P3(x) = x3 + 1.

110

Bibliography

[1] Allaoua, B. (2011). Méthodes numériques avec Matlab: Rappels
de cours, corrigés détaillés et applications avec l’environnement
Matlab. Editions Universitaires Européennes (EUE).

[2] Altaç, Z. (2024). Numerical Methods for Scientists and Engineers:
With Pseudocodes. CRC Press.

[3] Belkacem, M. (2016), Cours de Méthodes Numériques, Editions
universitaires européennes EUE, Germany.

[4] Beu, T. A. (2014). Introduction to numerical programming: a
practical guide for scientists and engineers using Python and
C/C++. CRC Press.

[5] Datta, N. (2003). Computer Programming and Numerical Anal-
ysis Revised Edition with C: A Integrated Approach. Universities
Press.

[6] Epperson, J. F. (2013). An introduction to numerical methods
and analysis. John Wiley & Sons.

[7] Grivet, J. P. (2012). Méthodes numériques appliquées pour le
scientifique et l’ingénieur (édition 2009): Edition 2013. EDP sci-
ences.

[8] Otto, S., Denier, J. P. (2005). An introduction to programming
and numerical methods in MATLAB. Springer Science & Busi-
ness Media.

111

Raouf Ziadi

[9] Ray, S. S. (2018). Numerical analysis with algorithms and program-
ming. Chapman and Hall/CRC.

[10] Rice, J. R. (2014). Numerical methods in software and analysis.
Elsevier.

112

Numerous problems cannot be solved using traditional analyt-
ical methods; this is why numerical methods have emerged. In
many cases, approximating a solution depends on the number
of operations to be performed, which presents a challenge to the
application of these numerical methods.
The emergence of computers and the expansion of computing
have greatly facilitated the use of numerical methods, thanks to
the development of algorithms implemented on machines with
powerful processors.
Today, technology continues to advance, constantly bringing
new developments across various fields. Scientific research has
progressed significantly, enabling the understanding and mod-
eling of physical phenomena that were unclear just a few years
ago. This progress has been made possible through numerical
analysis.
In this booklet, we present the numerical methods essential for
second-year bachelor’s (LMD) students (Physics/Chemistry) to
address many of the challenges they encounter throughout their
academic studies.
It is worth noting that our approach is based on two essential
points:

1. The course content must be simplified.

2. The acquired knowledge is reinforced through simple ex-
amples.

Finally, I hope that readers will find at least something useful in
this booklet.

