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INTRODUCTION

Engineers are constantly confronted with concrete problems in their
respective fields. The majority of these problems can be formulated as
mathematical problems (such as solving an equation, calculating an in-
tegral, and so on), and the majority of these problems are not resolvable
by traditional analytical methods, or we are convinced that it will take
along time to solve them analytically if this is not possible, that is why

we then resort to numerical methods.

For example, the integrals / e " dzand / sin(z?)dx cannot be
2

— -7

calculated using classical methods such as integration by parts, substi-
tution, etc. Using a numerical method, this type of integration can be
approximated numerically with a given accuracy.

Over the past few decades, numerous algorithms based on theoret-
ical studies have been developed to solve various mathematical prob-
lems. This course is designed for second-year undergraduate students
of physics/chemistry. It constitutes an introduction to numerical calcu-
lation and consequently to the different techniques that these students
will frequently have to use, without delving into the theoretical consid-
erations and foundations of the methods presented. In fact, we have
described the most well-known and widely used numerical methods to
solve various problems encountered during their studies, focusing on
the practical aspects in the presentation of these methods.

In this booklet, each section is followed by detailed examples, and
at the end of each chapter, students are encouraged to work on addi-
tional exercises. The course is structured into five main chapters. The
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first chapter is dedicated to numerical integration. The second chapter
focuses on the numerical solution of nonlinear equations. The third
chapter describes numerical techniques for solving ordinary difterential
equations. The fourth chapter is dedicated to methods for solving sys-
tems of linear equations. Finally, the last chapter covers two methods
of polynomial interpolation.



I
NUMERICAL
INTEGRATION

Often, the explicit computation of the integral of a continuous function
f over an interval [a, b] of R can be very expensive or can not be solved
analytically. To overcome these difficulties, we use numerical methods
b
to calculate an approximation of an integral / f(z)dx within a given
a

precision. In this chapter, we present three common integration tech-
niques: Midpoint method, Trapezoid method, and Simpson method.
Using these algorithms we can even approximate the integral of func-

tions known only through discrete data points.

b
Theidea is to approximate / f(x)dz byafinite linear combination,

ie

b n
1(f) = / f)de = 3" A,

with z; € [a,b], \; € R and the calculation error is given by:

Rulf) = / f)de =3 Nuf ()
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1.1 MIDPOINT METHOD

The classical formula of the midpoint method (or rectangle method) is
obtained by replacing f with its value at the midpoint of the interval

/N

' y
a (a+b)/2 b

a, b] (see Figure L.1).

Figure 1.1: Midpoint formula

The simple midpoint formula is obtained by using the following
formula on the interval [a, b]:

10 =0-ar ()

2

COMPOSITE MIDPOINT RULE

The composite midpoint formula is obtained by applying the previ-
ous midpoint formula to each subinterval [z;_1, z;],7 = 1, ..., n, with
ri=a+ixh,i=0,...,nandh = (b—a)/n.

By repeating the previous midpoint formula to each subinterval with

Ti—1+%;
2

centers T; = , the integral of the function is approximated by

the following sum-up:

I(f) =hx f(@1) +h x f(Za) + -+ h X f(Z),
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we then obtain the following general formula:

I(f) =hx Y f(@)

Figure 1.2: Composite midpoint formula over five subintervals

Example L.1. Let us integrate the function f(x) = 3x* + 2z over the
interval [1, 2. This function is very simple to integrate analytically:

/12 f(z)dx =10.

Using the midpoint method with n = 4, the steplength is h = % =

0.25 and the evaluated points are: T, = 1+_$25 = 1.1250,2 =
1.3750, 23 = 1.6250, and 1, = 1.8750. Then,

I(f) = 0.25[f(1.1250) + £(1.3750) + f(1.6250) 4 f(1.8750)] = 9.9844
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By increasing n to 8, the new the steplength is h = % = 0.125, and the
new approximation is:

I(f) = 0.125[f(1.0625) + f(1.1875) + f(1.3125) + f(1.4375)
+ f(1.5625) 4 f(1.6875) + f(1.8125) + f(1.9375)]
= 9.9961,

and withn = 100 we get I( f) = 9.999975.

Theorem r.1. Let | € C*([a,b)). Then, there exists £ € |a, b] such that:

(b—a)? b—a

Ra(f) = —Wf"(f) = —Tth"(f),

where f" denotes the second derivative of the function f. The upper bound
of the calculation error can be expressed as follows:

(b _ CL)3 max |f//(3§')|

Rol(f) <
(f)_ 24n? z€la,b|

Remark x.x. Given a precision €, the minimum numbern of subdivisions
can be determined using the following formula:

z€[a,b]

24 ¢

J (b — a)® max | f"(z)]
n > .

1.2. TRAPEZOIDAL METHOD

This formula is very simple; it allows replacing the curve Cy of the

function f to be integrated by a straight line that connects the points

(a, f(a)) and (b, f(b)) , which forms a trapezoid (see Figure 1.3 below).
The integral is thus replaced by the area of the trapezoid:

_b—a
2

I(f) =S [f(a) + F ()]

6
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(b,f(b))

Figure 1.3: Trapezoidal method

We can observe that there is a significant difference between the func-
tion’s curve and the straight line, which means that a calculation error
was made. To minimize this error, we use a more suitable version of this

formula.

COMPOSITE TRAPEZOIDAL RULE

To obtain better results, we divide the interval [a, b] into 7 subinter-
vals, and we apply the trapezoidal method to each of them: [a =
xo, 1], [x1, 22|, . .., [Tn_1,b = x,]. Applying the trapezoidal for-

mula gives:

(f(@o) + f(z1)) + g(f(:cl) + (@) + .

(f(xn—l) + f(xn))

I(f) ~

+
| > NS o >

2

[f(%) +2 i flai) + f(ﬂfn)] :

i=1

Hence
I(f) ~ g [f(ﬁo) + f(@n) +2 i (f(fz))] : (1)

7
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For example, in Figure 1.4 below, for these four trapezoids we have:

flx)

Figure 1.4: Composite trapezoidal formula represented over 4 subinter-
vals.

() = 5 (7 + f(@),
B(f) = 5 (1) + 7).
() = 2 (72) + flas))
L7 = 2(f () + ).

It follows that, I(f) >~ ]1(f) + Iz(f) + Ig(f) + I4(f)
Theorem r.2. Let f € C*([a, b]). Then, there exists & € [a, b] such that:

_ (b_a)3 " - b_a2//
Ro(f) = LD e = L),
where " denotes the second derivative of the function f. We can write

the upper bound of the ervor made as follows:

Ra(f) <

(b_a)3 x |f”(93)|

12n2 z€[a,b]

8



Numerical Methods and Programming

Remark 1.2. Given a precision €, we can determine the minimum num-

ber n of subintervals using the following formula:

(b — a)® max | f"(z)|

z€la,b]
12¢

n >

There exists an improved version of the trapezoidal method, called the

Poncelet method, whose numerical scheme is given by:

>~ =

1) = 5 (£ 7 (o) 47(F@) 4 (@20)) +8 3 (o).

Example 1.2. Let the function f(x) = \/x + Lwithx € [0, 1]. Using
1
the trapezoidal method, calculate the integral / Vo + ldx withn =
0

10 and evaluate the calculation error.

Solution:

Forn = 10, the step sizeis h = % = 0.1, and the sequence of evaluated
points are listed in the table below

T o| or 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

f(LL) I | L0481 | 1.0954 | LI40I | 11832 | 1.2247 | 1.2049 | 1.3038 | L3410 | 13784 | 14142

Applying the composite trapezoidal formula, it results that

9

fla)+ f(b) +2) flx)

=1

[1+1.4142 + 2(1.0488 + 1.0954 + 1.1402 + 1.1832

| S

I(f) =

e}

1

+1.2247 4+ 1.2649 + 1.3038 + 1.3416 + 1.3784)] = 1.2188.

1
Hence, / v+ 1dr ~ 1.2188.
0

- Calculation error: R,,(f) < 3o xrél[%wf] | /" (z)

, on the other
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bhand, we have

[un

Fa)=gle+ 1)t
f() = —=(z+ 1)

4
£9(@) =

M\w

3
Sl 1)—% > 0,Vz € [0,1].

Hence, m[%x If"(z)| = |f"(0)] = 0.25, then: R, (f) < 0.25 X

S ~ 2,08 x 107
Therefore,

1
/ Vo + 1dr ~ 1.2188 +2.08 x 1074
0

1

Example 1.3. Compute the integral / e dr witha precision of 1073
0

by the trapezoid method.

Solution:

We bave first to determine the number of divisions n needed to obtain this
precision.

The integration error is written as:

Ru(f)

IN

b ah2 max ‘ )‘ <1073,

(b—a)?
max | f(z)| = 3 sebh)

12n2 z€la,b]

On the other hand, we bave: f"(x) = (4a® — 2) exp(—x?), which is

strictly increasing on the interval [0, 1] and m[ax} If"(z)] = 1f"(0)] =
z€(0,1

2.

Then, R (f) < L2h? m[ax |f"(x)| <1075 50, b < | /BX00 —

(1-0)x2
0.0774, thereforen > o 077 5 = 1291 e need 13 divisions, using the

same technique as in Example 1, we get

1
/ e~ dy ~ 0.74646 & 1073,
0

I0
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Example 1.4. Using the trapezoid method, calculate the integral
/ sin xdx with 5 intervals.

0
- Knowing that the exact value is 0.7726; compare the obtained result
with the exact value.

Solution:

For five subintervals, the steplength h = *=% = T and the evaluated

points are:
x; |o| w/b |2n/5| 3n/5 | 4xw/5 T

f(z;) | 0| 03846 | roooo | -0,3999 | 0,0333 | - 0,4303
We have also:

fla) + f(b) +2 (Z f<xi)>]

[0 — 0,4303 + 2(0.3846 + 1 — 0.3999 + 0.0333)]

Hence, / sin z2dx ~ 0, 5044.
0
- Comparison :

VVc‘bﬂue‘/ sina’dez = 0.7726, I(f) = 0,5044 and |I(f) —
0

sin z°dz| = 0.2682.

Forn = 5, the absolute error between the exact and the obtained result is
0.2682.
3

Example v.s. Consider the integral defined by / (14 log(x)) d.
1
- Determine the number of subintervals required to achieve an integration

ervor less than 1073,

Solution

Achieving an error R, (f) < 107° <— (5’2_7112) x 0.1111 < 1073, thus
n? > 18.5, which impliesn > 4.30. It follows that with five subintervals,

we achieve an error of less than 1073,

II
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1.3 SiMPSON METHOD

In Simpson formula, the function is not replaced by a straight
line but by a parabola that must pass through three points
(xo, f(x0)), (z1, f(x1)), (z2, f(22)), which means that this method

is only applicable for an even number of slices; see Figure 1.5 below.

Figure 1.5: Simpson method

Simpson formula is written as:

b —a
[ #a)dn = T (e + 47 + ()

COMPOSITE SIMPSON RULE

We subdivide the interval [a, b] into n (with n even (n = 2k | k € N))
subintervals with h = b*Ta, and we apply the Simpson method for
each interval of the form [a, 2], [T2, Z4], . . ., [Xn_2, ] (see Figure 1.6
below). The numerical scheme of this method is given by:

h
3

k—1 k
I(f) =3 [f@+ ) +2) flea) +4)_ f(wai1)

I2
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In Figure 1.6 below, to compute the coloured area, we subdivide the
interval [a, b] into four slices, then we apply the standard Simpson for-
mula for each slice, i.e. each subinterval is interpolated by its degree-

two Lagrange polynomial over three nodes x9;, £9; + h, x9; + 2h for
i=0,1,2,3.

fx)

Xo=4a

x,=b X

Xz Xy X3 Xy X5 Xg Xz

Figure 1.6: Composite Simpson formula represented over four subin-
tervals.

For the four subintervals we write:

L0 = 5 (FGao) +47() + ()
B = 5 (F(2) + 47 () + (o)
() = 5 (F(wa) + 47 (5) + f(z6)
1) = 5 (F(ao) + 47 (er) + ().

Therefore I(f) ~ I (f) + 12(f) + 13(f) + 1a(f).
Theorem 1.3. Let f € C*([a,b)]). Then, there exists £ € |a, b] such that:

3
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b—a)d b—
Ralf) =~ O () = 2 g o),

where ) denotes the fourth derivative of the function f. We can write
the upper bound of the error made as follows:

(b—a)® < |f(4)(x)|

Ralf) < Zgome i)

IN

Remark 1.3. Let € be the required precision, the number of subintervals
n can be determined by:

(b—a)’ max‘f )|

. z€la,b]

n >
- 180¢e

Example 1.6. Let the function f(x) = #H, withx € [0,1]. Using
dx withn = 10

1
Simpson method, calculate the integral /0 71

and evaluate the error.

Solution

Forn = 10 (ie 5 slices), the step-length is h = = 0.1 and the
evaluated points are listed in table below

T o| or 0.2 0.3 04 |os5| o006 0.7 0.8 0.9 1

f(xl) I]0.8333 | 0.7142 | 0.025 | 0.5555 | 0.5 | 0.4545 | 0.4I66 | 0.3846 | 0.357I | 0.3333

Using Simpson formula, we get

I(f) = %11+ 0.3333 + 4 (0.8333 + 0.625 + 0.5 + 0.4166 + 0.3571)
+2(0.7142 + 0.5555 + 0.4545 + 0.3846)] = 0.5493

14
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Furthermore, the function f®(z) = (25_?41)5 is strictly decreasing on
[0, 1]. Then,

max ’f(4)(ac)| = f(0) = 384,

z€[0,1]
hence, -

R, (f)<—— " =2116 x 107%.

)= Jox 100 .

Therefore,

1
1
/ dr ~ 0.5493 +2.116 x 1074,
0 2z+1

1
Example 1.7. Compute the integral / e di with a precision of
0

1073 using Stmpson method.

Solution
We must first determine the number of divisions n required to achieve
this precision.

The integration error is written as:

(b—a)’ max }f(4)(x)‘ _ h4b—a

(4) <1073,
180n" 2ttty 180 xrélﬁ?zf]'f (@)]

Rn(f)

IN

We have f® () = (162* — 4822 + 12)e~"", and m[ax} ‘f(4) (z)] =
z€|0,1
f(0) = 12. Then

180 x 0.001
< Gl o,
hs (1—0) x 12 035

Thus due to fact that n must be even number, i.e.n = 2k > O—% =
2.85, it results that k = 2 for which we take n = 4 with a bsteplength

h = 0.25. Following the same steps as in the previous example, we obtain:

I5
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I(f) ~ 0.7469. Therefore,

1
/ e~ dx ~ 0.7469 + 1073,
0

1.4 MATLAB CODES

1.4.1 PSEUDO-CODE OF MIDPOINT METHOD

% Midpoint Method for Numerical
Integration
clc; clear;

% Define the function to integrate

f = 0(x)x."2; 7 Example: f(x) = x72

a = 0; % Lower limit

b = 1; % Upper limit

n = 10; % Number of subintervals

h = (b-a)/n;

integral_approx = 0;

for i = 1:n
midpoint = a+(i-0.5) *h;
integral_approx = integral_approx +

f (midpoint) ;
end
integral_approx = integral_approx * h;
% Display the result
fprintf ('Approximate integral using the
Midpoint Method: %.6f\n',
integral_approx);

16
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1.4.2 PSEUDO-CODE OF TRAPEZOIDAL
METHOD

clc; clear;
%» Define the function to integrate

f = @e(x)x."2; 7 Example: f(x) = x72

a = 0; % Lower limit

b = 1; % Upper limit

n = 10; % Number of subintervals
h=(b-a)/n;

%» Evaluate the function at the endpoints

sum=f (a)+f (b);

%» Evaluate the function at the
intermediate points and sum them up

for i = 1:n-1

sum= sum+2*xf (a+ix*h) ;

end

% Multiply by the step size and divide by
2

I=(h/2)*sum;

%» Display the result

fprintf ('Approximate integral using
Trapezoidal Method: %.6f\n', I);

1.4.3 PSEUDO-CODE OF SIMPSON METHOD

% Simpson algorithm for numerical
integration

clc;

clear;

%» Define the function to integrate

17
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@(x) x.72 + 3*%x + 2; 7} Example: f(x)
x"2 + 3x + 2

% Input limits of integration and number

a:

of subintervals (must be even)

0; % Lower limit
4, % Upper limit
6; % Number of subintervals (

must be even)

% Check if n is even
if mod(n, 2) "= 0

end
I =

error ('Number of subintervals (n) must
be even.');

(b - a) / n; % Step size

a:h:b;% Generate x values

f(x);% Evaluate function at x values
y(1) + y(end);

i = 2:n
if mod(i, 2) == 0

I =1+ 4 % y(i); % 4xf(x_odd)
else

I =1+ 2 % y(i); 7% 2xf(x_even)
end
I xh / 3;

% Display the result

fprintf ('Approximate integral value using

Simpson algorithm: %.6f\n', I);

18
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1.5 SOLVED EXERCISES

Exercise 1.1. .

a- Determine by the trapezoidal and Simpson methods an approximate

2
value of the integral / f(x)dx using the data of the following
0

table:

x; o 1/2 I L 2

flx) =€ | 1| 1284 | 2718 | 9.487 | 54.598

b- Estimate the calculation error in each case using 10 subdivision.

c- What is the number of required subdivision to achieve a precision of

e(I) = 1072 for each method?

Solution
a.1- The approximation of the integral by the trapezoidal method.

n—1

f(@o) + f(zn) +2 Z (f ()

i=1

0.5
= - [1+54.598 + 2(1.284 + 2.718 + 9.487)]

=1

= 20.644

19
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a.2- Approximating the integral using the Simpson.

1) = 21 10) 4 5@) 423 fea) + 4 )

05

5 Lf(0) + f£(2) +2f(1) +4(f(0.5) + f(1.5))]

0.5
= (154508 +2 x 2.718 + 4 x (1284 + 9.487))
= 26.0295

b.1- Evaluating the error by the trapezoidal method with n = 10.

We have f”(z) = 2¢*” + 422¢*” and m[ax] | /" (x)| = 982.766, thus:
z€|0,2

(b_a)3 x ‘f//(x)’

12n2 z€[a,b]

Rn(f) <

< ———982.766 = 6.551
— 12 x 102
b.2- Evaluating the error by Simpson method with n = 10.
We have f) () = 12e”° +48z2¢*” +16xe™” = e*” (162 + 4822 +
12) and max |FW ()| = | FP(2)] = 39092.275, thus:
z€(0,2

(b—a)® < ‘f(4)(:c)‘

Ra(f) <
(f) = 180n* g{ib]

< —— 2.275 = 0.
_180><1043909 75 = 0.6950

c.2- Calculating the number of points required to achieve a precision
1072 with the trapezoidal method.

20
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We have:

(b — a)® max | f"(z)|

n> z€[a,b]
- 12¢
982.766 x 23
> ——— 2
- 12 x 102 50

Thus, the number of required subdivisions is n > 256.

c.1- Calculating the number of required subdivision to achieve a preci-
sion of 10~% with Simpson method.

We have:

| (0= a)p max [ fD ()]

z€[a,b]
>
"= 1802
2.2 25
. {1/3909 75 x ~ 51344
180 x 102

Thus, the number of required subdivisions using Simpson method is
n > 52.

Exercise 1.2. Consider the following integral I = / sin(z)dz.
0

1. Calculate the exact value of 1.
2. Using the trapezoidal and Simpson methods with h = 7:

a- Approximate the value of the integral I.
b- Estimate the calculation error.
c- Evaluate the absolute error.

3. Find the value of steplenght h and the number of required subdivisions
so that the errvor obtained by the trapezoidal (resp. Simpson) method is less
than 5 x 1074
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Solution.
L/ —/ sin(x)dx = 2.

0
2. I- Approximating the integral using the trapezoidal method:

a-

2
_ gg(()) + f(m) + 2(f(m/4) + f(7/2) + f(3m/4)))
~ 1.896.

1= [f(xo)  fwn) 23 f (i)

b- We have

(b—a)’

oy /@) =
7T3 773
T in(2)] < ~0.16149,
< Qg2 0% [sn@)] = 755

Ru(f)

IN

b—a_,
2" 52[3)2‘ @)

™

e [I(f) — / sin(z)dz| = 0.1038
2. II- The Singpson method:

k—1 k
b)+2)  flra) +4>  flwa)|, withk =2
i=1 =1

;;(f( )+ f(m) + 2f(%) n 4(f(%) n f(?%») ~ 204
b- We have
(b— a)5

o 7900)
180n* ze ab]
5

Ra(f) <

~ (.0066

max | sin(z)

T T
< T [——
180 x 44 z€f0,7] 180 x 44
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o 1(f) - / sin(z)dz| = 0.004
0
3. Let’s calculate the value of the steplenght / and the number of re-
quired subdivisions 7 so that the error is less than e = 5 x 107,
3.I- The trapezoidal method:
We have

(b — a)® max | f"(z)]

z€[a,b]
12¢

3 acrél[%ﬁ} | sin(z)|

>
_\ 12 x5 x 104

~71.8

Thus, the number of required subdivisions is n > 72.
3.II- The Simpson method:

We have
.| (b —a)b max |f(4)(m)‘
z€[a,b]
n >
- 180e
>\ gy ) ~ 7.64116
- 180 x 5 x 10~4 —

Thus, the number of required subdivisions using Simpson method is
n > 8.

Exercise 1.3. A rocket is launched vertically from the ground, and its
acceleration vy is measured during the first 80 seconds:

tin (s) 0 10 20 30 40 50 6o 70 8o
Yinm/s® | 30 | 3103 | 33.44 | 3547 | 37.75 | 40.33 | 43.29 | 46.70 | 50.67

- Calculate the velocity V of the rocket at t = 80s, using the trapezoidal
and Simpson methods.
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Solution.

We know that the acceleration 1 is the derivative of the velocity V, so

V(t) = V(0) + / L (dt =0+ / bt

- First, lets calculate V(80) using the trapezoidal method. According to
the previous table of values, we have i = 10 and n = 8. Therefore,

h
V(80) = 5 (Y(to) +v(t2) +2(y(t1) - - - + (7))
= 5(30 + 50.67 + 2(31.63 + 33.44 + 35.47 + 37.75+
40.33 + 43.29 + 46.70)) = 3089 m/s.

- Next, we calculate V' (80) using Simpson method:

V(S0) = 5 [2(t0) +9(00) +2 3" 202 + 43 20

10
= (3045067 +2(33.44 + 37.75 + 43.20)+
4(31.63 + 35.47 + 40.33 + 46.70)) = 3087 m/s

Exercise 1.4.

a- Using 4 subintervals, determine by the trapezoidal method an approxi-

2
mate value of / sin®(z)dx, and estimate the calculation error.
0

b- What is the number of required subintervals to achieve a precision of

1072 by the trapezoidal method?
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Solution.
a- Approximating the integral using the trapezoidal method:

[ ftarde = 19) = | 1lao) + ) + 23 ()

= 95[£(0) + £(2) +2(£(0.5) + f(1) + f(1.5))]
=1.173

- Evaluating the error by the trapezoidal method with n = 4: We
have f"(x) = 2(cos?(x) — sin®(z)) = 2(1 — 2sin*(x)) and
max |f"(z)| = £7(0) = f"(%) = 2, thus:

z€[0,2] 2
(b B a>3 i
R (f) <
(f) - 12n? ze[a,}g} ‘f (x)‘
< 2=0.
< o p? = 00833

b- The number of required subdivisions to achieve a precision of 1073
with the trapezoidal method.
We have:

(b — a)® max | f"(z)|

z€[a,b]
12¢

2 x 23
12 x 10-3

n >

~ 36.51

Thus, the number of required subdivisions is n > 37.
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1.5.1 SUPPLEMENTARY EXERCISES

Exercise 1.s. We consider the following integral:

1
I:/ du dx.
0 1+$2

1. Calculate the exact value of this integral.

2. Approximate the value of this integral numerically using:
- Midpoint method with s intervals.
- Trapezoidal method with 4 intervals.
- Stmpson method with 2 intervals.

Resultl.
d
1.1:/ L 07854,
0

1422

- By the midpoint rule, we obtain: /() = 0.8387
- By the trapezoidal method, we obtain: I(f) = 0.7828
- By Simpson method, we obtain: (f) = 0.7854

Exercise 1.6. Determine the required number of subdivisions to approx-
1

imate the integral xe " dx with a precision of 10-8 using:

0
1. Trapezoidal method.
2. Simpson method.

Result.
1. n > 4083
2.n > 40

Exercise 1.7. Determine the number of required subdivisions to approxi-
m
mate the value of the integral / cos(z)dx with a precision of 5 x 1074
using Simpson method. -
Result

-n > 20
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Exercise 1.8. Consider the following integral:

us

I= / (e + sin(z)) dz

3

1- Compute the exact value of 1.

2- Give an approximation of the integral I with a precision of € = 2 X
10 using Simpson’s method.

3- Using the trapezoidal method with step size h = :

1) Provide an approximation of the integral I.

11) Evaluate the error between the exact value and the approxi-

mate value of the integral.

Exercise 1.9. Let [ be a function defined on |0,+00] by
f(z) =e™ —In(z).

1- Determine the analytical expression of / f(z)da.

2- Give the iterative scheme of the Simpson’s algorithm to approximate a

limited integral.

3- Using the Simpson’s algorithm, approximate the value of the integral
3
/ [ () dx with a precision of 1074,
2
4- Using the trapezoidal method, determine the required number of subdi-

3
visions to approximate the integral / [ () dx with a precision of 104,
2
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2
NUMERICAL SOLUTION OF
NONLINEAR EQUATIONS

In mathematics and applied sciences, nonlinear equations play a crucial
role in modeling complex phenomena across various disciplines. Unlike
linear equations, which can be solved analytically using algebraic meth-
ods, finding exact solutions for nonlinear equations is often difficult or
even impossible.

For example, consider the equation:

cos(x?) sin(22% — 3) + 0.5 = 0.

It is evident that solving this equation analytically would be ex-
tremely time-consuming, if not impossible. These types of equations,
known as nonlinear (transcendental) equations, can instead be solved
numerically using methods that allow us to compute approximate roots
with a specified level of precision.

In this chapter, we will explore three numerical methods for solving

nonlinear univariate equations of the form f(z) = 0.

Definition 2.1. Any number& thatsatisfies f(§) = 0iscalled a solution
(or root) of the equation f(x) = 0. Geometrically, & represents the x-
coordinate of the point where the graph of the function f(x) intersects the

X-AXIS.

2.8
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Definition 2.2. [fthe equation f(x) = 0 can be written in the form

fl@) = (z=&)"g(x) =0

where g(x) # 0, then £ is called a root of order m. If m = 1, € is called
a simple root of the equation f(x) = 0.

In all iterative methods, it is necessary, to avoid divergence of the
solution, to determine an interval containing the root being sought
and to carefully choose the initial values.

2.1 SEPARATION OF RooTs

Most numerical methods assume the existence of the desired root
within a given interval [a, b]. In this case, the root is said to be local-
ized or separated from any other potential roots.

Definition 2.3. We say that a root § of an equation f(x) = 0 is sepa-
rable if we can find an interval [a, b such that £ is the only root of this
equation in [a, b]. The root § is then called separated or localized.

The two most classical techniques for localizing or separating roots

are:

ANALYTICAL METHOD

In this case, we rely on the Intermediate Value Theorem (IVT):

Theorem 2.1. Let [a,b] C Rand let f be a continuous function from
[a, b] to R such that f(a)f(b) < 0. Then there exists £ € (a,b) such

that f(§) = 0.

Example 2.1. Let us determine the roots of the function f(z) = z* —

4x — 1. The variations of f are given in the following table:
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T —00 1 +oo
f(x) - 0 +
+00 +00
f(x) —

According to the table of variations, the function f is strictly mono-
tonic on the intervals [—1,0] U [1, 2], with f(—1) - f(0) < 0and
f(1) - f(2) < 0. Therefore, there are two roots: {; € (—1,0) and
&€ (1,2).

GRAPHICAL METHOD (GEOMETRIC)

Letus trace (experimentally or by studying the variations of f) the graph
of the function f and look for its intersection with the Oz-axis. Alter-
natively, we can decompose f into two functions f; and f that are
easier to study, such that f = f; — f2, and we search for the points of
intersection of the graphs of f1 and f5, whose x-coordinates are exactly
the roots of the equation f(x) = 0.

Remark 2.x. The functions f1 and fo are often chosen with well-known
graphs.

Example 2.2. Consider the equation

xlogx =1, x>0. (2.1)

This equation can also be written as:1og x = *. Letus define fi(z) =
logt, fo(z) = b and f(z) = fi(x) — folz) = loga — L. The
variations of the functions f1 and fo are given by the curves below (Figure
2.1). The x-coordinate of the point of intersection of the two curves allows
us to localize the solution of the equation (2.1) and even provides a (first)
approximation of it.
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f1 (x)=log(x)
————— f,(0=1/x

f(x)

o o
I\\ | |

\\

A
o
8
)
w
~
o
o
~
-3
©
=

Figure 2.1: Graphical separation of the root.

2.2 NUMERICAL METHODS

2.2.1 BISECTION METHOD

The Bisection method (or dichotomy method) assumes that the func-

tion f is continuous on an interval [a, b], has only one root & € (a, b),

and satisfies f(a) f(b) < 0.

The principle is as follows: we set ay = a,by = b, and define
b . T
Ty = w as the midpoint of the initial interval and evaluate the

function f at this point. If f(x¢) = 0, the point z is the root of f,
and the problem is solved. Otherwise, if f(ao) f(zo) < 0, the root §
is contained within the interval (ag, ), while it belongs to (¢, by ) if
f(x0)f(bo) < 0. This process is then repeated on the new interval
[a1, b1], with a; = ag and by = = in the first case, or a; = xg and
b1 = by in the second, and so on. In this way, we recursively construct

three sequences {ay, }nen, {bn fnen, and {z,, fren with:
- xn e —a’";b"
- Apy1 = apand by =z, if fay,) f(z,) <0
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- Apy1 = Tpand b, = b, if f(2,) f(b,) <O

Figure 2.2: Construction of the first three iterations of the method.

Proposition 2.1. Let f be a continuous function on the interval [a, b] sat-
isfying f(a)f(b) < 0. Let & € (a, b) be the unigue solution of the equa-
tion f(x) = 0. Then, the sequence {x,, } nen generated by the method
converges to & with a precision given by

b—a
Remark 2.2. From this inequality, if the precision € is known, the re-
quired number of iterations n can be calculated. Indeed:

b—a In (%)

<g=—n> £
on+l — ~— In2

Example 2.3. Apply the method to calculate the root of the equation x> +
4a* — 10 = 0 with a precision e = 1072
The table of variations of f is as follows:
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x —00 -8/3 0 +00
f'(x) + 0 — 0 -+
. +00
—00 -10
15
101 ‘-"‘;
/
5F J,-"f
—_ /
E i
P _.___:;/__
\\.\ ‘/
5 \\\ //'/
\ F
0 - ,./ .
-3 2.5 2 1.5 1 0.5 0 0.5 1 186 2

Figure 2.3: Graph of f.

From the table of variation and Figure 2.3, it follows thar 31 € (1,2)
such that f (&) = 0. Hence the required number of iterations to reach a
precision of 1072 is

In (5215)

nzfx—;‘”zam
n
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Then n = 6 and the following table summarizes the evaluated points.

n| ap by, Tn f(xn) | sign: f(an).f(z,) | 6 = Ql’n_—fl
0 I 2 LS 2.375 - 0.5

1 I LS -1.2§ -1.789 + 0.2§

2 12§ Ls 1375 0.1621 - 0.12§

3 L25 | L375 | L3125 | -0.848 + 0.0025

4 | L3125 | 1375 | 13437 | -0.3509 - 0.03125
§ | L3437 | 1375 | 13593 | -0.0904 + 0.015625
0 | 1.35937 | 1.375 | 1.36718 | 0.0322 + 0.0078125

Example 2.4. Let’s calculate the first root of the equation In(x) — 2 +
2 = 0 that lies in the interval (0.1, 0.5] with a precision of ¢ = 0.01.

First, we calculate the number of subdivisions n to perform.:

0.5-0.1
n2w24.32:>n:5.
In2
The following table summarizes the steps of the method.
n| a, | by T, f(xn) | sign: f(a,).f(x,) | 0, = ;;—ﬁl
0 0.1 0.5 0.3 0.700 - 0.2
I| o1 | o3 0.2 0.3§1 - 0.1
2| or | o0z 0.1§ 0.08 - 0.0§
3| or |ors| ormzs | -0.095 + 0.02§
4 | orzs | o015 | 01375 | -0.030 + 0.012§
§S | o375 | 015 | 014375 | 0.0393 - 0.0002

2.2.2 LAGRANGE METHOD

Lagrange method, also known as the method of false position, is a tech-
nique for finding an approximate value of the solution of an equation
f(z) = 0. It can be described as follows: suppose that the function
f is continuous on [a, b] with f(a)f(b) < 0. Consider the points
A(a, f(a))and B(b, f(b)) located on the curve C; of f. We construct
asequence {2, }nen of real numbers using the points A,, on Cy. To do
this, we set Ay = A and construct A, by drawing the line (A4, B)
that intersects the x-axis at a point with abscissa 2,1 1. The point A, 1,
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is the point on Cy with abscissa 2,4 1.

The iterative scheme of Lagrange algorithm is given as follows: Choose
a starting point z that satisfies the condition f(zo)f”(z9) < 0and
for each iteration we set

{ —Select zg = aif f(a)f"(a) <0

—Set Tp+1l = Tp — f(l‘n)#:l}(b)

and

Tn—a

—Select o = bif f(b)f"(b) <0
—Set Tpt1 = Ty — f(l’n)m

Exemple. Consider the equation f(2) = 2*—20 = 0. Since the func-
tion f is contentiously decreasing on the interval [0.75, 4.5] with
f(0.75) f(4.5) < 0, we can apply Lagrange method in the inter-
val [0.75, 4.5] by choosing z:y = 0.75 as the starting point. The
construction of the firstiterates of Lagrange method is illustrated
in Figure 2.4.

120

100

80f
f(b)
60f

40

201

f(@)20
0

Figure 2.4: Construction of the iterates using Lagrange method
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Proposition 2.2. Let [ be a continuous function on the interval |a, b),
satisfying f(a)f(b) < 0, and ler & € (a,b) be the unigue solu-
tion of the equation f(x) = 0. If f € C*([a,b]) such thatVz €
la,b], f'(x) f"(z) # O, then the sequence {x,, }nen constructed by La-

grange method converges to § with a precision given by

—m

|0 €|<

| Tn — xnfl‘
my

where

M, = rggﬁ\f/(wﬂ}, my = 1?gblvibr]l{\f(ﬂv)|}-

Example 2.5. Find the root of the function f(x) = x° — x — 4 in
the interval (1, 2] within a precision of ¢ = 1072, using the Lagrange
method. We have

20

Figure 2.5: Graph of f

M, = rﬁ%?{\f’(w)!} =1/@)=1
= Iﬁl’izr}l{lf’(w)l} =[] =
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and for all x € (1, 2], we have

fl(r) =32 —1>0,
f"(z) =6z >0,

and f(1)f"(1) <0, so we take xo = 1, and foralln € N,

Ty — 2
Tpi1 = Xp — f(Xy)——F—7—.
. ) ) = 1)
By following the iterative scheme of the Lagrange algorithm, we obtain
Ty — 2
*T1 = Ty — f(JTo)m = 1.666 and f($1) = —1, 0368
M, — 11-2
2 — €] < T el = ——— 21,6667 — 1] = 3.
mi 2
Ty — 2
M, —
2y — €] < L 2] = 0.05
my
To — 2
M, —
2 — €] < 220 — ] = 0.034
my
T3 — 2

M, —
2y — €] < 1772—””“|:1g4 — 3] = 0.009
1

Hence & = 1.7961 £ 0.009

2.2.3 NEWTON-RAPHSON METHOD

This method is the most used for finding roots in one-dimensional prob-
lems. However, it requires the evaluation of f(z) and f/(x).
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Let £ be a unique root of the equation f(z) = 0 on the interval
la, b], such that f is continuous and satisfies:

f'(x) #0,Vz € [a,b)], (2.2)
f"(z) #0, Vz € [a,b]. (2.3)

The main idea of this method is to replace, at each iteration £, the
arc of the curve of the function y = f(x) on [a, b] with the tangent to
this arc at the point (2, f(x,,)): The abscissa z,, 11 of the intersection
of the tangent equation with the Oz-axis is an approximation of the
unique solution § in [a, b] for the equation f(x) = 0 (see Figure 2.6).

The equation of the tangent is:
Yy = f(zn) + f/(l‘n)(l' - l‘n),

which intersects the Oz-axis at the point (2,41, 0), from which we get:

f(zn) + f/(xn)(xnﬂ —,) =0,

which gives the following iterative scheme (Newton-Raphson):

—SetTpy1 = Ty — %

{ —Select a starting point gy € [a, b] with f(x¢). f"(zo) > 0.

Proposition 2.3. Let f be a continuous function on the interval |a, b),
satisfying f(a)f(b) < 0, and let§ € (a,b) be the unigque solution of
the equation f(x) = 0. If f € C*([a, b)) such that for all x € a, )],
f'(z)- f"(x) # O, then the sequence { x,, } nen constructed by the Newton-
Raphson method converges to § with a precision given by:

M, 9

|.ZUn - §| S le (l‘n - xn—l)
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o

Figure 2.6: Construction of the first three iterates using Newton-
Raphson method.

where

My = ma{If '@} = min{( @)}

Example 2.6. Let’s calculate the root of the function f(x) = 2® —x — 4
in (1, 2], within a precision of 102, using the Newton-Raphson method.
We have (1) - f(2) < 0, and forall z € [1,2], f'(x) =32 —1> 0
and f"(x) = 6z > 0. We bave
Applying the iterative scheme of the Newton-Raphson algorithm start-
ing from xo = 2 with f(2) - f"(2) > 0, we get:
f (o) f(2)
0 (o) =2 7(2) = 1.8181,
12

M, 9 9
- < —(z1 — = ——(1.818 = 2)" = 0.01

1 =

where
M = maxp g {|f"(z)[} = f"(2) =12 and my = minp{[f(z)[} = f'(1) =2,
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Next, for x5:

flan)  f(L8181)
Pl O s

M 12
€ — xy] < 2—mzl(x2 —x)? = — (17966 — 1.818)% ~ 0.001.

To = T1 —

= 1.7966,

Thus, £ = 1.7966 = 0.001.

In some situations, the derivative [’ can be quite complicated, or
even impossible to calculate. In this case, we approximate the derivative

of f using a rate of change. This method is called the secant method:

Tn —Tn—1

—Select xg, 1 € [a, b] close to &.
—Setni = T = ) 7, 55w

Here, ,,4+1 depends on both x,, and x,,_1: we say that it is a two-step
method; indeed, we need two initial iterates, ¢ and 1. The advantage
of this method is thatit does not require the calculation of the derivative
J'. The drawback is that the convergence is no longer as fast.

2.3 MATLAB CODES

2.3.1 PSEUDO-CODE OF BISECTION METHOD

clc;clear all;close all

f=0(x) x°3-x-2; 7% Example: f(x)=x"3-x-2

% Define the interval [a,b]

a=1; 7% Left endpoint

b=2; 7 Right endpoint

tol=1e-6; 7 Desired accuracy

max_iter=100; % Maximum number of
iterations
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% Check if the function has opposite signs
at the endpoints
if f(a)*xf(b)>= 0
error ('The function must have opposite
signs at a and b.');
end
%» Initialize variables
iter=0; Y Iteration counter
fprintf ('Iter\t a\t\t b\t\t c\t\t f(c)\n")
while (b-a)/2>tol && iter<max_iter
iter=iter+1;% Increment iteration
counter
c=(a+b)/2;% Compute the midpoint
% Display current step
fprintf ('d\t%.6f\t).6£\t%.6f\t%.6f\n"
,iter,a,b,c,f(c));

% Check if the root is found or narrow
the interval
if f(c)==
break; % c¢c is the root
elseif f(c)x*f(a)<0
b=c; % Root is in the left
subinterval
else
a=c; % Root is in the right
subinterval
end
end
%» Output the result
root=(a+b) /2;
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fprintf ('The root using Bissection method
is approximately: %.6f\n',root);
fprintf (' Number of iterations: %d\n',iter)

b

2.3.2 PSEUDO-CODE OF LAGRANGE METHOD

clc;clear all;close all
f=0(x) x°3-x-2; 7 Example: f(x)=x"3-x-2
ddf=0(x)6%*x;
% Define the interval [a,b]
a=1; % Left endpoint
b=2; % Right endpoint
max_iter=100; % Maximum number of
iterations
tol=1e-6; %Required tolerance
% Check if the function has opposite signs
at the endpoints
if f(a)*f(b)>= 0
error ('The function must have opposite
signs at a and b.');
end
iter=0; % Iteration counter
%Select the starting point
if f(a)x*ddf (a)<0
x0=a;
Xx_end=b;
else
x0=b;
Xx_end=a;
end
x=x0;
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while iter < max_iter
if abs(f(x))<tol
root=x;
break;
end
%» Lagrange iteration formula
x_new=x-f(x)*(x-x_end)/(f(x)-f(x_end))
% Check for convergence
if abs(x_new-x)<tol
root=x_new;
break
end
X=X_Nnew;
iter=iter+1;
end
root=x; 7% Return the final approximation
if max_iter is reached
fprintf ('The root using Lagrange method is
approximately: %.6f\n',root)
fprintf (' Number of iterations: %d\n',iter)
fprintf (' Approximate root: %.6f\n', root)

2.3.3 PSEUDO-CODE OF NEWTON-RAPHSON

METHOD

clc;clear all;close all

f=0(x) x°3-x-2; 7 Example: f(x)=x"3-x-2
df=0(x)3*x"2-1;

ddf=0(x)6*x;

% Define the interval [a,b]

a=1; % Left endpoint
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b=2; % Right endpoint
max_iter=100; % Maximum number of
iterations
tol=1e-6; %Required tolerance
% Check if the function has opposite signs
at the endpoints
if f(a)*f(b)>= 0
error ('The function must have opposite
signs at a and b.');
end
iter=0; 7 Iteration counter
%hSelect the starting point
if f(a)=*ddf (a)>0
x0=a;
else

end
x=x0;
while iter < max_iter
if abs(f(x))<tol
root=x;
break;
end
% Lagrange iteration formula
x_new=x-f (x)/df (x);

%» Check for convergence
if abs(x_new-x)<tol
root=x_new;

break
end
X=X_new;
iter=iter+1;
end
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root=x; 7% Return the final approximation
if max_iter 1is reached

fprintf (' The root using Newton-Raphson
method is approximately: %.6f\n',root)

fprintf (' Number of iterations: %d\n',iter)

fprintf (' Approximate root: %.6f\n', root)

2.4 SOLVED EXERCISES

Exercise 2.1. Using the Newton-Raphson algorithm, find the square root
of 2 in the interval [1, 2] with a precision of ¢ = 1073, using xo = 2 as

a starting starting point.

Solution
We seek the square root of 2 in the interval [1, 2], i.e., we find the root

of the following equation
?=2= flr)=2>—-2=0.
Forall & € N, we apply the Newton-Raphson iterative scheme :

€T
xkﬂzxk—%,k:&lﬂ,...

We have f'(z) = 2z and f"(z) =2 > 0, s0

My =max|f'(z)| =2 and = min|f'(x)| = £(1) = 2
1,2 1,2
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1. N f(@o) 9 f(2)
k 1: T 0 f’([L’O) =2 f’<2) 1.5
£ — x| < %(ml —20)? = 5 i 2(2 —1.5)2=10.125
_ 9. _ . f(5171) o o f(1-5) -
k=2: 20 =14 ) 1.5 D) = 1.416
< M2 2 1.5 — 1.416)> = 0.0035
19 $2|_2—ml($2 1) —m(. 416)° = 0.
Ca oo f@)  f(r416)
k=3: 123=21 ) 1.416 FLAL0) 1.414

M,y 9 2 9 _6
— 23| < ——(x3 —29)" = ——(1.416 — 1.414)* =2 x 10
|€ 3|_2m1( 3 2) 2><2( ) .

Thus, z* ~ 1.414 4+ 2 x 107 % is the approximated square root of 2.

Exercise 2.2.

a- Give the iterative scheme of the Newton-Raphson algorithm to solve a

nonlinear equation f(x) = 0.

b- Using the Newton-Raphson algorithm, determine the root in the inter-
val [0, 1] of the equation 2* = >
with an initial point vy = 1.

* with a precision of 1073, starting

Solution

b- Let’s determine the root in the interval [0, 1] of the equation 72 =

2% with a precision of 1073 using the Newton-Raphson algorithm.

We have
fl(x) =22+2e% and f'(x) =2 —4e >,
with
My = mase | ()| = f(1) = 145 and my = min|f/(@)] = f(0.346) = 169
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Proceeding as in the previous exercise, we get:

U A G ) IR 1 €)
Pl P )
€ — a1 < 222 (4~ 2y)” = 0.0624

1| > le I o) = U.

= 0.6192

f(x1) f(0.6192)
k=22 =2 — —0.6192 — L9202 5677
T ) £/(0.6102)
M.
€ — o] < —2m21 (22 — 21) = 0.0011
f(22) F(0.5677)
k=325 = a9 — —0.5677 — 2200 5671
T ) #/(0.5677)

M.
|€ — .1'3‘ < 2—2(3')3 — .772)2 = 1.55 X 1077 <e¢€
my

Thus, z* =~ 0.5671 + 1.55 x 1077 is the approximated root.

Exercise 2.3. Consider the equation f(r) = 2tan(zx) —z —1 =10
withx € [—m, 7).

a- Separate analytically the roots of this equation.

b- Calculate the number n of required iterations to approximate this root
with a precision of 1072 using the method.

Solution
a- We have f(z) = 2tan(z) — 2 — 1,and f/(z) = —2+ — 1. The

cos(z)
table of variations of f is given as follows:

x - —m/2 /2 T
f'(z) + | + I +
+00 +00 —4.14
2.14 o0 —00
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Thus, according to this table, there exists a single root in the interval

J =33l

b- Let’s calculate the required number of iterations n:

In (b_—“)

n > 2e
~— In2
In (-2
> % ~ 10.6173
n

Therefore, to reach the root with a precision of 2 x 1073, we need at
leastn > 11.

Exercise 2.4. a. Approximate the smallest root of the function f(x) =
xt =20 —dwitha precision of 5 X 1073 using Newton-Raphson and
Lagrange methods.

b. Compare the two methods and draw a conclusion.
Solution

According to Figure 2.7, this function f () has two roots; let’s find the
negative root located in the interval [—2, —1].

20

Figure 2.7: Graph of f.
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Approximating using Newton-Raphson method:

We have
f'(z) =42® —2 < 0,Vz € [-2, 1],
f"(z) =122 > 0,Vx € [-2, —1].
and
My = max {1 @]} = |(=2) = 48
mi = min (1@} =17/ (-1)] =6
Since f(—2).f"(—2) > 0, we take zp = —2 as a starting point, and
forall k € N, we set
f(xg)
- k=0,1,2,....
Try1 = Tk f’(xk)
Following the iterative scheme of the Newton-Raphson algorithm, we
obtain:
k=1:21 =x¢ — =—-2——=-1.53
AT ) —34
M, 5 48 5
| € 22 (@ — 1) = ——(—1.53+ 2)2 = 0.
€ — x| < 2ml(:Jcl o) 5 6( 53 +2)* = 0.88
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4
k=229 =1 flo) gy 2293 o
Fi(x1) —16.32
1€ — 29| < — (29 —x1)° =0.31
1
k=3 my =1 — 195 — —2 = 11542
T ['(x2) -9
M.
€ — 23] < —2 (23 — 32)? = 0.03
1
F(z3) 0.083
k=4 :x, =1 — — 11542 — /22 — 1144
T T ) ~8.15

M.
€ —x4] < 2—2(334 — z3)% = 0.004
my

Hence { = —1.144 % 0.004 is the prescribed solution.
Approximating using Lagrange method:

Since f(—1).f"(—1) < 0, we take o = —1 as initial point,and for all
n € N, we set

with My = [Igaxlﬂf( )} = |f(=2)] = 34 and
mi = min {17/} = 17/(-1)| =
k=1:2 =z — f(xo)f(xjo_Jer(_Q) — 1.0
iz —g| < Mz o P — | = 0.274
k=279 =11 — f(xl)f(le_Jer(_Q) — 1.0041

|22 — €|< —~ Ty — 2] = 0.164
1
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k=3: %1y =2 — f(xg)f<x$2_+f2(_2> = —1.1149
|zg — ¢&| < ]xg—xQ\ = 0.097

k=424 =x5— f(x:s)f(xf’jfz(_Q) — —1.127
24— €] < Mlm;lmlm — 3] = 0.0564

k=525 =4 — f(x4)f<xj4_+f2(_2) = —1.1341
25 — €] < Mlm;lmlm — 4] = 0.033

k=616 = o5 — f(x5)f<x§5_+f2(_2) — 11382
|26 — €] < Mlm;lmlm — 5] = 0.0191

[ f(x6)f(x£6—+f2(—2) — _1.1406
27 — €] < Mln;ml |27 — 6| = 0.011

k=8 a5 =17 — f(x7)f<x:§7_+f2(_2) — —1.1419
|25 — €] < Mlm;lmlm — 4] = 0.006

k=0:12g = o5 — f(xg)f(xssjfz(_m — _1.14275
|zg — &| < ]xg—xg\ = 0.004

Hence§ = —1.14275 + 0.004.

To achieve a precision of 5 x 107?, it would require 9 iterations
using the Lagrange method, whereas the Newton method requires only
4 iterations. The Newton method converges faster than the Lagrange
method.
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Exercise 2.5. We consider the equation f(x) = 0, with f(x) =
In(z) —z +2

La. Write the equation f(x) = 0in the form fi(v) = fo(x) with
fi(z) = In(x).

b. Plot the graphs of fi and fo. What can be said about this equation?
2.a. Perform 4 iterations of the method to approximate the solution in the
interval [3,4). At which iteration we obtain the best result? Justify and
conclude.

b. Determine the number of n of required iterations to achieve a precision
of 1074,

c. Give an estimate of the error after 25 iterations.

3. Approximate the root with a precision of 10™* using the Newton-
Raphson method, starting from x¢ = 3.

4. Compare the two methods and draw a conclusion.

Solution

I-a.

flz)=0&<In(x) —z+2=0
e n(z) =2-2

© fi(x) = faz) avee f1(x) = In(z) et fo(z) = v — 2

1-b. According to Figure 2.8, the graphs of f; and f5 have two intersec-
tion points, so this equation has two roots {; €]0, 1[and &, €]3,4].

2-a. Proceeding as in examples 1 and 2, we obtain z; = 3.5, 5 = 3.25,
r3 = 3.125,and x4 = 3.1875, with 23 the best result obtained since
f(xs) min{ f(x;),i = 1,2, 3,4}. We conclude that, although the con-
vergence of the method towards the root is guaranteed, it is not mono-

tonic.
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f(x)

L L L L L L L
0 0.5 1 1.5 2 25 3 3.5 4

2-b.
ln(u)
> 2e
= In2
In(72)
> 10287~ 13,29
~ In2 ’
hencen > 14.
2-C
b—a
|xn - €| S 2n+1

3. By applying the Newton algorithm starting from the pointzy = 3,
and after 3 iterations, the algorithm reaches the root within 107*. The
generated points are 1 = 3.1479, 5 = 3.1462, and x3 = 3.1462.

4. To achieve a precision of 104, it would require 14 iterations using
the method, whereas the Newton method only requires 3 iterations.
The Newton-Raphson method converges quicker than the method.
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2.4.1 SUPLEMENTARY EXERCICISES

Exercise 2.6. Consider the function f(x) = 2* — £ defined on R, with
EeR,.

1- Prove that the iterative scheme of the Newton-Raphson method to
find a root of f can be given by the following form:

T = 1 (xk + i) , keN. (2.4)

2 T

2- Let & = 5.

i) Determine an interval of the form [a,a + 1], witha € N,

where we can approximate a value of \/<.

ii) Provide an approximation of the value \/€ using the recur-
rent formula (2.4), choosing xo = a + 1 as the initial point
and using the stopping criterion [Ny, = % (v, —xp_1)? <

g with M = max |f"(x), m = min |f'(z)|, and
[a,a+1] la,a+1]

e = 107* (where k is the number of iterations).

3- Determine the number of iterations n required by the Bisection
method to obtain an approximate solution with the same precision
e=10""%

Exercise 2.7. Ler [ be a function defined on 0,400 by
f(z) = e — In(x).

1- Prove that there exists a unigue root & of the function f, located between

two consecutive integers a and a -+ 1.

2- Calculate the number 1 of required iterations to reach an error less than

104 using Bisection method.

3- Give the iterative scheme of the Newton-Raphson algorithm.
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4 Approximate the value of § with a precision of 10~* using the Newton-
Raphson algorithm, justifying the choice of the initial point x between
aanda—+ 1.

Exercise 2.8. Let f be a function defined on R by f(x) = et — 3/2.

1- Prove that there exists a unique root § of the function f, located between

two consecutive integers a anda + 1.

2- Calculate the number n of required iterations to reach an error less than

1074 using Bisection method.

3- Approximate the value of £ with a precision of 10~* using the Newton-
Raphson algorithm, justifying the choice of the initial point xo between
aanda+ 1.
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3
NUMERICAL SOLUTION OF

ORDINARY DIFFERENTIAL
EQUATIONS OF FIRST
ORDER

Many challenges in science and engineering can be reduced to the task
of solving differential equations while satistying certain predefined con-
ditions. Traditional analytical techniques, which are assumed to be un-
derstood by the reader, are suitable for solving only a subset of these
equations. However, the differential equations that govern the behav-
ior of physical systems often lack closed-form solutions. Therefore, it is
crucial to use numerical methods to solve these problems.

Definition 3.1. An ordinary differential equation (ODE) of order
n,n € N* isany relation of the type

Fty),y' (), ...,y () =0 (3.1)

which we write in the canonical form as

y () = fty),y' @), ...y (1) (3-2)
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where y is a function of the variablet, and fori =1,...,n, y® s the
derivative of y with respect to t of order .

The general solution of equations (3.1) and (3.2) is given by a relation
between ¢ and y with a number of constants (equal to the degree of the

equation). This relation can be implicit:
Wi(t,y(t),c1,...,cy) =0
or explicit
y(t) = V(t, Cly... ,Cn).

To determine the constants ¢;, 7 = 1, ..., n, we need initial or bound-

ary conditions on .

Definition 3.2. A differential equation is said to be of order 1 if it is of
the form: y' (t) = f(t,y(t)) witht € [a,b] and f a function is defined
onla,b] x R = R.

In this chapter, we present some numerical methods that aim to ap-

proximate solutions of ordinary differential equations of first order.

3.1 THE BAsic PRINCIPLES OF

INITIAL-VALUE PROBLEMS

Definitions and results from ordinary differential equations theory are
necessary before delving into methods for approximating solutions of

initial-value problems.

3.1.1 CAUCHY PROBLEM

The goal is to find a differentiable function y(t) : I = [a, b] — Rsuch
that

P): { y(0) = fty(0). b€ 1

y(to) = yo (Initial condition)
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3.1.2 EXISTENCE AND UNIQUENESS OF THE
SOLUTION

Theorem 3.x. If f(t,y) is a continuous function on I X R, then the prob-
lem (P) admits a solution. The unigueness of the solution is guaranteed
under one of the following conditions:

a- f(t,y) satisfies the Lipschitz condition with respect to y, i.e.,

3L > 0,Vyr,y2 € R: |f(t,y1) — f(t,42)] < Liyr — v

b- The partial derzmtzve (t Y) is continuons and bounded on I X
R.

Example 3.1.

(P) : { y(t) = 5% + s t € e

We have f(t,y) =

tlnt
, 50 gf is continuous and bounded on [e, 5] X R. Therefore,

_t
Int

+ 1, which is continuous, and \ ( y(t))| =

|t1nt‘ — i
the problem (Py) admits a unigue solution y(t) =

Example 3.2.

) y'(t) =1+ tsin(ty(t)), te](0,2]
() { y(0)=0

We have f(t,y) = 1 + tsin(ty(t)), wbz’ch is continuous, and
%(t,y(t)) = t2cos(ty(t)) < t* < 4, 50 zs bounded. Therefore,
the problem (Py) admits a unigue solution.

Example 3.3. Consider the following IV P:

(Py) : { y'(t) = —gis + me tE 6]
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The  function  f(t,y) = —757 + mt s continuous  on
D = le, 5] x R. Additionally, we have:

vt =il =

Therefore, the problem ( Ps) possesses a unique solution y(t) = lnﬁ 5

Example 3.4. Consider the following IV P:

)y =1+tsin(ty), tel0,2]
(Fa) { y(0) = 0.

The function f(t,y) = 1 + tsin(ty) is continuons on D = [0, 2] x

R,
of
dy

Hence, the problem (Py) has a unigue solution.

(t,y) = t* cos(ty) < 4.

3.2 PICARD’S METHOD OF

SUCCSSIVE APPROXIMATIONS

Upon integrating the an IVP, we integrate the following integral equa-
tion

Y= Yo + /t f(t,y)dt. (3.3)

Equation (3.3), wherein the unknown function y appears under the
integral sign, is termed an integral equation. Such an equation can be
resolved through the method of successive approximations, wherein the
initial approximation to y is acquired by substituting ¥, for y on the
right side of Eq. (3.3). Thus, we express:

t
y1=yo+/ £ (t,y0) dt
to
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The integral on the right can now be evaluated, yielding ¥, which is
then substituted for y in the integrand of Eq. (3.3), resulting in the sec-
ond approximation ys:

t
y® =y +/ f(tyM) dt.

to
Continuing iteratively, we obtain y3, ¥4, . . . , Yn—1 and y,,, where
t
Yn = Yo + / f(t,ynr)dt. (3.4)
to

Thus, this method provides a sequence of approximations
Y1,Y2, - - -, Yn, and it can be demonstrated that if the function
f(t, y) remains bounded in a certain region around the point (¢g, yo)
and if f(¢,y) satisfies the Lipschitz condition, then the sequence
Y1, Y2, - . . converges to the solution of Problem (P).

Example 3.5. Consider the following IVP
y =t+1y*, tel0,+oc], y(0)=1.
Starting with yo = 1, the first approximation is
K 1
y = 1+/ (t+1)dt = 1+t+§t2.
0

The second approximation is

t 1 2
y(2)=1+/ t+(1+t+§t2>]dt
0

3 2 1 1
=14t+ 12+ =2+ 2t + —°.
it +3:c +7 +20

1t is evident that as we proceed to higher approximations, the integrations
may become increasingly challenging.
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3.3 NUMERICAL METHODS

3.3.1 EULER METHOD

The Euler method is the simplest numerical method that allows approx-
imating a solution of first-order ordinary differential equations with
initial conditions. To numerically solve the Cauchy problem (P), we
begin by partitioning the interval I = [a, b], i.e., we choose points
to,t1,...,tp suchthata = t43 < t; < --- < t, = b, with
tivi =t;+hh = b_Ta (the step size) with 7 is the number of evaluated
points. The tangent to the curve y = y(t) att = ¢ has the equation:

g(t) = y(to) + (t — t0)y'(t0)
where
y(t) = y(to) + (t —to) f(to, y(to))-
At the point ¢ = 1;, we get (see Figure 3.1):

y(t) = g(t) = y(to) + (0 — o) f(to, y(to)),

by setting b = t; — %, it become

y(t1) = g(t1) = y(to) + hf(to, y(to))-

Letyo = 9(to), y1 = §(t1), and then repeat the same procedure in the
interval [ty t5], we obtain:

y(t2) >y = y1 + hf(t1,11).

Thus, continuing in this way, we construct the following Euler algo-

rithm:

{ Yo =y(to),to=a

Yit1 :yz+h'f(tzayz)7zz 1,...,7?—1
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where h = b*Ta, andt; 1 =t; + h.

V(1) ~¥=91,)
i’ y=y(t) !

=y
) 2 S

Figure 3.1: Construction of the first iterates of the Euler method.

Definition 3.3. A numerical method that approximatesy(t;) by y; with
anervore; = |y(t;) — y;| with

€; S khP

is said of order p, where k is a constant independent of i and h, and y(t;)
is the exact value of the solution of the Cauchy problem at the point t; =
to + th.

Theorem 3.2. Let f(t,y) be a continnous function on |a, b] x R and L-
Lipschitz continuous with respect to the variable y, and let y(t) € C?[a, b].
Then we have

M.
S < (P )22y
e < (e )31
where My = max |y (t)|, and e; is the error made at the point (t;, y;),

t€la,b]
re,e; = |y(t;) — vi-

Remark 3.1. This result can be expressed in the form e; < kh, meaning
that the Euler method is of order 1.
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Example 3.6. Consider the following Cauchy problem be given:

y(t) =ty'?
y(1) =1

Let’s calculate y(1.01), y(1.02), y(1.03) using the Euler method.
We take Yo = ]., to=1 with Yiv1 = Yi + h(tzyzl/g) and h = 0.01, the
1t results that:

y(1.01) ~ y1 = yo + 001 x to x ya/> =1+ 0.01 x 1 x 1'% = 1.01.

y(1.02) ~ 3 = 1 +0.01 x 1.01 x (1.01)"/% = 1.0201
y(1.03) ~ y5 = 5 + 0.01 x 1.0201 x (1.0201)*/3 = 1.0304.

Example 3.7. Solve the following Cauchy problem using Euler method
with a step size h = 0.25.

y'(t)=2—ty? t€0,1]
y(0)=1

The points t; to evaluate for h = 0.25 arety = 0,t; = 0.25,t, =
0.5,t3 = 0.75,t4 = 1. Following the same scheme as in the previous

example, we obtain:

y(0.25) ~ y; = yo + 0.25 x f(to,v0)
=1+0252-0x1*) =15
y(0.50) ~ yo = y1 +0.25 X f(t1,91)
=1.5+0.25(2 — 0.25 x 1.5%) = 1.8594
y(0.75) >~ y3 = yo + 0.25 X f(t2,y2)
= 1.859 + 0.25(2 — 0.5 x 1.859%) = 1.927
y(1.00) ~ yy = y3 + 0.25 x f(t3,ys3)
=1.927 +0.25(2 — 0.75 x 1.927%) = 1.7308.
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Example 3.8. Consider the following Cauchy problem.:

y'(t)=t+y,tel0,1]
y(0) =1.

We want to approximate the solution of this problem att = 1 using Euler
method, by subdividing the interval |0, 1] into ten equal parts. Following
the same procedure, we obtain the values {t;,y; } as listed below:

Yi | I | LI | L22 | 1,302 | I,5282 | L,7210 | L,9431 | 2,1974 | 2,4871 | 2,8158 | 3,1874

From this table, we obtain y(1) ~ y,og = 3.187. This approximation
is quite rough because the exact solution to this problem is given by y(t) =
2e" — t — 1, so the exact value is y(1) = 3.437.

3.3.2 IMPROVED EULER METHOD

This method is more precise than the previous one; it consists of re-
placing, in Euler method, the slope of the tangent at (x,,, y,,) with the
corrected value at the midpoint of the interval [2,,, ,,41], whose algo-

rithm is:

Yo =y(to),to=a
Y1 =Y+ hfti+ 2y + 2K, i=1,... ,n—1
Ky = f(z5,y:)

Example 3.9. Consider the following Cauchy problem:

y'(t) =y(t)—t+2,t€]0,1]
y(0) =2
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Using the Improved Euler method with a step size of h = 0.1, we obtain

yo=y(0)=2,h=0.1

y1 =y(0.1) = yo + hf(to + %,yo + %Kl),
Ky = f(to,y0) = f(0.2) =4

y(0.1) ~ y; = 2+ %1 £(0.05,2.2) = 2.415.

Proceeding the same process, we obtain the results in the following table:

i lo| 1 2 3 4 5 6 7 & 9 10

ti|o| or 0.z 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Lo

Yi | 2 | 2415 | 2.8405 | 3.3101 | 3.8122 | 4.3535 | 4.9388 | 5.5727 | 6.2599 | 7.0059 | 7.8165

3.3.3 SECOND-ORDER RUNGE-KuUuTTA
(HEuUN’s) METHOD

Runge-Kutta methods approximate the solution with higher accu-
racy (they generate numerical solutions that are closer to the analyti-
cal solutions) than the Euler method. The second-order Runge-Kutta
method (RK5) is an amelioration of the Euler method. Indeed, the
Euler method relies on a first-order Taylor expansion. However, it is
clear that more efficient methods can be obtained by considering ex-
pansions of higher order than 1. Thus, if the function f is sufficiently
differentiable, we can write:
2

Yis1 =Y +h x y'(t;) + ?y”(tz‘)

with,

V(E) = Ft)ando'(6) = 51 00) + F(0)5 (6.0)

Hence,

hr /5 )
Yier = Yi + hf (ti i) + o (5—{(% yi) + f(ts, yz)é(%%)) ;
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since we have:

S+ oy + hf(tiyi) = f(ti,g) + R (%(ti, vi) + [ (i i) 5 (1, ?Ji)) ;

it results that

h h
y(tiv1) = y(t:) + §f(ti7yi) + §f(ti + h,yi + hf(ti,y:))-
Thus, we obtain the second-order Runge-Kutta algorithm:

Yo :y(to),to =gand h = IFTG

(RKQ) yz+1:yl+%(K1+K2)7Z:177n_1
Kl :f(tzayl)
Ky = f(ti + h,yi + hEKy)

3.3.4 FOURTH-ORDER RUNGE-KuTTA
METHOD

This is the most accurate and widely used method in practice, with
an error of order four. It calculates the value of the function at four

intermediate points. Its iterative scheme is given as follows:

yo = y(to),to = aand h = b_Ta
Yir1 = Yi + 2Ky + 2K, + 2K3 + Ky),i=1,...,n— 1
(REK) gl = f(tiyyi)h .
2= f(ti + 5,y +5K)
Ky=f(ti+ %y + 1K)
Ky = f(ti + h,y; + hK3)

\

Note that the number of terms retained in the Taylor series defines
the order of the Runge-Kutta method. The Runge-Kutta method of
order 4 truncates the Taylor series at the term O(h*).
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Example 3.x0. Consider the following Cauchy problem:

{ y(t)=y—2 teo]l]
y(0) = 1.

The exact solution of this problem is: y(t) = /2t + 1.

- Compute an approximate value of y(0.2) using the RKy and RK,
methods with a step size h = 0.2.

- Evaluate the obtained results by comparing them with the exact solution.
Runge-Kutta Method of Order 2:

(yo=y(0)=1,h=0.2
y1 =y(0.2) = yo + 2(K, + K>),
(RK3){ Ky = f(to,y) = f(0,1) =1
Ky = flto+ h,yo + hiK1) = £(0.2,1.2) = 0.866
y1 = y(0.2) = 1+ %2(1 + 0.866) = 1.1866.

\

eri, = | /2 % (0.2) + 1 — 1.1866| = 3.450709 x 1073,

Runge-Kutta Method of Order 4:

Yo=y(0)=1,h=0.2

Y1 = Yo + 2(Ky 4 2K + 2K5 + Ky),

Ky = f(to, o) = 1

(RK4)S Ko = f(to+ %, yo+ 2K1) = f(0.1,1.1) = 0.918182
Ks = f(to+ 5,y + 2K,) = £(0.1,1.091818) = 0.908637
Ky = f(to+ h,y; + hK3) = f(0.2,1.181727) = 0.843239
y1 =1+ %2(K| 4 2K, + 2K5 + K,) = 1.1832292

\

eri, = |2 X (0.2) +1 — 1.1832292] = 1.32 x 107°. Hence

eri, K €RK,-
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Example 3.11. Give an approximate solution of the following Cauchy
problem using the Ry method with a step size of h = 0.25.

{ y(t) =2 —ty2te0,1]

y(0) = 1.
For the first step, we have

(

yo=y(0) =1,h =0.25

K1 = f(to,y0) = 2

Y1 =yo+ LK + 2K, + 2K+ Ky),i=1,...,n— 1

(RK4)§ Ko = f(to+ 2, yo+ LK) = 1.8047

\

Ky = f(to+ %,y + 2K5) = 1.8122
y1 =1+ 22(Ky + 2K, 4+ 2K;3 + Ky) = 1.4461

By proceeding the same process as in step 1, we obtain: y, = 1.7028, y3 =

1.7317 and y, = 1.6147.

3.4 MATLAB CODES

3.4.1 PSEUDO-CODE OF EULER METHOD

% Euler Method for Solving
Problem
clear;clc;close all;

% Define the function f(x,

f=0(x,y) -2*%x*xy; 7/ Example:

% Initial conditions
x0=0; % Initial x-value
y0=1; % Initial y-value
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h=0.1; h Step size
x_end=2; % Final x-value

% Number of iterations
N=(x_end-x0)/h;

% Initialize arrays for x and y
x=zeros (1,N+1) ;
y=zeros (1,N+1);

% Set initial values
x(1)=x0;
y(1)=y0;

% Euler Method Iteration

for i=1:N
y(i+1) =y (i)+h*f(x(i),y(i));
x(i+1)=x(i)+h;

end

%» Display results
disp('x-values:');
disp(x);
disp('y-values:');
disp(y);

% Plot the numerical solution

plot(x,y, 'bo-"','LineWidth',2, 'MarkerSize'
,6) 5

hold on;

xlabel ('x');

ylabel ('y');
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title('Euler Method for Solving Cauchy
Problem') ;

grid on;

legend ('Euler Approximation');

3.4.2 PSEUDO-CODE OF IMPROVED EULER
METHOD

% Improved Euler Method for Solving a
Cauchy Problem
clear;clc;close all;

% Define the function f(x, y) dy/dx
f = @(x,y)-2*%x*y; J Example: dy/dx = -2xy

% Initial conditions

x0=0; % Initial x-value
y0=1; %» Initial y-value
h=0.1; % Step size

x_end=2; % Final x-value

% Number of iterations
N=(x_end-x0)/h;

%» Initialize arrays for x and y
x=zeros (1,N+1) ;

y=zeros (1, N+1);
% Set initial values

x(1)=x0;
y(1)=y0;
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% Improved Euler Method Iteration (Heun's
Method)
for i=1:N
ki1=f(x(i),y(i));
k2=f (x(1i)+h/2,y(i)+(h/2) *xkl);
y(i+1)=y(i)+h*k2;
x(i+1)=x(i)+h;
end

%» Display results
disp('x-values:');
disp(x);
disp('y-values:');
disp(y);

% Plot the numerical solution

plot(x,y, 'bo-"','LineWidth',2, 'MarkerSize'
,6) 5

hold on;

xlabel ('x');

ylabel ('y');

title('Improved Euler Method for Solving
Cauchy Problem');

grid on;

legend (' Improved Euler Approximation');

3.4.3 PSEUDO-CODE OF SECOND-ORDER
RunNnGEe-KurtTA (RK2) METHOD

% Runge-Kutta 2nd Order Method (RK2) for
Solving a Cauchy Problem
clear;clc;close all;
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% Define the function f(x, y)=dy/dx
f = 0(x, y)-2*xx*y; 7 Example: dy/dx=-2xy

% Initial conditions

x0=0; % Initial x-value
y0=1; %» Initial y-value
h=0.1; % Step size

x_end=2; % Final x-value

% Number of iterations
N=(x_end-x0)/h;

% Initialize arrays for x and y
x=zeros (1,N+1) ;
y=zeros (1,N+1);

% Set initial values
x(1)=x0;
y(1)=y0;

% RK2 Method Iteration

for i=1:N
k1=f(x(i),y(1i));
y_predictor=y(i)+hxkl;
k2=f(x(i)+h,y_predictor);
y(i+1)=y(i)+(h/2) *(k1+k2);
x(i+1)=x(i)+h;

end

% Display results

disp('x-values:');
disp (x);
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disp('y-values:');
disp (y);

%» Plot the numerical solution

plot(x,y, 'bo-"','LineWidth',2, 'MarkerSize'
,6) 5

hold on;

xlabel('x"');

ylabel ('y');

title ('Runge-Kutta 2nd Order Method (RK2)
for Solving Cauchy Problem');

grid on;

legend ('RK2 Approximation');

3.4.4 PSEUDO-CODE OF FOURTH-ORDER
RunNnGe-KutTA (RK4) METHOD

% Fourth-Order Runge-Kutta (RK4) Method
for Solving a Cauchy Problem

clear;clc;close all;

%» Define the function f(x,y)=dy/dx
f = 0(x,y)-2*xxy; 7% Example: dy/dx=-2xy

% Initial conditions

x0=0; % Initial x-value
y0=1; % Initial y-value
h=0.1; % Step size

x_end=2; % Final x-value

% Number of iterations
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N=(x_end-x0)/h;

%» Initialize arrays for x and y
x=zeros (1,N+1) ;
y=zeros (1,N+1);

% Set initial values
x(1)=x0;
y(1)=y0;

% RK4 Method Iteration

for i=1:N
k1=f(x(i), y(i));
k2=f(x(i)+h/2,y(i)+(h/2) *kl);
k3=f(x(i)+h/2,y(i)+(h/2)*k2);
k4=f (x(i)+h,y(i)+h*k3);

y(i+1)=y(i)+(h/6) *(k1+2%k2+2xk3+k4) ;
x(i+1)=x(1i)+h;
end

% Display results
disp('x-values:');
disp (x);
disp('y-values:');
disp(y);

% Plot the numerical solution

plot(x,y, 'bo-','LineWidth',2,'MarkerSize'
,6) 5

hold on;

xlabel ('x');

ylabel('y');
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title('Fourth-0Order Runge-Kutta (RK4)
Method for Solving Cauchy Problem');

grid on;

legend ('RK4 Approximation');

3.5 SOLVED EXERCISES

Exercise 3.1. Consider the following Cauchy problem:

{ y(t) =2t —y(t)|t € [0,1] (P)
y(0) =1

a- Prove that the problem (P) admits a unique solution.

b- Verify that the problem (P) admits the equation (3.5) as a partic-

ular solution.
y(t) =2t — 2+ 3e " (3-5)

¢ Provide the iterative scheme of the fourth-order Runge-Kutta al-
gorithm to solve the problem (P).

d- Apply the fourth-order Runge-Kutta algorithm (RK4) for this
problem with h = 0.1 to evaluate the solution att = 0.3. Com-
pare the obtained solution with the exact solution.

Solution
a- We have % = 1, which is a continuous and bounded function, so
this problem admits a unique solution.
b- We have, according to (3.5),

Y (t) =2 —3e™"
=2 -3¢ —2t+2t
=—y(t) + 2t.
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On the other hand, we have y(0) = —2 + 3 = 1, from which we
deduce that the equation (3.5) is a particular solution.

Yo =y(to),to = aeth = b_T“

Y1 =Y + 2(K1 + 2K + 2K3 + Ky),i=1,...,n—1
Ky = f(ti,y:)

K, :f<ti+%ayi+%Kl)

Ky=f(ti+ %y +2K))

Ky = f(ti + h,y; + hiK3)

\

d- Apply the fourth-order Runge-Kutta method algorithm RK with
h =0.1:

(

yo=y(0)=1,h=0.1

Y1 =yo+ 2(K1 + 2Ky +2K3+ Ky),i=1,...,n—1
Ky = f(to,y0) = f(0,1) — 1

(RK4){ Ko = f(to+ 2, yo+ K1) = f(0.05,1.05) = —0.95
Ky = f(to+ 2, yo + LK) = £(0.05,0.955) = —0.852
Ky = f(to+ h,yo + hK3) = £(0.05,0.914) = —0.814
y1 =1+ %Ky + 2K, + 2K3 + Ky) = 0.943

\

hence y(0.1) ~ y; = 0.943.

(Yo =y + 2(Ky + 2K, +2K3+ Ky),i=1,...,n—1
Ky = f(ti,y1) = f(0.1,0.9430) = —0.743
Ky = f(ti + 5, y1 + LK) = £(0.15,0.905) = —0.605
Ky = f(ti+ %y + 2Ky) = £(0.15,0.9127) = —0.6127
Ky = f(ti + h,y1 + hK3) = f(0.2,0.8818) = —0.4818
[ 1 = 0.943 + %L (K + 2K, + 2K3 + Ky) = 0.882

then y(0.2) ~ y, = 0.882.
By repeating the same process, we obtain: y(0.3) >~ y3 = 0.8436
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Comparison: The exact value at £ = 0.3 is y(0.3) = 0.8225, then

err = 10.8225 — 0.8436| = 0.0216

Exercise 3.2.

a- Provide the iterative scheme of the Euler algorithm to solve the problem
(P) of Exercise 1.

b- Apply the Euler algorithm for this problem with h = 0.1 to evaluate

the solution att = 0.3. Compare the obtained solution with the exact
solution.

Solution
a_

{ Yo = y(to),to = a

Yi+1 :szFhf(tza?/z),Z: 1,...,7’L—1

with h = lFTa, et ti+1 = ti + h.
b-

y(0.3) >~ y3 = y2 + 0.1(2t5 — y(t2)) = 0.8412

Then y(0.3) ~ y3 = 0.8412.
Comparison: The exact value at t = 0.3 is y(0.3) = 0.8225, so the
error made when applying the Euler algorithm is

err = ‘0.8225 — 0.8412] = 0.019.
The theoretical error is given by

My

Ct S <€L(b_a) — 1)5

h,
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where My = maxcoq] |y (t)| and L is the Lipschitz constant of f
with respect to y, which is equal to 1.
In addition, we have

y'(t) = 3e?
Then My = max |3e~"| = 3. Hence,
t€(0,1]
M
< (eklb-a) _ )2
e s (e )31
3x0.1

< (61(0.370) . 1)

2x1
< 0.05247

Itis clear that err < ey, so the Euler method provides a good approxi-
mation for this Cauchy problem at ¢ = 1.

Exercise 3.3. Consider the following differential equation.:

Y6 =)+t
y(0) =1.

The exact solution of this equation is y(t) = —1 — t + 2¢’.

- Approximate the solution of this equation att = 1 using Euler method
by subdividing the interval into 10 equal parts.

- Compare the obtained solution with the exact solution.

Solution
Let f(t,y) = y(t) + t, the points ¢; to evaluate for h = 0.1 are t; =
0.1t = 0.2,t3 = 0.3, ..., t10 = 1. Byfollowing the same procedure
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as in the previous examples, we obtain:

y(0.1) ~y; = yo + 0.1 X f(to,0) = 1.1
y(0.2) ~yo = y1 + 0.1 x f(t1,1n) = 1.22
Y(0.3) = y3 = yo + 0.1 X f(t2,y2) = 1.362

y(1) ~ y1o = yo + 0.1 X f(to,ys) = 3.1874.

That is, the approximation at t = 1 of y(¢) is y10 = 3.1874.

- Comparison of results:
The exactvalueatt = 1isy(1) = —1 — 1+ 2! = 3.4366. Thus, the
error made when applying Euler method is

err = |3.4366 — 3.1874| = 0.25.

Now, let’s find the theoretical error, which is given by

M.
asle )31
where My = m{g}ﬁ |y (t)| and L is the Lipschitz constant of f with
telo,
respect to y.
We have,

lf(ty) — fEy) =y — | = L=1.

Furthermore, we have,

') =y (y) +1=yt)+t+1
=1+t+(—1—t+2¢"

= 2¢t
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M, = max |2¢'| = 2e. Hence
t€[0,1]

M.
€t S (eL(b_a) — 1>2_L2h

< 0.4673.

Itis clear that err < ey, so the Euler method provides a good approxi-
mation for this problem att = 1.

Exercise 3.4. Determine an approximate solution of the following
Cauchy problem using the fourth-order Runge-Kutta method with a step
sizeof h = 0.1.

{ y'(t) =y(t) —t+2,t €[0,1]
2.

Solution
We have

yo=19y(0)=2,h=0.1

Y1 =yo + B(Ky +2Ks + 2K3 + Ky)yi=1,...,n— 1
Ky = f(to,y0) = 0.4

(RE4) § Ko = f(to+ 4, yo+ LK) = 0.4150

Ky = f(to+ %50 + LK) = 0.4157

Ky = f(to+ h,y; + hK3) = 0.4365

g =1+ 25(K) 4+ 2K, + 2K3 + K,) = 2.4163

\

By repeating the same process for the other iterations, we obtain the

results listed in the following table:

ti | o] o1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

Yi | 2 | 2.4163 | 2.8659 | 3.5323 | 3.8793 | 4.4513 | 5.0728 | 5.7492 | 6.4863 | 7.2903 | 8.1684
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3.5.1 SUPPLEMENTARY EXERCISES
Exercise 3.5. Consider the following ordinary differential equation:
y'(t) =t—Iny
y(2) =34

- Calculate y(2.8) using the fourth-order Runge-Kutta method with h =
0.8 and then with h = 0.4.

Result
_y(2.8) with h = 0.8is y(2.8) ~ y; = 4.255052.
-y(2.8) with h = 0.4 is y(2.8) ~ yo = 4.255888.

Exercise 3.6. Consider the following ordinary differential equation:

y'(t) = y?
y(1) =1

- Calculate y(1.5) using the fourth-order Runge-Kutta method with a
step size of h = 0.5.
- Recalculate y(1.5) with h = 0.25.

Result
-y(1.5) with h = 0.5is y(1.5) ~ y; = 1.67985
~y(1.5) with h = 0.25is y(1.5) ~ y» = 1.68178

Exercise 3.7. Consider the following ordinary differential equation:

y'(t)=—-y+t+1|t €[0,1]

y(0) =1.

a- Calculate an approximation of y(0.2) using the Euler method,
with a step size of h = 0.1.
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b- Calculate an approximation of y(0.2) using the improved Euler
method, with a step size of h = 0.1.

¢ For each method, calculate the ervor made by comparing the result
obtained with the exact solution y*(0.2) = 1.018731.

Result
2-9(0.2) = yo = 1.01 and |y» — y(0.2)| = 0,008731.
b-y(0.2) ~ yo = 1.019025 and |y — y(0.2)| = 0,000294.

Exercise 3.8. Consider the following ordinary differential equation:

WY _ oy
5y — 3

1- Determine the expression of the general solution of the given ODE.

2- Given that y(0) = 1, give an approximation of y(0.5) using RKy
with a steplength h = 0.25. Compute the error between y(0.5) and its

approximated value.

Exercise 3.9. Consider the following Cauchy problem:

3t+ 1)dy =ydt, tel0,1
y(0) =1
Let h = 0.1 be the step size for subdividing the interval |0, 1].
1- Give the expression of the function f.

2- Determine an approximate value of y(0.2) using Euler’s method and
then the Second-order Runge-Kutta Method (RK2).

3- Verify thaty(t) = (3t + 1)Y/3 is the exact solution of Problem (P).

4~ Evaluate the results obtained in Question 2).
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4
NUMERICAL SOLUTION OF

SYSTEMS OF LINEAR
EQUATIONS

In practice, engineers often encounter problems whose solution re-
quires solving a system of linear equations that models the problem
under consideration. For example, determining currents and voltages
in electrical networks requires solving a system of linear equations. That
is, we seek the vector X € R", where X = (x1, 29, ..., x,), which is
the solution of the following linear system:

1171 + A12T2 + *++ + ATy = bl
a91L1 + Q22T + + - - + A9p Xy, = bg
AX =pe={ (4.1)

Ap1T1 + ApaZo + -+ - + AppTy = bn

This system admits a unique solution when the determinant of A is
nonzero, which we will assume below. Solving this system using direct
methods becomes impractical when n is relatively height. Therefore, it
is preferable to use numerical methods that construct a sequence con-

verging to the solution of the system.
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In this chapter, we present two numerical methods that provide ap-
proximate solutions to systems of linear equations using a linear func-
tion f such that X*™' = f(X¥) k € N. These methods are easy
to implement, require minimal memory, and produce results with the
desired accuracy.

Given an arbitrary initial vector X 0 we construct a sequence of vec-
tors

X0 xt .. X*

P

which converges to the solution X* of the linear system AX = b.

We consider the linear system (4.1), where A is an n X n invertible
matrix and b is a vector in R"™. For any invertible square matrix M of
order n, the system (4.1) is equivalent to

MX —(M—-A)X =b.
Bysetting N =M — A, B = M~'N,and ¢ = M ~'b, we obtain
X=BX +c.

This allows us to define the following iterative formula:

(4.2)

XY € R"initial vector
Xkt = BXF 4 ¢,

Let X * be the exact solution of (4.1). If we denote e = || X* — X*||

as the k-th error vector, we obtain

e = | X7 = X[ = [(BX* ' +¢) = (BX" +¢)]| = B| X" — X*|
= Bek_l = Bkeo.

Remark 4.1. In practice, if we impose a precision €, we can estimate the

error by:
I - X4 < e
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This means that, foralli € {1, ..., n}, we bave:
oy — i < e

Theorem 4.x. The iterative method (4.2) converges if the sequence of
vectors { ¥} e converges to zero independently of the initial vector X°,
if one of the three norms is less than 1:

By = max(y |B)
=1

n

< [IBllso = max(}_ | Byl)

Jj=1

- IBllz = v/ p(BB").

Depending on the choices of the matrices M and IV, we obtain dif-
ferentiterative methods. Let D be the matrix formed by the diagonal el-
ements of A, E' be the matrix formed by the —a;; when¢ > j,and F' be
the matrix formed by the —a;; when¢ < j,sothat A= D — (E+F).

- The matrix D is a diagonal matrix of A, given by:

a 0 . 0
D 0 C.LQQ 0
0 0 Qnn

0 0 0
E— —Qa21 O 0
—Qp1 —0p2 0
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- The matrix F'is an upper triangular matrix of A with a zero diago-

nal.
0 —ap -+ —a,
0 0 .. Aan
0 0 0

4.1 JACOBI METHOD

In the Jacobi iterative method, the matrix A of the system AX = b
is decomposed as A = M — N. The matrix M corresponds to the
diagonal of A (with zeros outside the diagonal), so M = D, and the
matrix N is the matrix A in which the diagonal elements are replaced
by zeros, ie., N = E + F. The matrix J = M=N = D™YF +
F) = I — D ' Ais called the Jacobi matrix. Starting from an initial

vector X0 = (29,29, ..., 22)", ateach step, we compute X k using the
following formula:
ghtt = <b— Z a; ),':1,2...,n. (4.3)
J=Llj#1

Remark 4.2. The Jacobi method does not always converge. If A is a
positive definite matrix, the Jacobi method converges. Similarly, if A is
a strictly diagonally dominant matrix, i.c., |ai;| > 3, aij|, then the
Jacobi method is convergent.

Example 4.1. Consider the following system

4ZL’1—|—2?L’2+I3 =4
—x1 + 229 =2
2$1—|—ZE2—|—41‘3 =9.
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Let X° = (0,0,0)" be the initial vector. By calculating the first five
iterations, we obtain:

1 -1/16 —-1/8 5/128 7/512
Xt=11|,X2=| 3/2 [, X3=]-1/32|,X*=| 15/16 | and X° = | 261/256
9/4 3/2 61/32 265/128 511/256

Example 4.2. Let us solve the following system using the Jacobi method:

3$1+I’2—ZL‘3:2
$1+5l’2+2$3:17

2(E1 — Ty — 6[E3 = —18
The iterative scheme is
i=1, 2f™ =1(2—ak+ah)
i=2, a5 =1(17— a2k — 22%)
i=3, af™ = (—18 = 2af + af)
Let X° = (0,0,0) be the initial vector, we obtain: X; =

(2/3,17/5,3)!, Xy = (8/15,31/15,2.6555)".
After 10 iterations, we obtain the following table of results:

0 0 0 0

I | 0,6666606 3,4 3

2 | 0533333 | 2,000007 | 2,055550
3 | 0,862963 | 223111 | 2,833333
4 | 0,867407 | 2,094074 | 2,915802
5 | 0,940576 | 2,0601198 | 2,970123
6 | 0.959975 | 2035835 | 2,970I59
7 | 0,978108 | 2,019941 | 2,980686
§ | 0986915 | 2012104 | 2,989379
9 | 0,992425 | 2,000865 | 2,9930621
10 | 0,995585 | 2,0040067 | 2,990331
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From this table, we notice that the sequence of points converge towards
the solution X = (1,2, 3)".

4.2 GAUSS-SEIDEL METHOD

The Gauss-Seidel method is an amelioration of the Jacobi method be-
cause, it makes the iterative process faster. In the Jacobi method, the
generated vectors X', X% ..., X* ... convergences to the solution
X, which means that each new vector is better than the previous one.
However, to calculate the component 13 of the vector X2, in the Jacobi,
we use those of X! even though 7 is already calculated and it is better
than 1. To overcome this drawback, the principle of the Gauss-Seidel
method, is to use each component as soon as it is calculated. Thus, to
compute the component 77, we use all the components from 5™

2F1! already determined at iteration (k + 1) as well as the components

2%, to z¥ that are still at iteration k.

The matrix A is decomposed as A = M — N. We take:

to

M=D-E, N=F

This modifies relation (4.3) as follows: for & > 0 (assuming again that
(0773 7é 0fori = 1,...,7’1,).

1 i—1 n
k+1 __ E k+1 E k g
x,; = bl— aijxj — CLZ‘J’ZE]- ,2—1,2...,71.
j=1 j=i+1

(4.4)

Remark 4.3. The Gauss-Seidel method does not always converge. If A
is a positive definite matrix, the iterative method converges. Similarly, if

A is a diagonally dominant matrix, i.e., if

|aii| > Z\%‘L

J#i
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then the Gauss-Seidel method converges.

Example 4.3. Solve the following system using the Gauss-Seidel method
using 3 iterations and X° = (0,0, 0)" as a starting point.

—T1 + 9 + 3.%'3 =-—1
$1+2I2 =2
3331—|-£U2—.T3 =1

This system can be written in following form:

L 1 2 3
1=1, xp, =14z, + 32}

L 2 _ 1,1

1=2, rgyy =1l-gr

L 3 _ 1.2
=3, Tpy = 1431, — Ty

- First iteration, we obtain X' = (1,0.5,1.5)1,

- Second iteration, we obtain X* = (6, —2,19)t,

- Third iteration, we obtain X* = (56, —27,194)".
Hence after three iterations, X* ~ (56, —27,194)"

Example 4.4. Let ussolve the linear system of Example 2 using the Gauss-

Seidel method. The iterative scheme, in this case, is written as follows:

i=1, a2kt :%( —x2+x3)
i=2, zhbt = % ( it 2x§)
i=3, oftt = (—18 — 22fT 4 25T

Starting from X° = (0,0,0)", we find X' = (g, leg, E) After 1o

iterations, we obtain the following table of results:
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0 0 0 0

I | 0.666606067 | 3.26006067 | 2.677778
2 | 0.4703704 | 2,2348I5 | 2.78432I
3 | 0.8498354 | 2.1160305 | 2.930501

4 | 0.9380855 | 2.040158 | 2.9726069
S | 09775034 | 2.015432 | 2.959929
6 | 0.991499I | 2.005729 | 2.996212

7 | 0.9968271 | 2.002150 | 2.998584
8 | 0.9988115 | 2.000804 | 2.999470
9 | 0.9995553 | 2.00030I | 2.999802

10 | 0.9998335 | 2.000113 | 2.999920

1t can be observed that for the same number of iterations, the approximate
solution obtained by the Gauss-Seidel method is more accurate. The Gauss-
Seidel method generally converges more quickly than the Jacobi method,
but not always.

4.3 MATLAB CODES

4.3.1 PSEUDO-CODE OF JACOBI METHOD

clc; clear all;close all
% Jacobi Method to solve Ax = b
% Input matrix A and vector b

A = [6 -2 3;
-3 9 1,;
2 -1 -71;

b = [-1; 2; 3];
x0 = [0; 0; 0]; % Initial guess
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max_iter = 100; % Maximum number of
iterations

tol = le-4; 7 Tolerance for convergence

length(b);% Size of the system

n

x = x0;% Initialize variables
x_new = x0;

fprintf ('ITter\t\txi\t\t\tx2\t\t\tx3\n');
% Jacobi iteration

for k = 1l:max_iter
for i = 1:n
sigma = 0;
for j = 1:n
if j 7= 1
sigma = sigma + A(i,j) * x
(3);
end
end

x_new(i) = (b(i) - sigma) / A(i,1i)

end

% Print current iterate
fprintf ('%d\t\t%.6£\t%.6f\t%.6f\n", k,
x_new (1), x_new(2), x_new(3));

/» Check for convergence
if norm(x_new - x, inf) < tol
fprintf ('Jacobi method converged
in %d iterations.\n', k);
break;
end
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X = X_new;
end

% Output result
disp('Solution x:');
disp (x_new) ;

4.3.2 PSEUDO-CODE OF GAUSS-SEIDEL

METHOD

% Gauss-Seidel Method for solving AX = b
% Inputs:
clc;clear all;close all
A =[5 -2 3;

-3 9 1,

2 -1 -71;
b = [-1;, 2; 3];
X = [0; 0; 0];% Initial guess
tol = le-4;% Tolerance
max_iter = 100;%maximum number of

iterations

n = length(b);% Size of the system
iter = 0;
while iter < max_iter

X_old = X;

for i = 1:n

suml = A(i, 1:i-1) * X(1:1i-1);

A(i, i+1:n) * X_old(i+1:n);
(b(i) - suml - sum2) / A(1i,

sum?2
X(i)

i);

end
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fprintf ('%d\t\t%.6f\t%.6f\t%.6f\n",
iter, X(1), X(2), X(3));
%» Check for convergence
if norm(X - X_old, inf) < tol
fprintf (' The Gauss-Seidel method
converged after J%d iterations.\
n', iter);
break;
end
iter = iter + 1;
end
%» Final result
disp('Solution x =");
disp (X);

4.4 SOLVED EXERCISES

Exercise 4.1. Solve the following system using the Jacobi method and
determine the number of iterations required to obtain an errore = ||x* —
2| < 1074, taking the initial vector X° = (0,0, 0)"

41‘1 + 1%’2 + r3 = 4
- + 21‘2 =2
2371 + 29 + 4.’133 =9

Solution
Foreach iteration k, the iterative scheme of the Jacobi method is written

in this case as follows:

i=1, 28 = % (4 — 4k — xlg)
i=2, o5t =1(2+ak)
1 =3, x§+1 % (9 — 2% — :BS)

93



Raouf Ziadi

Starting from X = (0,0,0)’, to achieve the prescribed accuracy, we
perform 12 iterations, the results of which are presented in the follow-

ing table.

o} o o o

I I I 2.25
2 | -0.0625 LS L

3 -0.125 | 0.9688 | 1.9063
4 | 0.0391 | 0.9375 | 2.0703
5 | o0.0137 | L0195 | 1.9961
6 | -0.0088 | 1.0068 | 1.9883
7 | -0.0005 | 0.9956 | 2.0027
8 | 0.0015 | 0.9998 | 2.0013
9 | -0.0002 | 1.0008 | 1.9993
I0 | -0.0002 | 0.9999 | 1.9999
II | 0.000I | 0.9999 | 2.0001
2 o I 2

Exercise 4.2. Consider the following system

21’1 — T + T3 =3
T+ 7?[)2 — 3]33 =6
-1 + 31’2 + 431:3 =17

a- Starting from X° = (0,0, 0)", determine the first six iterations of the
Jacobi and Gauss-Seidel methods.

b- Given that the exact solution is X = (1,2, 3)", what can we conclude?

Solution
a- For each iteration £, the iterative scheme of the Jordan method is

written in this case as follows:
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1 =1, x'f“ :%(2—:17’2“—37’;)
i=2, 5™ =1(17— b — 22%)
i=3, oit! =—-1(-18— 22k 4 ak)

Starting from X = (0, 0, 0)’, we obtain

= (1.5000, 0.8571,4.2500)"

= (—0.1964, 2.4643, 3.9821)"

= (0.7411,2.5918,2.3527)"
X4 = (1.6196, 1.7596, 2.4914)"

= (1.1341, 1.6935, 3.3352)"

= (0.6791,2.1245,3.2634)"

withe = || X5 — X*|| = 0.4334.
- For each iteration k, the iterative scheme of the Gauss-Seidel method

is written in this case as follows:

i=1, aktt :%(Z—xé”—x’g)
i=2, o5t =117 -2 - 22%)
i=3, ahtl = —% ( 18 — 224 + azk“)

Starting from X = (0, 0, 0)", we obtain

X, = (1.5,0.6429, 4.1429)"

X, = (—0.25,2.6684,2.1862)"

X3 = (1.7411, 1.5454, 3.5262)"

X, = (0.5096,2.2956, 2.6557)"
(1.3199, 1.8067, 3.2249)"
= (0.7909, 2.1263, 2.8530)"

><><
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avec e = || X — 2*|| = 0.2851.
b- We note that, for the same number of iterations, the approximate
solution obtained by the Gauss-Seidel method is more precise.

Exercise 4.3. Using the Gauss-Seidel method, approximate the solution
of the following system of linear equation within a precision of 1073

8$1+LL’2—|—JI3 = 26
$1+5$2—$3 =7
$1—£L‘2+5(L’3 =7

Solution

For each iteration k, the Gauss-Seidel method is written in this case as
follows:

i=1, af™ =1(26—ak —af)
1 1
i=2, sttt = % (7 ot 4 x3)
k+1 k 1 k+l
i=3, x5’ —%(7 + —i—xf)

Starting from X = (0,0,0)", it results that

= (3.25,0.75,0.9000)"

= (3.0438,0.9712, 0.9855)"

= (3.0054,0.996, 0.9981)"
X4 = (3.0007,0.9995, 0.9997)"

= (3.0001,0.9999, 1)’

The generated vectors of this system converge to X* = (3,1, 1)".
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PoOLYNOMIAL

INTERPOLATION

In practice, we often encounter problems where the function f is not
known explicitly but is only known at certain points x¢, 1, . . ., Tp,
or can be evaluated only by calling expensive code. However, in many
cases, we need to perform operations (differentiation, integration, min-
imization, etc.) on the function f. We therefore seek to reconstruct f
using an approximating function f, thatis both simple to representand
efficient to evaluate, based solely on the discrete data of f. We require
that f, remains a faithful approximation of f atall points of interest.

In this course, we focus on reconstructing f using polynomials. More
precisely, given n + 1 points with distinct abscissae m; (z;, f(z;)),7 =
0,1,...,ninthe plane, the polynomial interpolation problem consists
of finding a polynomial P(x) whose graph passes through all n + 1
points m;, that is:

P(z;) = f(z;), Vi=0,1,....n (5.1)

In this chapter, we present numerical method for approximating f by

a polynomial form, that is:

P(z) = apa™ + - - - + ap2® + a1z + ag
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where a; (1 = 0,1,2,...,n) are coefficients to be determined. The
polynomials we will study differ only in how the coefficients a; (i =
0,1,...,n)are determined, since for a given set of data points, the in-

terpolation polynomial is unique.

5.1 LAGRANGE INTERPOLATION

Let (n + 1) distinct points g, Z1, Z3, . . . , T, be given, and let f be
a function whose values at these points are f(xo), f(z1), ..., f(zn).
Then, there exists a unique polynomial of degree less than or equal to

n that coincides with the interpolation points, i.e.:

f(,I'l):P(.fz), i:O,l,...,n.

This polynomial is given by:

P(x) = > f(wi) Li(x) = f(w0)Lo(x) + f(21) La (%) + - + f(2n) Ln(2),
where

n
T — T, ‘
Li(z) = Lo i=0,...,n.
- Ii—iCj
7=0
JF#i

The polynomial P(z) is called the Lagrange interpolation poly-

nomial of the function f at the points z¢, 1, . . ., T, and the poly-
nomials L;(x) are called the Lagrange basis polynomials associated

with these points.

Theorem s.1 (Uniqueness and Error Bound). Let f € C"*a, b], and
let P(x) be the interpolation polynomial of f at the points m;(x;, f(z;)),
fori = 1,....,n Then forall x € la,b], there exists & €
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] mm{xl} max{xl}[mch that the error f(x) — P(x) is given by

..........

Bla) = 222 e ),

n

where yoy1 () = [ [(@ = 2:). Ifwe set My = max | f0)(x)],

a<x<b
1=0

then we have

E(I‘) < |7ﬂ+1(x)‘

Example s.x. Let’s determine the Lagrange polynomial which interpo-
lates the function defined by values of the following table

x; o213 5
yi=fz;) |1]2]9]|8

We bave

P(x):Zf(xi)Li(w) f(xo)Lo(x) + f(21) La(x) + f(w2) La(w) + f(23) Ls(x).

with ;
Lzx)= J] Z=%,i=0,1,2.3
gm0 U0 i
Then
(x —2)(z —3)(z —5) (x —0)(x — 3)(z — )
P =" =y0-30-5 "*e-0e_32_5
(z —0)(x —2)(x — 5) (z —0)(x —2)(z — 3)
06965 " Bo06G-26-3)
5—33;3—71'2 Ex—l
30 30

Example s.2. Using Lagrange method, construct the interpolation poly-
nomial P(x) of degree four that interpolates the points (z, f(x¢)) =
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(0,0), (z1, f(z1)) = (1,5), (22, f(22)) = (2,15), (3, f(x3)) =
(3,0) and (4, f(r4)) = (4,3).
We have,

P(z) = Z f(@i)Li(z) =f(x0)Lo(x) + f(z1)L1(z)+

=0

f(xo)Lo(z) + f(x3)La(z) + f(24)La(z).

with

4
Li(z) = YT —-0,1,2,3,4.

pp—T
=i J

Furthermore Lo(x) = L3(x) = 0 because they will be multiplied by
zero. Following the same procedure as in the previous example we obtain:

(z = 0)(z — 2)(x — 3)(x — 4)
(1-0)(1—=2)(1-3)(1—4)
_é(x4 — 92° 4 262 — 247)

0)(z —1)(z —3)(z —4)
2-0)2—1)(2-3)(2—4)

Ll (CL’) =

Ly(z) =

(x —
(
Lo 4
:4_1( — 82 + 192 — 121)
(= 0)(x ~ 1)z~ 2)(x ~3)
(
1

L) = a—na-na-—2u -3

= —(x" — 11
24(x 62" + 112* — 62)

Finally by substituting the polynomial coefficients, we obtain:

f(z) ~ P(z) = 3.04162* — 23.252° + 50.95832% — 25.75z%.
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5.2 HERMITE INTERPOLATION

Hermite interpolation generalizes Lagrange interpolation by ensuring
that not only the function values f(x) and P(z) coincide at the nodes
Z;, but also their first derivatives.

Let g, x1, . . ., T, be (n + 1) distinct points in the interval [a, b],
and let f be a function defined on [a,b] with known derivatives
f'(zo), f'(x1), ..., f'(xn). Then, there exists a unique polynomial
P(x) of degree at most 2n + 1 satisfying the conditions:

P(JZ'Z) = f(fﬂl) and Pl(l’l) = f/(fﬂl) forall: = O, 1, e, n.

This polynomial P(x) is given by:

n n

P(z) = ZHz(x)f(l"z) + Z Ki(z) f'(2s),

=0 =0

where the Hermite basis polynomials H; () and K; () are defined
as:

{Hi@s) = [1 - 2(z — z;)Li(2;)] L3(x),
Ki(x) = (z— )L (),

with L;(z) is the Lagrange basis polynomials:

n
ZL’—.Z']‘

Li(z) =

o i~ x;
J#

Theorem s.2. (Error bound Hermite interpolation method)

Let f € C*"*2[a, b] and P(x) be the polynomial interpolation of f over

the points m;(x;, f(x;)), fori = 1,...,n. Then forall x € |a,b],

there exists &, €] 1rmn{ycl} max{xl}[suc/o that the error f(x) — P(x)

..........

satisfies
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By _ggl‘[l'ng M2n+2 = rgai(b |f(2n+2) (x) |, then we have

2
/yn—l—l(m)
E(x) < 2 M,,
(z) < (2n + 2)! 2nt2

Examples.3. Let’s determine the Hermite polynomial which interpolates
the function f(x) = = at the points 1y = 0 and 1 = 5.
The Hermite polynomial P(x) is written as

where
Hi(z) =[1-2(z —x;)Li(2;)]L}(2)
Ki(z) = (v —2;)L}(z)

Let us compute the polynomials L;(z), L(z), H;(x) and K;(x), know-
ing that the x-coordinates of the support points are o = 0 and x1 = 5.

Lo(x) = —&__Zﬂ)) —1-=
and
Iyw) = —¢
L) =+
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Ho(x) = [1 = 2(z — x0) Ly (w0)] L5 (x)

= (1 — 2z — 0)%1) (1- 92

2 3 3 2
R e
12570 Tost

H,(z) = [1 = 2(z — 1) Ly (1)) Li (2)

. 2 3 2
=Tt st
Furthermore, we bave
2 1 9
Ko(z) = (x — 20)L3(z) = (x — 0) (1 - g) = oo’ = Zal 4w
A 1 2
Ki(2) = (x — 2)L3(z) = (z — 5) (g) = oo’ — =at

P(z) = Z Hi(z) f(z:) + ZKi(x)f,(%)

=0 =0
= Ho(2) f(w0) + Hi(z) f(21) + Ko(z) f'(z0) + K1(x) f'(1)
= (imf‘ L3y 1) T <—ix3 + 3x2>
125 25 26 125 25
10 /1 4, 2,
. (2_590 - ) .
10 76

3 2
I L
262" 2627 T
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5.3 MATLAB CODES

5.3.1 PSEUDO-CODE OF LAGRANGE

INTERPOLATION METHOD

%» Lagrange Interpolation
clc; clear;

% Example data points

x=[0 2 3 5]; % known x-values

y=[-1 2 9 87];% corresponding f(x) values

n=length (x);

syms X; % symbolic variable for the
polynomial

P=0; % initialize the Lagrange polynomial

% Construct Lagrange interpolation
polynomial

for i=1:n

L=1;
for j=1:n
if j 7= 1
L=L*(X-x(j))/(x(i)-x(j));
end
end
P=P+y (i) *L;

end

P=expand (P); 7’ expand the polynomial for
readability

disp('The Lagrange interpolation
polynomial P(x) is:');

pretty (P)
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5.3.2 PSEUDO-CODE OF HERMITE
INTERPOLATION METHOD

%» Hermite Interpolation
% This constructs the Hermite
interpolating polynomial H(x)
clc;clear;
%» Example data points
x=[1,2,9,28]; % known x-values
f= [0,1,2,3]; % f(x) values at those
points
df=[0.5,0.5,0.5,0.5]; % f'(x) values at
those points
n=length (x);
syms X;
H=0; %» Hermite polynomial initialization
for i=1:n
%» Construct the Lagrange basis polynomial
L_i(x)
Li=1;
for j=1:n
if =i
Li=Li*(X-x(j))/(x(i)-x(j));
end
end
Li=expand (Li);
%» Compute derivative of Li
dLi=diff (Li, X);
% Construct H_i(x) and K_i(x)
Hi=(1-2*x(X-x(i))*dLi)*(Li) ~2;
Ki=(X-x(1))*(Li)"2;
% Add to Hermite polynomial
H=H+f (i) *Hi+df (i) *Ki;
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end

H=expand (H) ;

disp('The Hermite interpolation polynomial
H(x) is:');

pretty (H)

5.4 SOLVED EXERCISES

Exercise s.ax. Suppose that f(xr) = /x and (x¢, f(z0)) =
(0,0, (1, f(21)) = (1,1) and (3, f(x2)) = (8,2).

1) Determine the polynomial interpolation polynomial Py(x) that passes
through the points (;,Y;)i=0,1,2-

2) Calculate Py(x) and f(x) = /x forx = 0.5,0.95,1,1.5 and 3.

Solution
1- Following the Lagrange method,

Py(z) =f(xo)Lo(x) + f(z1)L1(x) + f(22)La(z)
(s (x — 1) (2 — 22) . (x — z0)(x — 22)
=/ () (zo — 1) (w0 — 22) @) (21 — o) (21 — 1172)+
(x — xz0)(x — 27)
+f(w) (x2 — o) (22 — 21)

(v —=1)(z —38) (x —0)(x —38) (x —=0)(x—1)
_0(0—1)(0—8)+1(1—0)(1—8)+2(8—0)(8—1)
3,31
- 38" T3
Then, PQ(O) == O,Pg(l) = land P2(8> = 2.
xX; 0.5 0.95 I LS 3

f(xi) | 07937 | 0.98305 | 1 | 11447 | 1.4422
Py(x) | 0.52679 | 0.95509 | 1 | 1.4196 | 2.3571
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Exercise s.2. Consider the function f(x) = 1/x.

1- Find the Lagrange interpolation polynomial that passes through the
points (2,0.5), (2.5,0.4) and (4,0.25).

2- Calculate the approximation of f(2.2).

3- Estimate the maximum error.

Solution
_ 1.2 17 23
I-PQ(ZL') = %(L’ - E$+2—0
2- We deduce that

£(2.2) ~ Py(2.2) = 0.457

3- The error of the polynomial P (x): From Theorem s.1, there exists
&: € [2,4] such that;

(3)
E(x) = / 3('&0) (x — x)(x — 1) (T — x2)

then, “
E(z) = / 3(!536) (x —2)(x —2.5)(z — 4).

Let M3 = Jnax |f®)(z)|, then

B(z) < % (= 2)(z — 2.5)(x — 4)|.

3
3) - _6 3) - =
On the other hand %) () ot €t 10aX |f ()] 5 Hence

3
B(@) < 2z - 2)(x - 25)(z — 4]

For x = 2.2, the error is bounded as follows:

3

E(z) < 2

(2.2 — 2)(2.2 — 2.5)(2.2 — 4)| ~ 0.0068
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Exercise s.3. Consider the following points: (0,0),(1,2),(2,36),
(3,252) and (4, 104).

1. Determine the Lagrange polynomial passing through the first three
points.

2. Determine the Lagrange polynomial passing through the first four
points.

3. Provide the analytical expression of the error for the polynomials
obtained in (1) and (2).

4. Determine approximations of f(1.5) using the two polynomials
obtained in (1) and (2).

Solution
- P(z) = 1622 — 14x.
2-P3(x) = 2(2—2)(2—3)—18z(z—1)(x—3)+42z(x—1)(z—2) =
61a® — 203z% + 144x. 3- The error of the polynomial P (z):From
Theorem 5.1, there exists &, € [0, 2] such that:

(3)
Ea() = T8 o - ) — )@ - )
then, "
By(a) = L 3(!59”) (x—0)(z — 1)z —2)

whereas for P (), there exists , € [0, 4], where the error is given by:

(4)
Ei) = T8 @ 0@ - )@ -2 - 3)

4- If we approximate f using P», we have f(1.5) ~ P»(1.5) = 15,and
if we approximate f using P, we obtain f(1.5) ~ P3(1.5) = 5.625.
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5.4.1 SUPPLEMENTARY EXERCISES

Exercise 5.4. Wewant to design a railway track curve between the points
(0,0) and (1,1). The curve is described by a function of the form y =
f(x) that satisfies:

f(0)=0and f(1) = 1.

Moreover, to ensure a smooth transition, the slope of the curve must satisfy:
f(0)=0 and f'(1)=0.3.

The curve is represented by a polynomial on the interval [0, 1].
- Construct, using the Hermite method, the interpolation polynomial P(x)
that interpolates these points.

Result
The polynomial obtained following the Hermite method is

P(z) = —1.72° + 2.72°

Exercise s.5. Consider the following points: (0,0), (1,2),(2,36) and
(3,252).

1. Determine the Lagrange polynomial passing through the first three
points.

2. Determine the Lagrange polynomial passing through the four
points.

Result
- Py(x) = 1622 — 14x.
2- P3(z) = 252° — 5922 + 36z

Exercise 5.6. Determine the Lagrange polynomial passing through the
points (1,0), (2,1), (9,2) and (28, 3).
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Result
-Py(z) =2* + 1.

I10
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Numerous problems cannot be solved using traditional analyt-
ical methods; this is why numerical methods have emerged. In
many cases, approximating a solution depends on the number
of operations to be performed, which presents a challenge to the
application of these numerical methods.
The emergence of computers and the expansion of computing
have greatly facilitated the use of numerical methods, thanks to
the development of algorithms implemented on machines with
powerful processors.
Today, technology continues to advance, constantly bringing
new developments across various fields. Scientific research has
progressed significantly, enabling the understanding and mod-
eling of physical phenomena that were unclear just a few years
ago. This progress has been made possible through numerical
analysis,
In this booklet, we present the numerical methods essential for
(second )Qi 'Ilchelor stud (f})hysms/ \x istry) t
address of the ch ges they ehgounter th out thelr
academic studies.
It is worth noting that our approachis based on two essential
points:

1. The course content must be simplified.

2.'The acquired knowledge is reinforced through simple ex-
amples.

Finally, I hope that readers will find at least something useful in
this booklet.
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